The Moonshot Project

Tom Dunstan¹, Tom Dodds¹, Hannah Brown¹, Aled Owen¹, Sophia Moreton¹, Karina Williams¹, Cyril Morcrette²
Bernat Puig-Camps³, George Williams³, Clodagh Lynch³, Luke Vinton³

Large-scale deep learning for the earth system, University of Bonn, 4-5 September 2023

¹ Informatics Lab, Met Office
² Atmospheric Processes and Parametrizations, Met Office
³ Microsoft Data & AI Service Line
Moonshot timeline

Phase 0
- Project started in April 2022 following a 'horizon scan' late 2021

- Rasp et al. Weatherbench, https://doi.org/10.1029/2020MS002203
- Dueben and Bauer (2018), Geosci. Model Dev. https://doi.org/10.5194/gmd-11-3999-2018

Phase 1
- Microsoft Collaboration March - July
- Pathak et al. FourCastNet, Feb 2022
 - Keisler, Feb 2022

Phase 2
- AI4NWP July -
- Bi et al., *Pangu Weather, Nov, 2022*
- Lam et al. *GraphCast Dec 2022*
- Nguyen et al. *Climax, January 2023*
- Chen et al. *FengWu April 2023*
- Chen et al. *FuXi, June 2023*
The key enabler for this amazing progress is ERA5, but…

- It is expensive and slow to produce; long improvement cycle
- Many important processes / scales are not well represented (as with any global DA)
- Single-source training means biases are inherited

How to go beyond reanalysis data?

- Downscale to incorporate high-res data – CNNs, GANs, VAEs, Diffusion models all show promise.
- No upscale energy transfer. How important?
- Input diversity: will multi-model, multi-mode training data reduce bias?
Operational model archives

Global NWP:
- 10–20km atmosphere/land
- 70 vertical levels (80km top)
- Coupled hourly to 25km ocean/sea ice
- Hybrid 4DVar/En-4DEnVar Data Assimilation (DA)
- Forecasts currently out to ~8 days

UK NWP:
- 1.5–2.2km atmosphere/land
- 70 vertical levels (40km top)
- Sea temperature from separate 1.5km ocean forecast
- Hourly 4DVar DA
- Forecasts hourly out to 5 days

Other Models:
- Run in support of Defence/International Development
Observation archives

- Geostationary/polar orbiting satellites.
- GNSS radio occultation.
- Direct/indirect aircraft observations.
- Balloon launched radiosondes.
- Radar data.
- Ground (and sat) based LIDAR.
- Surface stations, ships, buoys etc.
Can we unlock the information in our data archives?

- Shorter, possibly non-overlapping time spans compared to reanalysis
- Discontinuities due to upgrades in the DA system and/or forecast models
- Obs data are sparse, irregular, often missing.
- Raw data volumes are prohibitively large
The rest of this talk

- Baseline model & results
- Lines of research for Phase 2
- The AI4NWP Programme
Infrastructure

• Working with Microsoft colleagues to produce efficient ML workflows at-scale using AzureML

• ‘Scaffolding’ approach used to ensure scalable, reproducible, and traceable workflows

• Scientific progress slowed while we adopted this way of working, but we expect it to pay dividends later.

Baseline Model

- GNN based model (Pfaff 2020, Keisler 2022, Lam 2023)
- Minimal viable model for fast dev cycle and low costs
- Single-level 3° icosphere mesh, 5 variables per lat/ion
- Trained over 50 epochs of ERA5 1979-2017 at 1°, verification on 2018
- Pytorch-Accelerated with mixed-precision and distributed data parallelism

Inputs
Z500, T850, U10, V10, T2M

Encoder
Encoded to 128 latent space on 3° icosphere grid

Processor
Simple MLP interaction network with 18 rounds of message passing

Decoder
Reconstructs variables to model space

Target
Area-weighted RMSE loss

Inference roll-out
Baseline Results

- Simple model but performing well.

- Tests with increased number of input levels and increased latent space show large improvements in performance and no sign of over-fitting.
Baseline Results

Baseline @ 128 Latent Geopotential @ 500 hPa 2018-03-15 06:00

Baseline @ 128 Latent 2m Temperature 2018-03-15 06:00

Baseline @ 128 Latent Geopotential @ 500 hPa Error

Baseline @ 128 Latent 2m Temperature Error
What next?

Integrating UKV data

- $\Delta x = 1.5$km, 70 levels
- Data volumes per sample are $\sim 50\%$ of ERA5 at 0.25°
- Only ~ 5 years of UKV data, so pre-train on ERA5 then fine-tune
- Loss function must be adapted for high-res / convection permitting region.
Novel loss functions

Value of high-res models comes mainly from near-surface variables, especially precip. This will not be captured by standard loss functions (RMSE)

- Blurring needs to be better understood, time-step may also be important e.g. Smith et al. https://arxiv.org/abs/2305.00100

- Scale splitting e.g. Annau et al. https://arxiv.org/abs/2302.08720
 - Large scale: content loss (RMSE)
 - Small scale: probabilistic loss

- Area-based loss functions using thresholds (FSS, SEEPS) can penalise blurring.
- Area size could also be a function of forecast period /lead time to accommodate error growth
Data reduction and feature engineering

Data reduction, i.e. encoding, compression, dimension reduction is fundamental to ML-based forecasting

Can we take some of this outside the forecast model in a pre-processing step? For large-scale multi-source training this will be essential

Potential Vorticity (PV):
- Single scalar that encapsulates flow and thermodynamic information
- Conserved on isosurfaces of theta
- Analytically inverting PV to get state variables is challenging

Auto-encoding:
- Single model columns or small clusters of model columns to reduce input dimensionality.
- Latent space not optimised for dynamics
Explainable AI

• Trust:
 • Building trust in AI modelling both internally and externally

• Discovery:
 • This is a completely new way of modelling dynamical systems, so what can we learn?

• Optimisation:
 • Select regions to gain the most benefit from high-res input data or obs, possibly as a function of lead time.

https://doi.org/10.1038/s41597-023-01974-x
AI for Numerical Weather Prediction (AI4NWP) Programme
An end-to-end ML system for global and regional forecasting

Stream A

1. Input Datasets
2a. Moonshot
2b. ML Model Intercomparison
3. Model Agnostic Infrastructure

Stream B