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| Motivation



Climate change

increased likelihood of extreme weather events
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Horizontal grid spacing

Realistic climate simulation is a computational grand challenge
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Figure adapted from: Schneider, T., Teixeira, J., Bretherton, C. et al. “Climate goals and computing the future of clouds”. Nature Climate Change 7, 3-5 (2017)
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Why ML-based Weather
Predicition?

large speedups:

Not constrained to timestep restrictions such
as CFL conditions

better suited to uniform memory-access
patterns on GPUs

E2E calibration is straightforward

Quality data available (ECMWF’s ERA5 Reanalysis
dataset)

FourCastnet, PanguWeather, GraphCast and
others have deomonstrated this

However: how can we trust such data-driven
methods, if they are not built from first
principles?
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Spherical Fourier Neural
Operators




Setting

ML-based weather prediction

Earth’'s atmosphere is modelled as a dynamical system::

Upt1 = Flug, t,]
» u,, vector-valued state of the atmosphere at time t,,
« F maps this state to the next stateu,,; attime t, ..
- F is typically obtained by integrating a PDE in time.
» This often depends on the discretization of u,,.

 [n other cases, such as weather, F is unknown due to the complexity of the system.

ML approach: obtain an approximation F from data, i.e:

Un+1 = F[un» th ; 6]
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Fourier Neural Operators

motivation

Un+1 = F[un: th ; 6]

F is fundamentally a functional map from one functions space to another. Neural operators treat u as a function rather
than a data-vector which depends on the chosen discretization.

target

N/
. V.Y,

what a conventional network sees What a Neural Operator sees
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Fourier Neural Operators

how to define Neural maps between function spaces

The key piece in FNOs are the Fourier layers which are (global) convolutions with a learned filter « :

K[u](x) = f <) ulx —y) dy.

Q

In practice, we can leverage the convolution theorem to compute this efficiently via FFTs:

Initial Condition  Ground Truth Prediction
|

. m

Case 1 * :
» bl |
L - I k

Li et al. 2020: Fourier Neural Operator for Parametric Partial Differential Equation
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The problem: Polar Instabilities

AFNO is treating spatial domain incorrectly

Correct topology is S2 and not S x S’
(autoregressive feedback loop amplifies small errors over rollout steps)
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Why symmetries matter

Equivariance of the dynamical system

Earth’'s atmosphere is modelled as a dynamical system where F is learned from data:

Un+1 = F[un]

Most physical systems do not change as we change our frame of reference. On the sphere, we can express

this as follows:

RF[u] = F[Ru],

where R is a rotation operator acting on functions. Expressing the system in a different frame of reference

leaves the equation unchanged:

Rupyq = Upyqr = Flup] = RF[uy,].
This acts as a valuable inductive bias for our ML model.

In physics, the evidence is clear: symmetries are the key!
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Why symmetries matter

Symmetry in the spherical Shallow Water Equations

in 2 x (0, 00)
on 2 x {t =0},

State vector:

g=1[p ou v pu|,

Gradient of the Flux is rotationally
equivariant (believe me!):

F(q)=f.(q@) i+ f,(q) 7+ F.(qk

Pu PU
_|pu? + 57 . UV -
o PUV pv? + %902 J

PUW VW

Source terms have explicit dependence on X
and break the symmetry

~

S(x,q) =C(x,u) — oV71(x)+ px.

2
w2p

C(x,u) = B2

X U,

However, symmetry is broken only “weakly”, in the sense that the source

LW
OUW
LUVW

pw? + 5¢°

term can be treated as extra input and rotated with it!
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How can we generalize FNOs on the Sphere?

Group actions and convolutions on the Sphere

Which symmetries should we consider?

The sphere is not a group, however, rotations in SO(3) “sweep” the sphere. In technical terms, we say that the

sphere is an orbit of the subgroup SO(2), i.e. S* = S0(3)/S0(2).
Convolutions and their link to group actions

Convolutions are defined as the inner product of two functions, where one function is “shifted” by the group

action of the underlying Lie group. On the sphere, we can define

Klul(x) = f ( )K(RTL) u(R™'x) dR,
RESO(3

where k is the convolution kernel, R a rotation in SO(3) and n the north pole.

If nis replaced with the origin 0, and R with +y, we recover the usual convolution theorem!
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Convolution theorem on the Sphere

Generalization of FNOs

Based on the convolution theorem, a Fourier transform F can be defined for the sphere based on the
Spherical Harmonic Transform

t(l,m) =Flu](l,m) = f Yl_m - u df),
SZ

where Y™ denote the Spherical Harmonics.

The right way of doing spherical geometry is not by using the Spherical Harmonic basis but rather the
convolution theorem on the sphere:

F|K[u]|(l,m) = F[k](,0) - F[u](l,m)

Advantages of this approach:

» Grid-invariance
- Neural operator can be evaluated on any grid without retraining as long as SHT can be computed
« This includes super-resolution and regional forecasting out-of-the-box

» Correct treatment of inherent symmetries
« Equivariance makes the model similar to the physical processes which satisfy similar symmtry conditions

*Driscoll J., Healy D.; Computing Fourier transforms and convolutions on the 2-sphere. Advances in Applied Mathematics 1994
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Formulating Fourier Neural Operators on the Sphere

Generalization of FNOs

« Encoder and decoder layer are pointwise MLPs
« SFNO blocks contain spherical convolution and point-wise MLPs

« Position embedding models position debendent effects that break the symmetry such as Coriolis forces or
orography

» F — K o o

u %.i'~—i* MLP - u’ encoder —

* MLP

(pos. embedding)
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torch-harmonics

A library for differentiable Spherical Harmonics Transforms (SHT)

import torch * Open-Source library under MIT license:

HmpOTt toreh_harmonics as th https://github.com/NVIDIA/torch-harmonics

device = torch.device('cuda' 1f torch.cuda.is_available() else 'cpu') o Eff|C|er]t Ca”S for forward and inverse (VeCtor)

nlat = 512 spherical harmonic transformations

nlon = 2xnlat ° ' | '
ISP Agtograd support as o.llfferentlal layers in PyTorch
signal = torch.randn(batch_size, nlat, nlon) e Distributed computatlon dCross many GPUs

4 transform data on an equiangular grid » Easy to integrate into existing PyTorch code,

sht = th.RealSHT(nlat, nlon, grid="equiangular").to(device).float() Contains many examp|es amOng them SFNO

coeffs = sht(signal) harm-nics
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Spatial parallelism in SFNO

Achieving model parallelism via distributed SHT (torch-harmonics)

Data rank O

Data rank 1

- | Distributed SHT | ——

Data rank 2

Data rank 3

”l”

Input data on the field split in Spectral coefficients split in the
latitudinal direction direction

Distributed SHT and FFT implementations support other spatial parallelisms such as simultaenous h/w parallelism
Technical implementation is more involved

Additional measures such as padding required to keep tensor equal in size

Point-wise operations are inherently parallel so the rest of the architecture is straight-forward to parallelize
Dataloaders need to be adapted as well. Spatial parallelism has the added benefit of reducing I/0O

SFNO now also supports additional channel parallelism (tensor-parallelism)
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Results on the Spherical Shallow Water Equations

Our model outperforms the baseline U-Net and the regular FNO on this dataset

Moreover, it’s approximation error (w.r.t. data) is lower than that of the classical method used to generate the data

PARAMETERS L? LOSS
MODEL EVAL TIME
[LAYERS EMBED. DIMENSION PARAMETER COUNT AT 1H (1 STEP) AT 10H (10 STEPS)
U-NET 20 - 3.104 - 10”7 2.961 - 103 1.462 - 1071 0.011s
FNO, LINEAR 4 256 4.998 - 10° 8.280 104 0.958 - 10~° 0.156s
FNO, NON-LINEAR 4 256 3.920 - 10° 8.298 . 104 0.784-10"° 0.212s
SFNO, LINEAR 4 256 3.518 - 10" A 107 7.239.10"° 0.218s
SFNO, NON-LINEAR 4 256 3.920 - 10”7 7673101 1.558 - 10~ 0.321s
CLASSICAL SOLVER . - - 1.891 - 1072 3.570 - 102 1.299s
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Results on the ERAS dataset

- Results show remarkable stability and an absense of artifacts even during long rollouts (1460 steps).

- Results match the accuracy of the gold-standard in classical weather prediction, IFS at a speedup of 5000x.

10u 2t
1 1
0.9 | 0.98 -
0.96 -
0.8 7 0.94 -
0.7 | | 0.92 | |
0 510, 100 [h] 0 510 100 [h]
z500 £ 850
1 - 1
0.98 -] 0.98 7
0.96 -
0-96 0.94 -
0.94 0.92 -
0.92 | | 0.9 | |
0 510, 100 [h] 0 o0 100 [h]
(c) FNO, non-linear (d) SENO, linear —e— |FS — SFNO
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Results for SFNO trained on ERAS

Comparison of rollouts at the polar region

2018-01-03
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Results for SFNO trained on ERAS
5-month long stable rollout, computed on a single NVIDIA RTX A6000

2018-01-01

SFNO Ground truth

Predictions remain remarkably stable, even past the predictability horizon of weather.
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10m wind u-component 48h lead time

SFNO prediction

3 Conclusion

- Spherical Generalization of Fourier Neural Operators
- grid-invariance, model can be evaluated on any grid”*

- model can be trained on one resolution and deployed
at another resolution

- Correct treatment of spherical geometry and inherent
symmetries

- Long-term stability with stable roll-outs of up to a
year

- Remarkably similar to traditional spectral methods
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Outlook

Integration into existing weather prediction pipelines

Continuous training of the models and integration with
data assimilation pipelines

Neural Operators support unstructured data and can
integrate data from multiple sources

Higher resolution, scaling properties, downcasting
Prior physical knowledge, interpretability

Large Ensemble forecasting and predicting extreme
weather events

NVIDIA



| Thank you






| Deep-dive



SFNO Deep Dive

Main building block of the model are the SFNO blocks
In turn, these consist of a convolution, MLPs and layer norms similar to ConvNets
Layer norms need to be formulated in an equivariant fashion -> InstanceNorm

Global Convolution is achieved via SHT

SFNOBlock
SpectralConvS2
SHT Complex matmul ISHT
Layer norm activation MLP Layer norm
MLP

ldentity / Resample

NVIDIA



class SphericalFourierNeuralOperatorBlock(nn.Module):

Helper module for a single SFNO/FNO dlock. Can use both FFTs and SHTs to represent either FNO or SFNO blocks.

def __init_ (

self,
forward_transform,
inverse_transform,

embed_dim,
filter_type = 'non-linear’',
operator_type = 'diagonal’,

mlp_ratio = 2.,
drop_rate = 0.,
drop_path = 0.,
act_layer = nn.GELU,

norm_layer = (nn.LayerNorm, nn.LayerNorm),

sparsity_threshold = 0.0,
use_complex_kernels = True,
factorization = None,
separable = False,

rank = 128,

inner_skip = 'linear',

outer_skip = None, # None, nn.linear or nn.Identity

concat_skip = False,
use_mlp = True,

complex_activation = 'real’,

spectral_layers = 3):

Model overview

SFNO Deep dive

class SpectralConvS2(nn.Module):

Spectral Convolution according to Driscoll & Healy. Designed for convolutions on the two-sphere S2

using the Spherical Harmonic Transforms in torch-harmonics, but supports convolutions on the periodic

domain via the RealFFT2 and InverseRealFFT2 wrappers.

def __init_ (self,

forward _transform,
inverse_transform,
in_channels,
out_channels,

scale = 'auto',
operator_type = 'diagonal’,
rank = 0.2,

factorization = None,
separable = False,

implementation = 'factorized',

decomposition_kwargs=dict(),
bias = False):

super(SpectralConvS2, self).__init_ ()

Implementation in SpectralFourierNeuralOperatorBlock and SpectralConvS2
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Overall architecture build from SFNOBIlocks

Encoder and Decoder map the data to feature space and back

Entire network is made up of either point-wise operations or global convolutions, thus retaining equivariance

SFNO Deep Dive

Model-parallelism "almost for free”. All you need is a parallel SHT and some logic to shard the model.

A large skip connection is used as mapping is close to identity:

As all operations are decoupled from the underlying Mesh, we have trained a

This allows the model to be applied at different resolutions, and meshes, as long as we can formulate an SHT on that

mesh

Encoder

SFNOBlock

1

SFNOBlock

SFNONet

SFNOBlock

N

Decoder

NVIDIA



Spatial parallelism in SFNO

Achieving model parallelism via distributed SHT (torch-harmonics)

Data rank O
Data rank 1
Data rank 2

Data rank 3

Row-wise FFT Dist. transpose Col-wise projection onto Dist. transpose

Legendre basis
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Training SFNO end-to-end

I <ANVIDIA.

[3]

- End-to-end training example on the Spherical (s
Shallow Water Equations on the rotating Sphere

> v

- End-to-end training example available in notebook
here: https://github.com/NVIDIA/torch- 6

harmonics/blob/main/notebooks/train_sfno.ipynb

- For weather, we trained our models on the ERAS
dataset.

- Modulus has an implementation of SFNO:
https://github.com/NVIDIA/modulus/tree/main/modul
us/datapipes/climate

# dataset

from torch_harmonics.examples.sfno import PdeDataset

# 1 hour prediction steps
dt = 1x3600

dt_solver = 150

nsteps = dt//dt_solver

dataset = PdeDataset(dt=dt, nsteps=nsteps, dims=(256, 512), device=device, normalize=True)
# There 1s still an issue with parallel dataloading. Do NOT use it at the moment
dataloader = DatalLoader(dataset, batch_size=4, shuffle=True, num_workers=0, persistent_workers=False)

solver = dataset.solver.to(device)

dataset.nlat
dataset.nlon

nlat
nlon

from torch_harmonics.examples.sfno import SphericalFourierNeuralOperatorNet as SFNO

fno_model = SFNO(spectral_transform='sht', filter_type='1linear', operator_type='vector', img_size=(nlat, nlon),
num_layers=4, scale_ factor=3, embed dim=256).to(device)

Epoch @ summary:

time taken: 30.337862968444824

accumulated training loss: 6.563157506287098
relative validation loss: 0.14439213275909424

Epoch 1 summary:

time taken: 30.065420627593994

accumulated training loss: 1.0783583740703762
relative validation loss: 0.03158371150493622

Epoch 2 summary:

time taken: 30.11690044403076

accumulated training loss: 0.5136246508918703
relative validation loss: 0.027934805490076542

Epoch 3 summary:

time taken: 30.133581399917603

accumulated training loss: 0.37776567693799734
relative validation loss: 0.024108433164656162

Epoch 4 summary:

time taken: 30.13297390937805

accumulated training loss: 0.36006640107370913
relative validation loss: 0.014237499330192804

accumulated training loss: 0.31660769623704255
relative validation loss: 0.017148463986814022

Python

Python

Python


https://github.com/NVIDIA/torch-harmonics/blob/main/notebooks/train_sfno.ipynb
https://github.com/NVIDIA/torch-harmonics/blob/main/notebooks/train_sfno.ipynb
https://github.com/NVIDIA/modulus/tree/main/modulus/datapipes/climate
https://github.com/NVIDIA/modulus/tree/main/modulus/datapipes/climate

Additional Material

Learn more about SFNO and NVIDIA's Earth-2 Initiative

To see how SFNO was used to generate thousands of ensemble members and predict the 2018 Algerian heat wave, watch this demo:

https:.//www.youtube.com/watch?v=FUUT6IrQjo4

If you want to learn more about SFNO, here are some additional resources:

Read the paper: hitps://arxiv.orag/pdf/2306.03838.pdf

torch-harmonics: htips://github.com/NVIDIA/torch-harmonics

Implementation of SFNO: https://qgithub.com/NVIDIA/torch-harmonics/blob/main/torch_harmonics/examples/sfno/models/sfno.py
Getting started with torch-harmonics: https://github.com/NVIDIA/torch-harmonics/blob/main/notebooks/getting_started.ipynb
Training SFNO on the Spherical Shallow Water Equations: hitps://github.com/NVIDIA/torch-
harmonics/blob/main/notebooks/train_sfno.ipynb

The SFNO is available, along with other architecture in neuraloperator:

https.//qgithub.com/neuraloperator/neuraloperator
Training SFNO on Shallow Water Equations in neuraloperator:
https://neuraloperator.github.io/neuraloperator/dev/auto_examples/plot_SFNO_swe.html#sphx-glr-auto-examples-plot-sfno-swe-py

Implementation of SFNO in Modulus:
https://qgithub.com/NVIDIA/modulus/blob/9640510e2064312ba523a4a06f38923eb9//f6aa/modulus/models/sfno/sfnonet.py

Follow the links below to learn more about NVIDIA's Earth-2 initiative of creating a digital twin of Earth’s atmosphere:

https://blogs.nvidia.com/blog/2023/07/03/climate-research-next-wave/

https://blogs.nvidia.com/blog/2021/11/12/earth-2-supercomputer/

https://www.nvidia.com/en-us/high-performance-computing/earth-2/

Watch Jensen's keynote at the Berlin summit for EVE: htips://www.youtube.com/watch?v=GTJVpPsSwpl
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