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The importance of uncertainty

Weather forecasting is inherently uncertain and normally quantified by an ensemble approach
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Methodology

Aim: Add uncertainty information to a deterministic forecast, for example, if an ensemble
forecast is too costly

Method: Use a Bayesian Neural Network to predict the distribution of the forecast error

Post-processed probabilistic forecast = Deterministic forecast + Probabilistic Forecast Error
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N.B. Methodology can be applied to both NWP forecasts and data-driven forecasts



Predicting a distribution with Bayesian Neural Networks
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Sliding window benchmark

For each lead time, calculate mean (u) and variance (o) of forecast error over last 30 days
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New Forecast Error; = (Forecastj — Analysisj) — Uj—30

Forecast error distribution; ~ N(u;,a;)



Results
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RMSE

Accuracy improvement from post-processing ECMWEF’s IFS forecast, where truth is the operational analysis
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Continuous Ranked Probability Score (CRPS
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Probabilistic Predictions

Bayesian Neural Network outputs a distribution rather than a deterministic value. Hence can calculate CRPSS
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Transfer Learning/Fine-tuning
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Fine-tuning only the last layers means have fewer degrees of freedom and so need less data




2m temperature

Fine-tuning to higher resolution
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2m temperature

Fine-tuning to Pangu Weather Forecast
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Conclusion

Key conclusion: Using Bayesian Neural Networks can lead to reliable and skilful post-processed
probabilistic forecasts without requiring ensemble information

» Post-processing deterministic forecasts using neural networks can lead to more skillful forecasts at
longer lead times when benchmarked against simpler statistical methods

* BNNSs can produce reliable probabilistic forecasts of surface variables without requiring information
from ensembles. This is particularly useful in cases where ensembles are too expensive to run

« These methodologies can be finetuned to both higher resolutions and to data-driven forecasts

With thanks to funding by the European Union under the Destination Earth initiative
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