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Motivation



Climate change
increased likelihood of extreme weather events

Source: NOAA – ClimateReanalyzer.org, 29.6.2023



Realistic climate simulation is a computational grand challenge
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Figure adapted from: Schneider, T., Teixeira, J., Bretherton, C. et al. “Climate goals and computing the future of clouds”. Nature Climate Change 7, 3–5 (2017)



Why ML-based Weather 
Predicition?

• large speedups:
• Not constrained to timestep restrictions such 

as CFL conditions
• better suited to uniform memory-access 

patterns on GPUs

• E2E calibration is straightforward 

• Quality data available (ECMWF’s ERA5 Reanalysis 
dataset)

• FourCastnet, PanguWeather, GraphCast and 
others have deomonstrated this

• However: how can we trust such data-driven 
methods, if they are not built from first 
principles?



Spherical Fourier Neural 
Operators



Setting
ML-based weather prediction

Earth’s atmosphere is modelled as a dynamical system::

𝑢!"# = 𝐹 𝑢!, 𝑡!

• 𝑢! vector-valued state of the atmosphere at time 𝑡!

• 𝐹 maps this state to the next state 𝑢!"# at time 𝑡!"#.

• 𝐹 is typically obtained by integrating a PDE in time.

• This often depends on the discretization of 𝑢!.

• In other cases, such as weather, 𝐹 is unknown due to the complexity of the system.

ML approach: obtain an approximation '𝐹 from data, i.e:

𝑢!"# = '𝐹 𝑢!, 𝑡! ; 𝜃



Fourier Neural Operators
motivation

𝑢!"# = #𝐹 𝑢!, 𝑡! ; 𝜃

𝐹 is fundamentally a functional map from one functions space to another. Neural operators treat 𝑢 as a function rather 
than a data-vector which depends on the chosen discretization.

input

targettarget

input

what a conventional network sees What a Neural Operator sees



Fourier Neural Operators
how to define Neural maps between function spaces

The key piece in FNOs are the Fourier layers which are (global) convolutions with a learned filter 𝜅 :

𝐾 𝑢 𝑥 = -
$
𝜅 𝑦 𝑢 𝑥 − 𝑦 𝑑𝑦 .

In practice, we can leverage the convolution theorem to compute this efficiently via FFTs:

𝐾 𝑢 = ℱ%# ℱ[𝜅] 4 ℱ[𝑢]

Li et al. 2020: Fourier Neural Operator for Parametric Partial Differential Equation



The problem: Polar Instabilities
AFNO is treating spatial domain incorrectly

Correct topology is S2 and not S1 x S1

(autoregressive feedback loop amplifies small errors over rollout steps)



Why symmetries matter
Equivariance of the dynamical system

Earth’s atmosphere is modelled as a dynamical system where 𝐹 is learned from data:

𝑢!"# = 𝐹 𝑢!

Most physical systems do not change as we change our frame of reference. On the sphere, we can express

this as follows:

𝑅𝐹 𝑢 = 𝐹 𝑅𝑢 ,

where 𝑅 is a rotation operator acting on functions. Expressing the system in a different frame of reference

leaves the equation unchanged:

𝑅𝑢!"# = 𝑢!"#& = 𝐹 𝑢!& = 𝑅𝐹 𝑢! .

This acts as a valuable inductive bias for our ML model.

In physics, the evidence is clear: symmetries are the key!



Why symmetries matter
Symmetry in the spherical Shallow Water Equations

State vector:

Gradient of the Flux is rotationally 
equivariant (believe me!):

However, symmetry is broken only “weakly”, in the sense that the source 
term can be treated as extra input and rotated with it!

Source terms have explicit dependence on x 
and break the symmetry



How can we generalize FNOs on the Sphere?
Group actions and convolutions on the Sphere

Which symmetries should we consider?

The sphere is not a group, however, rotations in 𝑆𝑂(3) “sweep” the sphere. In technical terms, we say that the

sphere is an orbit of the subgroup 𝑆𝑂(2), i.e. 𝑆' = 𝑆𝑂(3)/𝑆𝑂(2).

Convolutions and their link to group actions

Convolutions are defined as the inner product of two functions, where one function is “shifted” by the group

action of the underlying Lie group. On the sphere, we can define

𝐾 𝑢 𝑥 = -
(∈*+ ,

𝜅 𝑅𝑛 𝑢 𝑅%#𝑥 𝑑𝑅 ,

where 𝜅 is the convolution kernel, 𝑅 a rotation in 𝑆𝑂(3) and 𝑛 the north pole.

If 𝑛 is replaced with the origin 0, and 𝑅 with +𝑦, we recover the usual convolution theorem!



Convolution theorem on the Sphere
Generalization of FNOs

Based on the convolution theorem, a Fourier transform ℱ can be defined for the sphere based on the
Spherical Harmonic Transform

@𝑢 𝑙,𝑚 = ℱ 𝑢 (𝑙,𝑚) = -
*!
𝑌-. 4 𝑢 𝑑Ω,

where 𝑌-. denote the Spherical Harmonics.

The right way of doing spherical geometry is not by using the Spherical Harmonic basis but rather the
convolution theorem on the sphere:

ℱ 𝐾 𝑢 (𝑙,𝑚) = ℱ[𝜅](𝑙, 0) 4 ℱ[𝑢](𝑙,𝑚)

Advantages of this approach:

• Grid-invariance
• Neural operator can be evaluated on any grid without retraining as long as SHT can be computed
• This includes super-resolution and regional forecasting out-of-the-box

• Correct treatment of inherent symmetries
• Equivariance makes the model similar to the physical processes which satisfy similar symmtry conditions

*Driscoll J., Healy D.; Computing Fourier transforms and convolutions on the 2-sphere. Advances in Applied Mathematics 1994



Formulating Fourier Neural Operators on the Sphere
Generalization of FNOs

• Encoder and decoder layer are pointwise MLPs

• SFNO blocks contain spherical convolution and point-wise MLPs

• Position embedding models position debendent effects that break the symmetry such as Coriolis forces or
orography



torch-harmonics
A library for differentiable Spherical Harmonics Transforms (SHT)

• Open-Source library under MIT license:
https://github.com/NVIDIA/torch-harmonics

• Efficient calls for forward and inverse (vector) 
spherical harmonic transformations

• Autograd support as differential layers in PyTorch
• Distributed computation across many GPUs
• Easy to integrate into existing PyTorch code, 

contains many examples, among them SFNO

https://github.com/NVIDIA/torch-harmonics


Spatial parallelism in SFNO
Achieving model parallelism via distributed SHT (torch-harmonics)

Distributed SHT

Input data on the field split in 
latitudinal direction

Spectral coefficients split in the ”l” 
direction

Data rank 0

Data rank 1

Data rank 2

Data rank 3

• Distributed SHT and FFT implementations support other spatial parallelisms such as simultaenous h/w parallelism
• Technical implementation is more involved
• Additional measures such as padding required to keep tensor equal in size
• Point-wise operations are inherently parallel so the rest of the architecture is straight-forward to parallelize
• Dataloaders need to be adapted as well. Spatial parallelism has the added benefit of reducing I/O
• SFNO now also supports additional channel parallelism (tensor-parallelism)



Results



Results on the Spherical Shallow Water Equations

• Our model outperforms the baseline U-Net and the regular FNO on this dataset

• Moreover, it’s approximation error (w.r.t. data) is lower than that of the classical method used to generate the data



Results on the ERA5 dataset

• Results show remarkable stability and an absense of artifacts even during long rollouts (1460 steps).

• Results match the accuracy of the gold-standard in  classical weather prediction, IFS at a speedup of 5000x.



Results for SFNO trained on ERA5
Comparison of rollouts at the polar region



Results for SFNO trained on ERA5
5-month long stable rollout, computed on a single NVIDIA RTX A6000

Predictions remain remarkably stable, even past the predictability horizon of weather.



Conclusion

• Spherical Generalization of Fourier Neural Operators
• grid-invariance, model can be evaluated on any grid*
• model can be trained on one resolution and deployed 

at another resolution
• Correct treatment of spherical geometry and inherent 

symmetries

• Long-term stability with stable roll-outs of up to a 
year

• Remarkably similar to traditional spectral methods



• Integration into existing weather prediction pipelines
• Continuous training of the models and integration with 

data assimilation pipelines
• Neural Operators support unstructured data and can 

integrate data from multiple sources

• Higher resolution, scaling properties, downcasting

• Prior physical knowledge, interpretability

• Large Ensemble forecasting and predicting extreme 
weather events

Outlook



Thank you





Deep-dive



SFNO Deep Dive
Model overview

• Main building block of the model are the SFNO blocks

• In turn, these consist of a convolution, MLPs and layer norms similar to ConvNets

• Layer norms need to be formulated in an equivariant fashion -> InstanceNorm

• Global Convolution is achieved via SHT

SHT ISHTComplex matmul

SpectralConvS2

activation
MLP

MLPLayer norm Layer norm

Identity / Resample

SFNOBlock



SFNO Deep dive
Model overview

Implementation in SpectralFourierNeuralOperatorBlock and SpectralConvS2



SFNO Deep Dive
Model overview

• Overall architecture build from SFNOBlocks

• Encoder and Decoder map the data to feature space and back

• Entire network is made up of either point-wise operations or global convolutions, thus retaining equivariance

• Model-parallelism “almost for free”. All you need is a parallel SHT and some logic to shard the model.

• A large skip connection is used as mapping is close to identity: 

• As all operations are decoupled from the underlying Mesh, we have trained a Neural Operator

• This allows the model to be applied at different resolutions, and meshes, as long as we can formulate an SHT on that 
mesh

DecoderEncoder

SFNONet

SFNOBlock #1 SFNOBlock #2 SFNOBlock #N



Spatial parallelism in SFNO
Achieving model parallelism via distributed SHT (torch-harmonics)

Dist. transposeRow-wise FFT Col-wise projection onto 
Legendre basis

Dist. transpose

Distributed SHT

Input data on the field split in 
latitudinal direction

Spectral coefficients split in the ”l” 
direction

Data rank 0

Data rank 1

Data rank 2

Data rank 3



Training SFNO end-to-end

• End-to-end training example on the Spherical 
Shallow Water Equations on the rotating Sphere

• End-to-end training example available in notebook 
here: https://github.com/NVIDIA/torch-
harmonics/blob/main/notebooks/train_sfno.ipynb

• For weather, we trained our models on the ERA5 
dataset.

• Modulus has an implementation of SFNO: 
https://github.com/NVIDIA/modulus/tree/main/modul
us/datapipes/climate

https://github.com/NVIDIA/torch-harmonics/blob/main/notebooks/train_sfno.ipynb
https://github.com/NVIDIA/torch-harmonics/blob/main/notebooks/train_sfno.ipynb
https://github.com/NVIDIA/modulus/tree/main/modulus/datapipes/climate
https://github.com/NVIDIA/modulus/tree/main/modulus/datapipes/climate


Additional Material

Learn more about SFNO and NVIDIA’s Earth-2 Initiative
To see how SFNO was used to generate thousands of ensemble members and predict the 2018 Algerian heat wave, watch this demo: 
https://www.youtube.com/watch?v=FUUT6IrQjo4

If you want to learn more about SFNO, here are some additional resources:
• Read the paper: https://arxiv.org/pdf/2306.03838.pdf
• torch-harmonics: https://github.com/NVIDIA/torch-harmonics
• Implementation of SFNO: https://github.com/NVIDIA/torch-harmonics/blob/main/torch_harmonics/examples/sfno/models/sfno.py
• Getting started with torch-harmonics: https://github.com/NVIDIA/torch-harmonics/blob/main/notebooks/getting_started.ipynb
• Training SFNO on the Spherical Shallow Water Equations: https://github.com/NVIDIA/torch-

harmonics/blob/main/notebooks/train_sfno.ipynb
• The SFNO is available, along with other architecture in neuraloperator:

https://github.com/neuraloperator/neuraloperator
• Training SFNO on Shallow Water Equations in neuraloperator:

https://neuraloperator.github.io/neuraloperator/dev/auto_examples/plot_SFNO_swe.html#sphx-glr-auto-examples-plot-sfno-swe-py
• Implementation of SFNO in Modulus:

https://github.com/NVIDIA/modulus/blob/9640510e2064312ba523a4a06f38923eb977f6aa/modulus/models/sfno/sfnonet.py

Follow the links below to learn more about NVIDIA’s Earth-2 initiative of creating a digital twin of Earth’s atmosphere:
• https://blogs.nvidia.com/blog/2023/07/03/climate-research-next-wave/
• https://blogs.nvidia.com/blog/2021/11/12/earth-2-supercomputer/
• https://www.nvidia.com/en-us/high-performance-computing/earth-2/
• Watch Jensen’s keynote at the Berlin summit for EVE: https://www.youtube.com/watch?v=GTJVpPsSwpI

https://www.youtube.com/watch?v=FUUT6IrQjo4
https://arxiv.org/pdf/2306.03838.pdf
https://github.com/NVIDIA/torch-harmonics
https://github.com/NVIDIA/torch-harmonics/blob/main/torch_harmonics/examples/sfno/models/sfno.py
https://github.com/NVIDIA/torch-harmonics/blob/main/notebooks/getting_started.ipynb
https://github.com/NVIDIA/torch-harmonics/blob/main/notebooks/train_sfno.ipynb
https://github.com/NVIDIA/torch-harmonics/blob/main/notebooks/train_sfno.ipynb
https://github.com/neuraloperator/neuraloperator
https://neuraloperator.github.io/neuraloperator/dev/auto_examples/plot_SFNO_swe.html
https://github.com/NVIDIA/modulus/blob/9640510e2064312ba523a4a06f38923eb977f6aa/modulus/models/sfno/sfnonet.py
https://blogs.nvidia.com/blog/2023/07/03/climate-research-next-wave/
https://blogs.nvidia.com/blog/2021/11/12/earth-2-supercomputer/
https://www.nvidia.com/en-us/high-performance-computing/earth-2/
https://www.youtube.com/watch?v=GTJVpPsSwpI

