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O Utl i n e ound dology ments Work

* Background: Why Using Al for NWP?
* Pangu-Weather: 3D Deep Networks for Accurate Weather Forecasting
* Results: Determinstic/Ensemble Forecast, Extreme Weather Forecast

* Future Perspectives
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Numerical Weather Prediction (NWP) ound dology ments Work

* Task description

* Given a set of weather variables at the current time, predict the variables at a
specified time in the future (e.g., 5 days later)

* Mathematically, the task is to learn a function f(-) that uses the current weather
data as input and produces future weather data as output

* Two main lines of research for NWP (to be detailed later)

 Simulation-based methods: approximating f(-) with a set of partial differential
equations (PDEs)lAB]

* Al-based methods: estimating f(-) using deep neural networkslP!

[A] E. Kalnay et al., Atmospheric Modeling, Data Assimilation and Predictability, Cambridge University Press, 2003.
[B] P. Bauer et al., The Quiet Revolution of Numerical Weather Prediction, in Nature, 2015.
[C] J. Pathak et al., FourCastNet: A Global Data-driven High-resolution Weather Model Using Adaptive Fourier
Neural Operators, in arXiv preprint:2202.11214, 2022.
3 [D] K. Bi et al., Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global Weather Forecast, in
a

rXiv preprint:2211.02556, 2022.
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Examples of NWP with Reanalysis Data ound dology ments  Work

‘ algorlthm |

Ground-truth for the next 3 days

‘ algorlthm |

Input: 10m u-wind speed (U10) Ground-truth for the next 3 days

4 Credit: all data are from the 5t generation of the ECMWF reanalysis (ERA5) datal”l.
[A] H. Hersbach et al., The ERA5 Global Analysis, in Quarterly Journal of the Royal Meteorological Society, 2020.
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Artificial Intelligence ound  dology ments  Work

* On replicating human intelligence with mathematical methods
* Al haslargely changed the way how people work
* Key problem: finding the relationship between input and output data

SOLVES 50
YEAROLD
SCIENCE
PROBLEM

Security monitoring Medical diagnosis Protein structure prediction
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D e e p L e a rn i n g ound dology ments Work

* Representing complex functions with deep neural networks
* Alarge number of parameters to approximate the complex function
* End-to-end optimization, making the model hard to interprete

* Widely applied to many Al problems: CV, NLP, RL, etc.

~
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Optimization of deep learning!A! Deep network as a generalized agentlB!

6 [A] Y. LeCun et al., Deep Learning, in Nature, 2015.
[B] S. Reed et al., A Generalized Agent, in TMLR, 2022.



. Backgr Metho Experi Future
Al for Science (Al4S), Part | Y dology  ments  Work
* Solving scientific problems with Al methods
* Al brings new solutions and opportunities to old problems
Category Previous Now Examples

Playing chess or
video games

Heuristic search with manually
designed heuristic functions

Deep learning as heuristics, plus
reinforcement learning

DQNIAL AlphaGol®!
AlphaStarl<], etc.

Life and biology

Solving thermodynamic or kinetic
simulation of protein physics

Deep learning incorporated with the
constraints of protein structures

AlphaFoldIP] etc.

Geophysics

Heuristics for finding patterns in
aftershock data

Deep learning for analyzing aftershock
patterns

DeVries et al.l[E], etc.

Nuclear fusion

Engineering based on physics to solve
the Tokamak magnetic control problem

Deep reinforcement learning for
Tokamak magnetic controller design

Degrave et al.lF], etc.

[A

] V. Minih et al., Human-level Control through Deep Reinforcement Learning, in Nature, 2015.
B] D. Silver et al., Mastering the Game of Go with Deep Neural Networks and Tree Search, in Nature, 2015.

[
[C] O. Vinyals et al., Grandmaster Level in StarCraft Il Using Multi-agent Reinforcement Learning, in Nature, 2019.
J. Jumper et al., Highly Accurate Protein Structure Prediction with AlphaFold, in Nature, 2021.

022.

]
[D]
[E] P. DeVries et al., Deep Learning of Aftershock Patterns Following Large Earthquakes, in Nature, 2018.
[F]J. Degrave et al., Magnetic Control of Tokamak Plasmas Through Deep Reinforcement Learning, in Nature,
2
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Al for Science (Al4S), Part I Y dology  ments
* Solving scientific problems with Al methods
* Al brings new solutions and opportunities to old problems
Category Previous Now Examples

Mathematics

Relying on mathematicians’ intuition to
find theorems

Al algorithms assisting mathematicians
to find and prove new theorems

Ramanujan Machinel#],
Davies et al.l8] etc.

Computing theory Designing efficient computing Reinforcement learning to find efficient | AlphaTensorl], etc.
algorithms manually computing algorithms

Weather Simulating weather with partial Deep generative model to find patterns | DGMRIP], etc.

nowcasting differential equations from radar data

Medium-range
weather forecasting

Simulating weather with partial
differential equations

Deep learning to fit global reanalysis
weather data

FourCastNetl®], Pangu-
WeatherlF] etc.

[
[
[
[
[

8 Neural Operators, in arXiv preprint:2202.11214, 2022.
[F] K. Bi et al., Accurate Medium-range Global Weather Forecasting with 3D Neural Networks, in Nature, 2023.

E]J. Pathak et al., FourCastNet: A Global Data-driven High-resolution Weather Model Using Adaptive Fourier

Future
Work
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Why USing Al for NWP? B dology ments Work

* Two major principles of using Al (apply to generic scenarios)
* Human experience is insufficient to formulate the complex system

* In NWP, the manually-designed PDE systems involve approximation (e.g., in
dealing with unresolved processes) and parameterization (e.g., in
formulating convection), and the error can accumulate with forecast time

* Datais sufficient for training models with a large number of parameters

* In NWP, a large-scale dataset (i.e., ERA5lA]) is available, offering global
weather data from 1940s to date

* The advantages of Al in NWP
 Much faster: 10,000 times faster than simulation-based methods
* Offering individual forecasts that are complementary to PDEs

[A] H. Hersbach et al., The ERA5 Global Analysis, in Quarterly Journal of the Royal Meteorological Society, 2020.
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Prior Work: Simulation-based NWP ound " dology  menis  Work

* Solving partial differential equations (PDEs) for simulation
* Governing a complex PDE system, modeling discretization, etc.

* May be sensitive to the approximation and parameterization of equations and
the noise of observation data

Using the variables defined above, the flux-form Euler equations can be written as
Using these redefined momentum variables, the governing prognostic equations (2.8)-(2.14) in-

U + (V- Vu) + paadep + (o) aa)0ypded = Fy (2.8) cluding map factors can be written as
OV + (V- Vo) + pgadyp + (o) aq)0ypdyd = Fy (2.9)
AW + (V- Vu) — gl(a/aa)dyp — pa] = Fiw (2.10) U + my[0:(Uu) + 0, (Vu)]
8,0,, + (V-V8,,) = F@m (2.11) + () + (mg/my) [pracdep + (o) 00a)Oppded] = Fyy (2.18)
Apa+ (V-V) = (2.12) 4V + my [0, (Uv) + 0,(Vv)]
o+ pg (V- Vo) — gW] =0 (2.13) +(my /ma) 8y () + (my/ma)[pacdyp + (o) aa)0pdy¢] = (2.19)
,Qm + (V- Vg,) = Fo,, (2.14) OW + my[0,(Uw) + 9,(Vw)] + 0,(Qw) — m, " g[(o/ va)Oyp — p1a] = Fw (2.20)
C m 1 T 1 C xT 9”’). C i’ 9”’). 1, ( 7] an’l - F 2'21
with the diagnostic equation for dry hydrostatic pressure %Om + mamy [dl (Ubm) + Oy (V)] + 3 ) O ( )
Oppta + mamy Uy + V| +my0,(2) =0 (2.22)
O = —apt (2.15) 06 + pgt imemy (U0, ¢ + V3,0) +myQ0,¢ — m,gW] =0 (2.23)
and the diagnostic relation for the full pressure (dry air plus water vapor) 01 Qm + mamy0u(Ugy) + 0y (V gm)| + my0y () = Fo,..  (2.24)
[ Rabn\" which are solved together with the diagnostic equations (2.15) and (2.16).
P ="o pT . (216)
Pod

A small part of equations used in the Advanced Research WRF Model Version 4lAl,

10 [A] W. C. Skamarock et al., A Description of the Advanced Research WRF Model Version 4, by National Center for
Atmospheric Research: Boulder, CO, USA, 2019.
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Prior WOI’k: FourCastNet ound: dology  ments  Work
* First Al-based method for high-resolution global weather forecasting

¢ Adaptive Fourier Neural (a) AFNO architecture Qi (tme =t A0 ) (b) Fine-tuning
Operator with vision e
transformers Xty | aro L
X(kt1 X(k+2)
Fine-tuning to alleviate - .
. ] g __E I‘ ‘ j () Precipitation model okt 1)
iterative errors > G Jj\ .
. Channel Mixing -
Able to perform high- €5 ‘E J o e il
o o X(k+1) plk+1)
resolution forecasting, but mT——
still producing inferior 7 53 T 2
results to operational IFS im0 | ) e
: -- { 1 I_ ;,‘—é:*». A ! WL “’:‘E:‘f')"') X (k+1) (‘\P(\:’JJ p(k+1)

11

[A]J. Pathak et al., FourCastNet: A Global Data-driven High-resolution Weather Model Using Adaptive Fourier
Neural Operators, in arXiv preprint:2202.11214, 2022.




Backgr Metho Experi Future

Concurrentwork: GraphcaSt ound dology ments Work

a) Input weather state b) Predicting the next state c) Rolling out a forecast

» State-of-the-art accuracy
on reanalysis data
* 2D encoder-decoder with

multi-level, graph-based
message passing

 Tested 252 variables,
most metrics are SOTA

GC

GraphCast

f) Decoder

e But, it smoothifies the
forecasts, weakening its
ability in ensemble
forecast

[A] R. Lam et al., GraphCast: Learning
Skillful Medium-range Global Weather

12 Forecasting, in arXiv preprint:2212.12794,
2015.
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Pangu-Weather: Overall Pipeline ound AR meats. [ Work

* On the path towards next-generation numerical weather prediction
* Given data, Al algorithms can also deal with assimilation and post-processing

assimilation NWP post-processing
N : : s
Current Simulation- Current post-
/x o o . o /x
S R < assimilation ---- based NWP (----»  processing -~ D
Observational | / |\ _ algorithms ) algorithms (__algorithms % | Forecast results

weather data (e.g., wind,
(e.g., radar) Current Current post- temperature)
assimilation processing ~ @@~
present algorithms algorithms
Juture ( Albased ) AI/DL-based " Al-based post—\
\ 4 assimilation ---- NWP ---->  processing |~ !
| _ algorithms ) algorithms _ algorithms )

N “[ End-to-end, Al-based forecast algorithms }
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D ata a n d S Etti n g S ound dology ments Work

e Dataset details

e The 5%" generation of ECMWEF reanalysis (ERA5) data - publically available
* Hourly reanalysis data from 1940 onwards

* We used: the 1979-2017 data for training, the 2019 data for validation, the
2018, 2020, 2021 data for testing (to be fairly compared to WeatherBenchlA))

* A number of surface variables, plus upper-air variables at 37 pressure levels

* We used: four surface variables (2m temperature, u- and v-components of
10m wind speed, mean sea-level pressure) with and five upper-air variables
(geopotential, specific humidity, temperature, u- and v-components of wind
speed) at 13 pressure levels (50hPa, 100hPa, 150hPa, 200hPa, 250hPa, 300hPa,
350hPa, 400hPa, 500hPa, 600hPa, 700hPa, 850hPa, 925hPa, 1000hPa)

 The full dataset is over 2000TB, we used ~60TB of data

14
[A] S. Rasp et al., WeatherBench: A Benchmark Data Set for Data-driven Weather Forecasting, in JAMES, 2020.
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Input and Output for Deep Networks ound dology  ments  Work

* Input and output data have the same shape
* More than 70 million variables: 1440 x 720 X (13 X 5 + 4)

* Seems large, but the resolution (0.25°, or about 25km around the Tropics) is
barely enough for some important events (e.g., tropical cyclones)

* Larger data in the future
e ECMWEF annouced the 6% generation of reanalysis data with 8 X resolution
* More pressure levels and/or weather factors to be studied

* Difficulties for machine learning
* Complex relationship between input and output

 Solution: given a fixed lead time At, train a deep network f(-) that receives
weather data at time t and predicts weather data at time ¢t + At

15
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Architecture: 3D Earth-Specific Transformer owmd <dolosy mens

* A 3D vision transformer to process volumetric data
 Swin transformerl?l to accelerate computation (standard window attentions)
* Reduced network depth and width (larger models can be better!)

2X4X%X4 2X4X4
Patch Patch

40g Embedding ( C=19 2) ‘ Recovery
0
# Layer 1 Layer 4 /7

-40 Earth-Specific Blockx2 *| Earth-Specific Blockx2 < : -
_(8x360 x 181 x C) (8 x 360 X 181 X C) split
Upper-air Variables : i 7 : o . 4 Upper-air Variables
(13 x 1440 x 721 X 5) E PN aRIOS - up-sampling (13 x 1440 x 721 X 5)
\d v : -
Layer 2 Layer 3 .
- 4% 4 Earth-Specific Blockx6 »| Earth-Specific Blockx6 4%x4 -
Patch . (8 X180 X 91 x 2C) (8180 X 91 X 2C) - Patch Fe ——
- Embedding Recovery -
Surface Variables Surface Variables
(1440 x 721 x 4) (1440 x 721 x 4)

16

[A] Z. Liu et al., Swin Transformer: Hierarchical Vision Transformer using Shifted Windows, in ICCV, 2021.

Future
Work
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Why 3D Deep Neural Networks? s AN mots o

* 3D networks can integrate richer information
* Each neuronin a 3D network is aware of the height information

* The spacing and distribution of atmospheric states and the relationship
between atmospheric patches change rapidly across pressure levels

* Many weather processes (e.g., radiation, convection, etc.) can only be
completely formulated in the 3D space

* 3D networks are faster in inference
* No need to process each pressure level individually and perform combination

17
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Injecting Earth-Specific Priors ound ASEEP meuts

* Motivation: variables are closely related to the absolute coordinate

* Working mechanism: modifying the positional bias
* Replacing relative positional bias with absolute positional bias

500hPa Geopotential Height Distribution w.r.t. Pressure Level
Horizontal Grids 22 4 - 280
20 A 270
’('n‘ —
= € 18 L 260 X
= y g
= o i >
E’ 5800 gglﬁ 250 &
T 5600 %) 3
T 5 141 e
< 5400 £ 240 qE)
T 5200 = 5. 'E
g 5 230 §
g 5000 0 s
8 = 10 1
g v i 220
<60_55 . 60 A&b 8 —8— Wind Speed
Lagy 30 o, i & —¥— Temperature 210
Ude (") 90 Ny

2 4 6 8 10 12
# Pressure Level

Uneven grid distribution Geopotential height w.r.t Wind speed and temperature w.r.t
s on Earth’s sphere latitude height (pressure level)

Future
Work



Hierarchical Temporal Aggregation

Backgr Metho Experi Future
ound dology ments Work

* Forecast error grows fast with iteration

Z500

—— Lead Time 24 hours

24 72 120 168

600 A Lead Time 6 hours
* The key is to reduce the number of iterations! — LeaETime3E°urS
500 Lead Time 1 hour
* Hierarchical temporal aggregation % 400
- : : : £
* Training 4 models with lead times being 1 hour, | 7 300
] )
3 hours, 6 hours, 24 hours, respectively Z 500
* A greedy algorithm to choose the model with 1004
max allowed lead time for the next iteration . .
* Example: a 7-day forecast needs 7 iterations Forecast Time (hours)
Trained Models | FM24 FM6 FM3 FMA1
(Forecast Time: §6h) m————————— .=. L I B

R Y <> T S < ,j . [’ -
Input: initial - - ' ~
19 reanalysis data, 4, [ Aza Ass Asq

2 Output: predicted
i reanalysis data, Ax,
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Computational Costs

* Training
* Each forecast model has around 64 million parameters

* Each forecast model is trained for 100 epochs (not converged yet), taking about
16 days on 192 NVIDIA Tesla-V100 GPUs

* Inference
* Each forecast takes around 1.4 seconds on a single V100 GPU

* Theinference can also be executed on CPU, taking longer time

* Example: performing 7-day global forecasting requires executing the 24-hour
model 7 times, requiring less than 10 seconds in total

« With faster inference, ensemble forecast is made easier (see later slides)

* Trained models were released[?] for research use

20
[A] https://github.com/198808xc/Pangu-Weather



https://github.com/198808xc/Pangu-Weather
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Deterministic Forecast: by Variables ound  dology  ments Work

* First Al algorithm to surpass operational IFS
* For Z500, 3-day and 5-day Z500 T850

RMSEs (unit: m?/s%) are | < 6001 3- P >

152.8 and 333.7 for § 400- =, o

operational IFS, and 134.5] & ,,, s N ﬂ{;fﬁ/

(12% smaller)and 296.7 | % |o=" /“ -

(1 1% Sma”er) for Pangu 24Foreca:t2Time (:llj:}grs) o8 24Forecas7t2Time (::-1(233F5) o8
* For T850, 3-day and 5-day Z500 T850

RMSEs (unit: K) are 1.37 e 07 B

and 2.06 for operational | - | g os- NN

IFS, and 1.14 (17% = =

smaller) and 1.79 (13% 08 0.8

smaller) for Pangu 24 72 | " 120 168 24 72 | 120 168

Forecast Time (hours) Forecast Time (hours)

21 —— Pangu-Weather = —— Operational IFS —— FourCastNet
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Deterministic Forecast: by Variables (cont.) cmd  dolosy fmens work

* First Al algorithm to surpass operational IFS
* ForT2M, 3-day and 5-day 2 u1o V1o

RMSEs (unit: K) are 1.34 s | o 1

and 1.75 for operational | <. |2 250 4

IFS, and 1.05 (22% g ‘.o

smaller) and 1.53 (13% o o o

smaller) for Pangu o0 7 "t "t
. For U1O’ 3_day and S_day FOrecaSt-'Il;nh’:]E (hours) Forecast:]'iln;e (hours) Forecast;iln;e (hours)

RMSEs (unit: m/s) are NES N s

1.94 and 2.90 for

operational IFS, and 1.61 | £°

(17% smaller) and 2.53 o

(13% smaller) for Pangu 080 L e

Forecast Time (hours) Forecast Time (hours) Forecast Time (hours)

22
—— Pangu-Weather —— Operational IFS —— FourCastNet
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Deterministic Forecast: by Variables (cont.) cmd  dolosy fmens work

* Significant advantage: “forecast time gain”

 If Pangu’s forecast error at 7 days (168 hours) is equivalent to another method’s
forecast error at 168 — At hours, then At is called the “forecast time gain” of
Pangu over the specified method

Variable Gain over operational IFS (h) Gain over FourCastNet (h)
Z500 10.45 43.23
T850 15.37 41.05
T2M 18.19 43.11
U10 19.68 43.81
V10 19.10 42.78
Z850 10.62 N/A
T850 13.66 N/A
Q500 31.00 N/A
U500 17.52 N/A
” V500 16.16 N/A
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| | | | | |
Deterministic Forecast: by Regions ound - dology /ments.  Work
|
° Z500 T850 TZ2M ulo V10
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n the Nortnern Anemispnere
— 500= 2,5= 3
” 2.5 w3 T3
24001 & < 2 2
M (@) M “E’aoo 2.0 w07 E :Ef
e Latitude bet +20 l " - 2 - :
dtitude between excliusive 2 200- 2 15 2 . 2 2
i -
d +90° (inclusi i i
0.5=
an (Inc US|Ve) 0 T T L T T 1.1 T T 1T 1.1 1.1 T T 1T T 1T 1.1 UL LI L T T L T I 1.1
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—e— Pangu-Weather

) 1 rri
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1 1 LILEL
24 72 120 168
Forecast time (hours)

—e— Operational IFS

1 rTrrri
24 72 120 168
Forecast time (hours)
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| | | | | |
Deterministic Forecast: by Reglons (COI’lt ) ound” (dolozy” ARy Work
| |
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Deterministic Forecast: by Regions (cont.)

® Z500 T850 T2M uio V10
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Deterministic Forecast: by Year

Backgr Metho Experi Future
ound dology ments Work

* Comparison: 2018, 2020, 2021

e Consistent trends of RMSE and ACC
in different years, indicating Pangu’s
stable forecast skill
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Backgr Metho Experi Future

Deterministic Forecast: Visualization ound  dology  ments  Work

* Sufficiently close to ground-truth, with visible differences
* Pangu tends to produce smoother results (a typical behavior of Al algorithms)

Pangu-Weather, forecast time: 72 hours Operational IFS, forecast time: 72 hours ERA5 (Ground-Truth)
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28 Visualization of 3-day forecast of two upper-air variables (Z500 and T850)



Backgr Metho Experi Future

Deterministic Forecast: Visualization ound  dology  ments  Work

* Sufficiently close to ground-truth, with visible differences
* Pangu tends to produce smoother results (a typical behavior of Al algorithms)

Pangu-Weather, forecast time: 72 hours Operational IFS, forecast time: 72 hours ERA5 (Ground-Truth)
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29 Visualization of 3-day forecast of two surface variables (T2m and U10)



Ensemble Forecast Results

Backgr Metho Experi Future
ound dology ments Work

* Improved medium-

range forecast results ' _ ..

* In7-day forecast,the [E™-
RMSE of Z500 is
reduced from 500.3 to
450.6 (10% smaller),
and that of U10
reduced from 3.48 to 1
2.96 (15% smaller) oss |
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Extreme Weather Forecast

Backgr
ound

Metho Experi
dology  ments

* Trend of relative quantiles with respect to lead time

31

produce smooth forecasts

Z850 (m?/s?)

Pangu often reports lower quantile values because Al algorithms tend to
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Backgr Metho Experi Future

Extreme Weather Forecast (cont.) ound  dology ~ments Work

* Comparison between Pangu, FourCastNet, and operational IFS
Al algorithms (Pangu and FourCastNet) tend to underestimate extremes

* For Q500, Pangu is better than IFS due to the much better deterministic results
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Tracking Tropical Cyclones

Backgr Metho
ound dology

Experi

Future

ments Work

* Tracking algorithm!?! and illustration
Initial time and position are given

33

* Given lead time (6 hours), finding a local
minimum of mean sea-level pressure
(MSLP) within 445km, satisfying:

There is a maximum of 850hPa
vorticity within a radius of 278km,
with absolute value > 5 x 107>

There is a maximum of thickness
between 850hPa and 200hPa within a

radius of 278km

The maximum 10m wind speed is
larger than 8m/s within a radius of
278km when the cyclone is on land

Track Forecast for Hurricane Michael from 2018-10-08 00UTC
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Tracking examples (visualization of MSLP, vorticity,
thickness, 10m wind speed) for Hurricane Michael
(2018-13) and Typhoon Ma-on (2022-09)

[A] P. White, Newsletter No. 102 — Winter 2004/05, by ECMWF,

2005.



Tracking Tropical Cyclones (cont.)
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* Overall better results over 88 cyclones, 2018

* Advantage gets larger with lead time

* More accurate by regions and by intensity levels
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Backgr Metho Experi Future

TraCking Tropical CYCIOneS (cont.) ound dology ments Work

* Example: Typhoon Kong-rey (2018-25) and Yutu (2018-26)
* Strongest typhoons in Western Pacific Ocean, 2018
* Much more accurate forecasts compared to ECMWF-HRES
* Potential reason: large advantage of deterministic forecasts in the Tropics

Track Forecast for Typhoon Kong-rey from 2018-09-30 00UTC Track Forecast for Typhoon Yutu from 2018-10-23 12UTC .
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Backgr Metho Experi Future

S Uummhma ry an d Ta ke away ound dology ments = Work

* Al algorithms show great potentials in NWP
* For the first time, Al algorithms surpass operational IFS in reanalysis data
* There is still along way before Al can “replace” conventional NWP
* Method: 3D deep neural networks with a bit meteorological priors
* More meteorological expertise can be helpful

* Experimental results
* Stronger results on reanalysis data
* Preliminary studies show good results using IFS initial data as input
* Orders of magnitude faster for ensemble forecast
* Competitive in extreme weather forecasts, e.g., tracking tropical cyclones
* New paradigm in Al: pre-trained models for downstream tasks
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Backgr Metho Experi Future

FUtU re Of AI for NWP ound dology ments = Work

* More data
* Reanalysis data in a finer spatial resolution (e.g., ERA6)
* Complete observational data, allowing for an end-to-end system

 Stronger models (upon more powerful hardware)
* Deeper and wider neural networks, trained for more epochs
* From 3D to 4D: incorporating the time dimension can help

* Better metrics
* RMSE and ACC are not so meaningful for long-range weather forecasts
* (Calling for a new metric (clues in the Al community?)
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DiSCUSSion: Metrics Can LiE! ound dology ments =~ Work

* Consider a small-scale weather event, e.g., a tropical cyclone

* In medium-range (e.g., 5-day) weather forecasting, the chance of accurately
predicting its path is very low

* Fact: the contribution to RMSE by a prediction with a shifted cyclone is almost
2 X of the contribution by a prediction that directly eliminates the cyclone

* Hence, a “smart” Al can learn to eliminate (or weaken) uncertain events: this
strategy can improve quantitative metrics, but it is meaningless!

* The bias gets larger with lead time
* Inlong-range (e.g., 10-day) forecasting, we desire a new metric
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Backgr Metho Experi Future

Pangu-Weather Was Accepted by Nature!Al  cmd dlogy mens - won

* Referees agreed with the contribution and potential of our work

* Referee #1: ““l am convinced that the paper makes an important contribution to
the field and that it is scientifically and technically sound.”

* Referee #2: “The results themselves are a significant step beyond previous results.
This work will, in my opinion, make people reevaluate what forecasting models
might look like in the future.”

* Referee #3: “Our group picked one trained model, the 24h forecast model, and |
can confirm that it is very easy to download and run it. It just took us one
afternoon to get this to work, and it executed quickly on even a desktop computer.
This means that anyone in the meteorological community can now run and test
these models to their heart's desire. What a great opportunity for the community
to explore how well the model predicts specific meteorological phenomena. Now
THAT’s going to help with progress in the field.”

39
[A] K. Bi et al., Accurate Medium-range Global Weather Forecasting with 3D Neural Networks, in Nature, 2023.



Backgr Metho Experi Future

Pangu-Weather Models Were Released!Al oumd dology menss - won

IFS

¢ ECMWF tESted PangU'Weather mOdEIS and However.i:;mdscape has changed in 2 years

developed a real-time toolkit based on it

* Results are promising; believed to be part of
“the rise of data-driven weather forecasting”’!®!

* “We have very much enjoyed running Pangu-
Weather at ECMWEF, to better understand the
possible power of ML forecasts. To make it easier ~On forecasting common weather variables
for us to run, we have created a toollq which
gathers the necessary data for running Pangu-
Weather (and other similar models) from our
repositories (e.g. CDS), and write the output data
to the GRIB file format.” o 8

Contours of surface pressure, colour
map wind speed.

[A] https://github.com/198808xc/Pangu-Weather
[B] Z. Ben-Bouallegue et al., The Rise of Data-driven Weather Forecasting,

4 inarXiv preprint:2307.10128, 2023. On forecasting Windstorm Friederike
[C] bttps://github.com/ecmwf-lab/ai-models-panguweather
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https://github.com/ecmwf-lab/ai-models-panguweather

Backgr Metho Experi Future

Pangu-Weather at ECMWF Charts!A! SR Ay Ay A

* ECMWEF released Pangu-Weather as part of their operational suite
 Search “PANGU” on ECMWEF Chartsl®!
* Choose a set of variables you are interested in (e.g., MSLP for cyclone tracking)
* Choose the region and time you are interested in and view the results
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speed
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41 [A] https://charts.ecmwf.int/
[B] https://charts.ecmwf.int/?query=PANGU
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A Lite Version of Pangu-Weather

Backgr
ound

Metho Experi Future
dology ments Work

* Approaching operational IFS using 1% computational costs!
 Strategy: using fewer data (11 rather than 39 years, daily sampling, less than 1TB

data), training for 50 or 100 epochs

* Adjusting the network architecture (heavier down-sampling)
 We will release the training details in the GitHub repository!A]

Model RMSE, Zsoo | RMSE, T850 | RMSE, T2M | RMSE, U1io | #Ye | Patch | #Ep | GPU-days
3-day | 5-day | 3-day | 5-day | 3-day | 5-day | 3-day | 5-day | ars Size ochs | (#G x days)
Operational IFS 152.8 | 333.7 | 1.37 2.06 1.34 1.75 1.94 2.90 / / / /
Pangu-Weather 134.5 | 296.7 | 1.14 1.79 1.05 1.53 1.61 2.53 39 2xX4x4 | 100 192 x 16*
Pangu-Weather-L1 | 163.1 | 338.2 | 1.29 1.96 1.16 1.64 1.80 2.74 11 2x8x8 | 100 8X6
Pangu-Weather-L2 | 1779 | 357.5 | 1.36 2.05 1.24 1.71 1.90 2.84 11 2X8X%X8 50 8 X3

42 [A] https://github.com/198808xc/Pangu-Weather

* We trained four models in the original release, but only one (24-hour) model for lite versions.


https://github.com/198808xc/Pangu-Weather

Thanks!

* Questions, please? (Welcome to contact me: 198808xc(@gmail.com)

Check out our Nature paper! Check out the code and models!
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