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Outline

• Background: Why Using AI for NWP?

• Pangu-Weather: 3D Deep Networks for Accurate Weather Forecasting

• Results: Determinstic/Ensemble Forecast, Extreme Weather Forecast

• Future Perspectives
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Numerical Weather Prediction (NWP)

• Task description

• Given a set of weather variables at the current time, predict the variables at a 
specified time in the future (e.g., 5 days later)

• Mathematically, the task is to learn a function 𝑓 ⋅ that uses the current weather 
data as input and produces future weather data as output

• Two main lines of research for NWP (to be detailed later)

• Simulation-based methods: approximating 𝑓 ⋅ with a set of partial differential 
equations (PDEs)[A,B]

• AI-based methods: estimating 𝑓 ⋅ using deep neural networks[C,D]

[A] E. Kalnay et al., Atmospheric Modeling, Data Assimilation and Predictability, Cambridge University Press, 2003.
[B] P. Bauer et al., The Quiet Revolution of Numerical Weather Prediction, in Nature, 2015.
[C] J. Pathak et al., FourCastNet: A Global Data-driven High-resolution Weather Model Using Adaptive Fourier 
Neural Operators, in arXiv preprint:2202.11214, 2022.
[D] K. Bi et al., Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global Weather Forecast, in 
arXiv preprint:2211.02556, 2022.
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Examples of NWP with Reanalysis Data
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NWP 
algorithm

NWP 
algorithm

Input: 2m temperature (T2M) Ground-truth for the next 3 days

Input: 10m 𝑢-wind speed (U10) Ground-truth for the next 3 days

Credit: all data are from the 5th generation of the ECMWF reanalysis (ERA5) data[A].
[A] H. Hersbach et al., The ERA5 Global Analysis, in Quarterly Journal of the Royal Meteorological Society, 2020.
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Artificial Intelligence

• On replicating human intelligence with mathematical methods

• AI has largely changed the way how people work

• Key problem: finding the relationship between input and output data

Sortation system Customer service Weather forecasting Playing Go and chess

Security monitoring Medical diagnosis Protein structure prediction
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Deep Learning

• Representing complex functions with deep neural networks

• A large number of parameters to approximate the complex function

• End-to-end optimization, making the model hard to interprete

• Widely applied to many AI problems: CV, NLP, RL, etc.

[A] Y. LeCun et al., Deep Learning, in Nature, 2015.
[B] S. Reed et al., A Generalized Agent, in TMLR, 2022.

Optimization of deep learning[A] Deep network as a generalized agent[B]
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AI for Science (AI4S), Part I

• Solving scientific problems with AI methods

• AI brings new solutions and opportunities to old problems

Category Previous Now Examples

Playing chess or 
video games

Heuristic search with manually 
designed heuristic functions

Deep learning as heuristics, plus 
reinforcement learning

DQN[A], AlphaGo[B], 
AlphaStar[C], etc.

Life and biology Solving thermodynamic or kinetic 
simulation of protein physics

Deep learning incorporated with the 
constraints of protein structures

AlphaFold[D], etc.

Geophysics Heuristics for finding patterns in 
aftershock data

Deep learning for analyzing aftershock 
patterns

DeVries et al.[E], etc.

Nuclear fusion Engineering based on physics to solve 
the Tokamak magnetic control problem

Deep reinforcement learning for 
Tokamak magnetic controller design

Degrave et al.[F], etc.

[A] V. Mnih et al., Human-level Control through Deep Reinforcement Learning, in Nature, 2015.
[B] D. Silver et al., Mastering the Game of Go with Deep Neural Networks and Tree Search, in Nature, 2015.
[C] O. Vinyals et al., Grandmaster Level in StarCraft II Using Multi-agent Reinforcement Learning, in Nature, 2019.
[D] J. Jumper et al., Highly Accurate Protein Structure Prediction with AlphaFold, in Nature, 2021.
[E] P. DeVries et al., Deep Learning of Aftershock Patterns Following Large Earthquakes, in Nature, 2018.
[F] J. Degrave et al., Magnetic Control of Tokamak Plasmas Through Deep Reinforcement Learning, in Nature, 
2022.
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AI for Science (AI4S), Part II

• Solving scientific problems with AI methods

• AI brings new solutions and opportunities to old problems

Category Previous Now Examples

Mathematics Relying on mathematicians’ intuition to 
find theorems

AI algorithms assisting mathematicians 
to find and prove new theorems

Ramanujan Machine[A], 
Davies et al.[B], etc.

Computing theory Designing efficient computing 
algorithms manually

Reinforcement learning to find efficient 
computing algorithms

AlphaTensor[C], etc.

Weather 
nowcasting

Simulating weather with partial 
differential equations

Deep generative model to find patterns 
from radar data

DGMR[D], etc.

Medium-range 
weather forecasting

Simulating weather with partial 
differential equations

Deep learning to fit global reanalysis 
weather data

FourCastNet[E], Pangu-
Weather[F], etc.

[A] G. Raayoni et al., Generating Conjectures on Fundamental Constants with the Ramanujan Machine, in Nature, 2021.
[B] A. Davies et al., Advancing Mathematics by Guiding Human Intuition with AI, in Nature, 2021.
[C] A. Fawzi et al., Discovering Faster Matrix Multiplication Algorithms with Reinforcement Learning, in Nature, 2022.
[D] S. Ravuri et al., Skillful Precipitation Nowcasting using Deep Generative Models of Radar, in Nature, 2021.
[E] J. Pathak et al., FourCastNet: A Global Data-driven High-resolution Weather Model Using Adaptive Fourier 
Neural Operators, in arXiv preprint:2202.11214, 2022.
[F] K. Bi et al., Accurate Medium-range Global Weather Forecasting with 3D Neural Networks, in Nature, 2023.
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Why Using AI for NWP?

• Two major principles of using AI (apply to generic scenarios)

• Human experience is insufficient to formulate the complex system

• In NWP, the manually-designed PDE systems involve approximation (e.g., in 
dealing with unresolved processes) and parameterization (e.g., in 
formulating convection), and the error can accumulate with forecast time

• Data is sufficient for training models with a large number of parameters

• In NWP, a large-scale dataset (i.e., ERA5[A]) is available, offering global 
weather data from 1940s to date

• The advantages of AI in NWP

• Much faster: 10,000 times faster than simulation-based methods

• Offering individual forecasts that are complementary to PDEs

[A] H. Hersbach et al., The ERA5 Global Analysis, in Quarterly Journal of the Royal Meteorological Society, 2020.
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Prior Work: Simulation-based NWP

• Solving partial differential equations (PDEs) for simulation

• Governing a complex PDE system, modeling discretization, etc.

• May be sensitive to the approximation and parameterization of equations and 
the noise of observation data
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[A] W. C. Skamarock et al., A Description of the Advanced Research WRF Model Version 4, by National Center for 
Atmospheric Research: Boulder, CO, USA, 2019.

A small part of equations used in the Advanced Research WRF Model Version 4[A].
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Prior Work: FourCastNet

• First AI-based method for high-resolution global weather forecasting

[A] J. Pathak et al., FourCastNet: A Global Data-driven High-resolution Weather Model Using Adaptive Fourier 
Neural Operators, in arXiv preprint:2202.11214, 2022.

• Adaptive Fourier Neural 
Operator with vision 
transformers

• Fine-tuning to alleviate 
iterative errors

• Able to perform high-
resolution forecasting, but 
still producing inferior 
results to operational IFS
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Concurrent Work: GraphCast

• State-of-the-art accuracy 
on reanalysis data

• 2D encoder-decoder with 
multi-level, graph-based 
message passing

• Tested 252 variables, 
most metrics are SOTA

• But, it smoothifies the 
forecasts, weakening its 
ability in ensemble 
forecast

[A] R. Lam et al., GraphCast: Learning 
Skillful Medium-range Global Weather 
Forecasting, in arXiv preprint:2212.12794, 
2015.
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Pangu-Weather: Overall Pipeline

• On the path towards next-generation numerical weather prediction

• Given data, AI algorithms can also deal with assimilation and post-processing
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post-processingNWPassimilation

Observational 
weather data 
(e.g., radar)

Current 
assimilation 
algorithms

Simulation-
based NWP 
algorithms

Current post-
processing 
algorithms

Current 
assimilation 
algorithms

AI/DL-based 
NWP 

algorithms

Current post-
processing 
algorithms

AI-based 
assimilation 
algorithms

AI/DL-based 
NWP 

algorithms

AI-based post-
processing 
algorithms

Forecast results 
(e.g., wind, 

temperature)

End-to-end, AI-based forecast algorithms

present

future
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Data and Settings

• Dataset details

• The 5th generation of ECMWF reanalysis (ERA5) data – publically available

• Hourly reanalysis data from 1940 onwards

• We used: the 1979–2017 data for training, the 2019 data for validation, the 
2018, 2020, 2021 data for testing (to be fairly compared to WeatherBench[A])

• A number of surface variables, plus upper-air variables at 37 pressure levels

• We used: four surface variables (2m temperature, 𝑢- and 𝑣-components of 
10m wind speed, mean sea-level pressure) with and five upper-air variables
(geopotential, specific humidity, temperature, 𝑢- and 𝑣-components of wind 
speed) at 13 pressure levels (50hPa, 100hPa, 150hPa, 200hPa, 250hPa, 300hPa, 
350hPa, 400hPa, 500hPa, 600hPa, 700hPa, 850hPa, 925hPa, 1000hPa)

• The full dataset is over 2000TB, we used ~60TB of data

[A] S. Rasp et al., WeatherBench: A Benchmark Data Set for Data-driven Weather Forecasting, in JAMES, 2020.
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Input and Output for Deep Networks

• Input and output data have the same shape

• More than 70 million variables: 1440 × 720 × 13 × 5 + 4

• Seems large, but the resolution (0.25°, or about 25km around the Tropics) is 
barely enough for some important events (e.g., tropical cyclones)

• Larger data in the future

• ECMWF annouced the 6th generation of reanalysis data with 𝟖 × resolution

• More pressure levels and/or weather factors to be studied

• Difficulties for machine learning

• Complex relationship between input and output

• Solution: given a fixed lead time Δ𝑡, train a deep network 𝑓 ⋅ that receives 
weather data at time 𝑡 and predicts weather data at time 𝑡 + Δ𝑡
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Architecture: 3D Earth-Specific Transformer

• A 3D vision transformer to process volumetric data

• Swin transformer[A] to accelerate computation (standard window attentions)

• Reduced network depth and width (larger models can be better!)

[A] Z. Liu et al., Swin Transformer: Hierarchical Vision Transformer using Shifted Windows, in ICCV, 2021.
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Why 3D Deep Neural Networks?

• 3D networks can integrate richer information

• Each neuron in a 3D network is aware of the height information

• The spacing and distribution of atmospheric states and the relationship 
between atmospheric patches change rapidly across pressure levels

• Many weather processes (e.g., radiation, convection, etc.) can only be 
completely formulated in the 3D space

• 3D networks are faster in inference

• No need to process each pressure level individually and perform combination
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Injecting Earth-Specific Priors

• Motivation: variables are closely related to the absolute coordinate

• Working mechanism: modifying the positional bias

• Replacing relative positional bias with absolute positional bias

Uneven grid distribution 
on Earth’s sphere

Geopotential height w.r.t
latitude

Wind speed and temperature w.r.t
height (pressure level)
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Hierarchical Temporal Aggregation

• Forecast error grows fast with iteration

• The key is to reduce the number of iterations!

• Hierarchical temporal aggregation

• Training 4 models with lead times being 1 hour, 
3 hours, 6 hours, 24 hours, respectively

• A greedy algorithm to choose the model with 
max allowed lead time for the next iteration

• Example: a 7-day forecast needs 7 iterations
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Computational Costs

• Training

• Each forecast model has around 64 million parameters

• Each forecast model is trained for 100 epochs (not converged yet), taking about 
16 days on 192 NVIDIA Tesla-V100 GPUs

• Inference

• Each forecast takes around 1.4 seconds on a single V100 GPU

• The inference can also be executed on CPU, taking longer time

• Example: performing 7-day global forecasting requires executing the 24-hour 
model 7 times, requiring less than 10 seconds in total

• With faster inference, ensemble forecast is made easier (see later slides)

• Trained models were released[A] for research use
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[A] https://github.com/198808xc/Pangu-Weather

https://github.com/198808xc/Pangu-Weather
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Deterministic Forecast: by Variables

• First AI algorithm to surpass operational IFS

• For Z500, 3-day and 5-day 
RMSEs (unit: 𝑚2/𝑠2) are 
152.8 and 333.7 for 
operational IFS, and 134.5
(12% smaller) and 296.7
(11% smaller) for Pangu

• For T850, 3-day and 5-day 
RMSEs (unit: 𝐾) are 1.37
and 2.06 for operational 
IFS, and 1.14 (17%
smaller) and 1.79 (13%
smaller) for Pangu
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Deterministic Forecast: by Variables (cont.)

• First AI algorithm to surpass operational IFS

• For T2M, 3-day and 5-day 
RMSEs (unit: 𝐾) are 1.34
and 1.75 for operational 
IFS, and 1.05 (22%
smaller) and 1.53 (13%
smaller) for Pangu

• For U10, 3-day and 5-day 
RMSEs (unit: 𝑚/𝑠) are 
1.94 and 2.90 for 
operational IFS, and 1.61
(17% smaller) and 2.53
(13% smaller)  for Pangu
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Deterministic Forecast: by Variables (cont.)

• Significant advantage: “forecast time gain”

• If Pangu’s forecast error at 7 days (168 hours) is equivalent to another method’s 
forecast error at 168 − Δ𝑡 hours, then Δ𝑡 is called the “forecast time gain” of 
Pangu over the specified method

Variable Gain over operational IFS (h) Gain over FourCastNet (h)

Z500 10.45 43.23

T850 15.37 41.05

T2M 18.19 43.11

U10 19.68 43.81

V10 19.10 42.78

Z850 10.62 N/A

T850 13.66 N/A

Q500 31.00 N/A

U500 17.52 N/A

V500 16.16 N/A
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Deterministic Forecast: by Regions

• In the Northern Hemisphere

• Latitude between +20° (exclusive) 
and +90° (inclusive)

Backgr

ound

Metho

dology

Experi

ments

Future 

Work



25

Deterministic Forecast: by Regions (cont.)

• In the Southern Hemisphere

• Latitude between −20° (exclusive) 
and −90° (inclusive)
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Deterministic Forecast: by Regions (cont.)

• In the Tropics

• Latitude between +20° (inclusive) 
and −20° (inclusive)

• Larger accuracy gain compared to 
the results in the Northern/Southern 
Hemispheres, corresponding to the 
significant advantages in tracking 
tropical cyclones (see later)

Backgr

ound

Metho

dology

Experi

ments

Future 

Work



27

Deterministic Forecast: by Year

• Comparison: 2018, 2020, 2021

• Consistent trends of RMSE and ACC 
in different years, indicating Pangu’s 
stable forecast skill
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Deterministic Forecast: Visualization

• Sufficiently close to ground-truth, with visible differences

• Pangu tends to produce smoother results (a typical behavior of AI algorithms)
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Visualization of 3-day forecast of two upper-air variables (Z500 and T850)
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Deterministic Forecast: Visualization

• Sufficiently close to ground-truth, with visible differences

• Pangu tends to produce smoother results (a typical behavior of AI algorithms)
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Visualization of 3-day forecast of two surface variables (T2m and U10)
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Ensemble Forecast Results

• Improved medium-
range forecast results

• In 7-day forecast, the 
RMSE of Z500 is 
reduced from 500.3 to 
450.6 (10% smaller), 
and that of U10 
reduced from 3.48 to 
2.96 (15% smaller)

• Short-range (e.g., 2-day) 
forecast results are not 
improved or even 
deteriorated
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Results of 100-member ensemble forecast
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Extreme Weather Forecast

• Trend of relative quantiles with respect to lead time

• Pangu often reports lower quantile values because AI algorithms tend to 
produce smooth forecasts
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Extreme Weather Forecast (cont.)

• Comparison between Pangu, FourCastNet, and operational IFS

• AI algorithms (Pangu and FourCastNet) tend to underestimate extremes

• For Q500, Pangu is better than IFS due to the much better deterministic results
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Tracking Tropical Cyclones

• Tracking algorithm[A] and illustration

• Initial time and position are given

• Given lead time (6 hours), finding a local 
minimum of mean sea-level pressure 
(MSLP) within 445km, satisfying:

• There is a maximum of 850hPa 
vorticity within a radius of 278km, 
with absolute value > 5 × 10−5

• There is a maximum of thickness 
between 850hPa and 200hPa within a 
radius of 278km

• The maximum 10m wind speed is 
larger than 8m/s within a radius of 
278km when the cyclone is on land [A] P. White, Newsletter No. 102 – Winter 2004/05, by ECMWF, 

2005.

Tracking examples (visualization of MSLP, vorticity, 
thickness, 10m wind speed) for Hurricane Michael 

(2018-13) and Typhoon Ma-on (2022-09)
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Tracking Tropical Cyclones (cont.)

• Overall better results over 88 cyclones, 2018

• Advantage gets larger with lead time

• More accurate by regions and by intensity levels
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Overall errors Errors in different subsets
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Tracking Tropical Cyclones (cont.)

• Example: Typhoon Kong-rey (2018-25) and Yutu (2018-26)

• Strongest typhoons in Western Pacific Ocean, 2018

• Much more accurate forecasts compared to ECMWF-HRES

• Potential reason: large advantage of deterministic forecasts in the Tropics
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Summary and Takeaway

• AI algorithms show great potentials in NWP

• For the first time, AI algorithms surpass operational IFS in reanalysis data

• There is still a long way before AI can “replace” conventional NWP

• Method: 3D deep neural networks with a bit meteorological priors

• More meteorological expertise can be helpful

• Experimental results

• Stronger results on reanalysis data

• Preliminary studies show good results using IFS initial data as input

• Orders of magnitude faster for ensemble forecast

• Competitive in extreme weather forecasts, e.g., tracking tropical cyclones

• New paradigm in AI: pre-trained models for downstream tasks
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Future of AI for NWP

• More data

• Reanalysis data in a finer spatial resolution (e.g., ERA6)

• Complete observational data, allowing for an end-to-end system

• Stronger models (upon more powerful hardware)

• Deeper and wider neural networks, trained for more epochs

• From 3D to 4D: incorporating the time dimension can help

• Better metrics

• RMSE and ACC are not so meaningful for long-range weather forecasts

• Calling for a new metric (clues in the AI community?)
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Discussion: Metrics Can Lie!

• Consider a small-scale weather event, e.g., a tropical cyclone

• In medium-range (e.g., 5-day) weather forecasting, the chance of accurately 
predicting its path is very low

• Fact: the contribution to RMSE by a prediction with a shifted cyclone is almost 
2 × of the contribution by a prediction that directly eliminates the cyclone

• Hence, a “smart” AI can learn to eliminate (or weaken) uncertain events: this 
strategy can improve quantitative metrics, but it is meaningless!

• The bias gets larger with lead time

• In long-range (e.g., 10-day) forecasting, we desire a new metric
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Pangu-Weather Was Accepted by Nature[A]

• Referees agreed with the contribution and potential of our work

• Referee #1: “I am convinced that the paper makes an important contribution to 
the field and that it is scientifically and technically sound.”

• Referee #2: “The results themselves are a significant step beyond previous results. 
This work will, in my opinion, make people reevaluate what forecasting models 
might look like in the future.”

• Referee #3: “Our group picked one trained model, the 24h forecast model, and I 
can confirm that it is very easy to download and run it. It just took us one 
afternoon to get this to work, and it executed quickly on even a desktop computer. 
This means that anyone in the meteorological community can now run and test 
these models to their heart's desire. What a great opportunity for the community 
to explore how well the model predicts specific meteorological phenomena. Now 
THAT’s going to help with progress in the field.”

Backgr

ound

Metho

dology

Experi

ments

Future 

Work

[A] K. Bi et al., Accurate Medium-range Global Weather Forecasting with 3D Neural Networks, in Nature, 2023.
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Pangu-Weather Models Were Released[A]

• ECMWF tested Pangu-Weather models and 
developed a real-time toolkit based on it

• Results are promising; believed to be part of 
“the rise of data-driven weather forecasting”[B]

• “We have very much enjoyed running Pangu-
Weather at ECMWF, to better understand the 
possible power of ML forecasts. To make it easier 
for us to run, we have created a tool[C] which 
gathers the necessary data for running Pangu-
Weather (and other similar models) from our 
repositories (e.g. CDS), and write the output data 
to the GRIB file format.”

[A] https://github.com/198808xc/Pangu-Weather
[B] Z. Ben-Bouallegue et al., The Rise of Data-driven Weather Forecasting, 
in arXiv preprint:2307.10128, 2023.
[C] https://github.com/ecmwf-lab/ai-models-panguweather
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On forecasting common weather variables

On forecasting Windstorm Friederike

https://github.com/198808xc/Pangu-Weather
https://github.com/ecmwf-lab/ai-models-panguweather
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Pangu-Weather at ECMWF Charts[A]

• ECMWF released Pangu-Weather as part of their operational suite

• Search “PANGU” on ECMWF Charts[B]

• Choose a set of variables you are interested in (e.g., MSLP for cyclone tracking)

• Choose the region and time you are interested in and view the results

[A] https://charts.ecmwf.int/
[B] https://charts.ecmwf.int/?query=PANGU
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The homepage of ECMWF Charts Visualization of MSLP and wind speed at 850hPa

https://charts.ecmwf.int/
https://charts.ecmwf.int/?query=PANGU
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A Lite Version of Pangu-Weather

• Approaching operational IFS using 1% computational costs!

• Strategy: using fewer data (11 rather than 39 years, daily sampling, less than 1TB 
data), training for 50 or 100 epochs

• Adjusting the network architecture (heavier down-sampling)

• We will release the training details in the GitHub repository[A]

Backgr

ound

Metho

dology

Experi

ments

Future 

Work

[A] https://github.com/198808xc/Pangu-Weather
* We trained four models in the original release, but only one (24-hour) model for lite versions.

Model RMSE, Z500 RMSE, T850 RMSE, T2M RMSE, U10 #Ye
ars

Patch 
Size

#Ep
ochs

GPU-days 
(#G x days)3-day 5-day 3-day 5-day 3-day 5-day 3-day 5-day

Operational IFS 152.8 333.7 1.37 2.06 1.34 1.75 1.94 2.90 / / / /

Pangu-Weather 134.5 296.7 1.14 1.79 1.05 1.53 1.61 2.53 39 2 × 4 × 4 100 192 × 16*

Pangu-Weather-L1 163.1 338.2 1.29 1.96 1.16 1.64 1.80 2.74 11 2 × 8 × 8 100 8 × 6

Pangu-Weather-L2 177.9 357.5 1.36 2.05 1.24 1.71 1.90 2.84 11 2 × 8 × 8 50 8 × 3

https://github.com/198808xc/Pangu-Weather
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Thanks!

• Questions, please? (Welcome to contact me: 198808xc@gmail.com)

Check out our Nature paper! Check out the code and models!

mailto:198808xc@gmail.com

