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Moonshot Vision

The key enabler for this amazing progress is ERAS, but...
X ltis expensive and slow to produce; long improvement cycle

X Many important processes / scales are not well represented (as with any global DA)

X Single-source training means biases are inherited

How to go beyond reanalysis data?
 Downscale to incorporate high-res data — CNNs, GANs, VAEs, Diffusion models all show promise.

* No upscale energy transfer. How important?
* Input diversity: will multi-model, multi-mode training data reduce bias?



Operational model archives

Global NWP:

— 10-20km atmosphere/land

— 70 vertical levels (80km top)
— Coupled hourly to 25km ocean/sea ice
— Hybrid 4DVar/En-4DEnVar Data Assimilation (DA)
— Forecasts currently out to ~8 days

UK NWP:

— 1.5-2.2km atmosphere/land
— 70 vertical levels (40km top)
— Sea temperature from separate 1.5km ocean forecast
— Hourly 4DVar DA

— Forecasts hourly out to 5 days

Other Models:
— Run in support of Defence/International Development



Observation archives

» Geostationary/polar orbiting satellites.
* GNSS radio occultation.
 Direct/indirect aircraft observations.
 Balloon launched radiosondes.

« Radar data.

* Ground (and sat) based LIDAR.

« Surface stations, ships, buoys etc.




Can we unlock the information in our data archives?

Shorter, possibly
non-overlapping
time spans
compared to
reanalysis

Discontinuities due

to upgrades in the

DA system and/or
forecast models

Obs data are Raw data volumes
sparse, irregular, are prohibitively
often missing. large
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The rest of this talk

« Baseline model & results
 Lines of research for Phase 2
 The AI4ANWP Programme



Infrastructure

« Working with Microsoft colleagues to
produce efficient ML workflows at-scale
using AzureML

« ‘Scaffolding’ approach used to ensure
scalable, reproducible, and traceable
WO rkﬂ OWS Specification

layer

Orchestration

« Scientific progress slowed while we layer
adopted this way of working, but we
expect it to pay dividends later.

“A layered approach to MLOps”, Bernat Puig-Camps
(https://medium.com/data-science-at-microsoft/a-
layered-approach-to-mlops-d935beefca2e)
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Baseline Model

« Single-level 3° icosphere mesh, 5 variables per lat/lon

» Trained over 50 epochs of ERA5 1979-2017 at 1°,
verification on 2018

1R \&.\

Vil

| ¥
i

* GNN based model (Pfaff 2020, Keisler 2022, Lam 2023)
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* Pytorch-Accelerated with mixed-precision and
distrubuted data parallelism

inference roll-out

Encoder Processor
Simple MLP

Inputs Encoded to interaction
Z500, T850, 128 latent

Decoder Target

Reconstructs Area-
variables to ’ weighted
model space RMSE loss

network with
u10, V10, ’ space on 3° ’ 18 rounds of

T2M icosp_here message
grid passing




Baseline Results

« Simple model but
performing well.

» Tests with increased
number of input levels and
increased latent space
show large improvements
in performance and no
sign of over-fitting.
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Baseline Results
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What next?

Integrating UKV data

e Ax =1.5km, 70 levels

« Data volumes per sample are ~50%
of ERAS at 0.25°

« Only ~5 years of UKV data, so pre-
train on ERAS then fine-tune

» Loss function must be adapted for
high-res / convection permitting
region.




Novel loss functions

Value of high-res models comes mainly from
near-surface variables, especially precip. This
will not be captured by standard loss functions
(RMSE)

» Blurring needs to be better understood, time-
step may also be important e.g. Smith et al.
https://arxiv.org/abs/2305.00100

« Scale splitting e.g Annau et al.
https://arxiv.org/abs/2302.08720

Large scale: content loss (RMSE)
Small scale: probabilistic loss

"

» Area-based loss functions using

thresholds (FSS, SEEPS) can
penalise blurring.

* Area size could also be a

function of forecast period /lead
time to accommodate error
growth



Data reduction and feature engineering

Data reduction, i.e. encoding, Potential Vorticity (PV):
compression, dimension reduction is - Single scalar that encapsulates flow and
fundamental to ML-based forecasting thermodynamic information

« Conserved on isosurfaces of theta

« Analytically inverting PV to get state variables

Can we take some of this outside the / /
is challenging

forecast model in a pre-processing step?
For large-scale multi-source training this
will be essential Auto-encoding:

» Single model columns or small clusters of
model columns to reduce input dimensionality.

» Latent space not optimised for dynamics



Explainable Al

e Trust:

* Building trust in Al modelling
both internally and externally

* Discovery:

» This is a completely new way of
modelling dynamical systems, so
what can we learn?
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* Optimisation: oo /ﬂ ;m -
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benefit from high-res input data

Or Obs pOSSIny aS a fu nctlon Of (a) Ground Truth  (b) Gradient  (¢) Grad-CAM  (d) GNNExplainer  (e) SubgraphX Node Edge
)
lead time From Agarwal et al. 2023, Evaluating explainability for graph

neural networks, Sci Data 10, 144 (2023).
https://doi.org/10.1038/s41597-023-01974-x
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