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From deterministic to probabilistic forecasts

Motivation: Efforts in data-driven weather models have mostly focused on deterministic forecasts, but:

“Deterministic forecasts are useless.” |

Uncertainty quantification approaches:

® (probabilistic (e.g. generative) data-driven weather models)

® generation of an ensemble of predictions by running a deterministic data-driven model based on
® randomly perturbed initial conditions
& jnitial conditions of an NWP ensemble model
® suitably generated initial conditions based on past data

& statistical/Al methods for post-hoc uncertainty quantification to generate probabilistic forecasts from

deterministic predictions

® jsotonic distributional regression / EasyUQ
@ neural network-based probabilistic post-processing
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Setup

@ FourCastNet (+ PrecipNet for precipitation) forecasts, up to a lead time of 192h in 6h steps, 0.25° grid

® 51-member ensemble with initial condition based on random (Gaussian) perturbations as in the original
publication; and the initial conditions of the IFS ensemble

@ operational ECMWF ensemble as a benchmark
& restriction to sub-domain (ECMWF European Grid) due to limited disk space and computing resources
@ 2018-2022 period, with 2018-2021 as training data for the (post-hoc) UQ methods and 2022 as test set
® six target variables
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Random field perturbation-based initial conditions

An ensemble of “data-driven” initial conditions is generated by adding random perturbations based on the
difference between two randomly chosen atmospheric states (i.e. analyses):

dg, — adq,

a77
|ad, — aa,|Etot

where ay, is the state vector of the analysis from the date dj, | - |ett is the total energy norm, and « is a tuning
parameter.

Here, we set « = 0.5 - 107 and select d;, d» randomly from the same month within the 2018—2021 period.

Magnusson, L., Nycander, J. and Kallen, E. (2009). Flow-dependent versus flow-independent initial perturbations
for ensemble prediction, Tellus A, 61A, 194-209. DOI:10.1111/j.1600-0870.2008.00385. x.
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Isotonic distributional regression (IDR) / EasyUQ

EasyUQ, a special case of isotonic distributional regression (IDR; Henzi et al. 2019, arXiv:190903725), aims at
transforming real-valued model output into calibrated statistical distributions, based solely on training data of
model output-outcome pairs (x;, yi),i = 1, ..., n.

Key assumption: conditional distributions of the outcome Fx(y) = P(Y < y|X = x) are increasing in stochastic
order, i.e., Fx(y) > Fe(y) if x < x'.

Then, statistically optimal (in final samples) and calibrated predictive distributions are obtained via
]

o 1
B = min | max g 2T < v,
i=

without requiring the choice of any tuning parameters.

Walz, E.-M., Henzi, A., Ziegel, J. and Gneiting, T. (2022). Easy Uncertainty Quantification (EasyUQ): Generating
Predictive Distributions from Single-valued Model Output, Working paper, arXiv:2212.08376.

Sebastian Lerch: Uncertainty Quantification for Data-driven Weather Models



Distributional regression networks (DRN) for probabilistic
post-processing
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principled loss function

Rasp, S. and Lerch, S. (2018). Neural networks for post-processing ensemble weather forecasts, Monthly Weather
Review, 146, 3885-3900. DOI:10.1175/MWR-D-18-0187.1.
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(Preliminary) Results: T2M
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(Preliminary) Results: T850

Mean CRPS for variable t850
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(Preliminary) Results: Z500

Mean CRPS for variable z500
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(Preliminary) Results: U10
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(Preliminary) Results: V10
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(Preliminary) Results: TP
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(Preliminary) Results: TP
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Summary and conclusions

& comparison of various UQ approaches for obtaining probabilistic forecasts from deterministic data-driven
weather models

® no single best approach across variables and lead times
® stability issues for precipitation

Next steps and open questions:
& fine-tuning of post-hoc UQ approaches and random field perturbations
@ systematic evaluation of forecast quality and reliability
® gpplication for other data-driven weather models, e.g. within WeatherBench 2
® extension/comparison to station observations’

Thank you for your attention.

'see also related work by Bremnes, Nipen & Seierstad, which will soon be available on arXiv
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