

A Multi-Scale Deep Learning Framework for Projecting Weather Extremes

Antoine Blanchard

Nishant Parashar Boyko Dodov Christian Lessig (now at ECMWF) Themis Sapsis (MIT)

Large-Scale Deep Learning for the Earth System – 4 September 2023

©Verisk Analytics, Inc. All rights reserved

Preparing for a New World of Climate Extremes Climate risk is about computing very small probabilities

Climate change is worsening weather extremes

- Megadroughts
- Sea level rise
- Stronger hurricanes
- Extreme rainfall and flooding
- • •

Source: NOAA

Preparing for a New World of Climate Extremes Climate risk is about computing very small probabilities

Climate change is worsening weather extremes

- Megadroughts
- Sea level rise
- Stronger hurricanes
- Extreme rainfall and flooding
- • •

Risk assessment of extremes is challenging

- Worst outcomes have <u>low probability</u>
- Weather perils are interconnected

	2020 <i>-</i> 2039		2040 <i>-</i> 2059		2080- \$62.2B	
)в						_
	🔵 Increas	e in losses				
ов –	from se	a level			_	_
	rise alo	ne				
)в						
_	from as					_
	from se					
	stronge	erhurricanes				
					Mean	
				Mean	\$21.5B	
ОВ				\$17.8B		
			Mean			
Ъ		Mean	\$9.2B			
	Mean	\$4.8B				
	\$2.7B			•••		

Projected increases in U.S. property losses due to sea level rise and stronger hurricanes (Houser et al., 2015)

Low-resolution GCM simulation (fast but biased)

Low-resolution GCM simulation (fast but biased)

Bias correction

Low-resolution GCM simulation (fast but biased) Step 1: Bias correction

Low-resolution debiased simulation

Atmosphere Dynamics Involve Many Spatial Scales Compact representation of atmospheric processes is needed

Discrete spherical wavelet frame is used to represent phenomena on a hierarchy of levels

- reduces dimensionality
- > allows training of local models

Wavelet level 4

Wavelet level 7

Multi-Scale Deep Learning for Weather Extremes

Multi-Scale Deep Learning for Weather Extremes

Multi-Scale Deep Learning for Weather Extremes

How to make ML predictions statistically consistent with observations

ML output

How to make ML predictions statistically consistent with observations

How to make ML predictions statistically consistent with observations

Quantile loss

heavy tails and extremes

How to make ML predictions statistically consistent with observations

How to make ML predictions statistically consistent with observations

Debiased, High-Resolution Simulation over Europe

- Training protocol described in NeurIPS paper (arXiv:2210.12137)
- Fronts and waves present in the full-scale ML simulation
- Statistics and correlations consistent with reanalysis

Vorticity close to ocean surface

Reanalysis

Debiased, High-Resolution Simulation over Europe

- Training protocol described in NeurIPS paper (arXiv:2210.12137)
- Fronts and waves present in the full-scale ML simulation
- Statistics and correlations consistent with reanalysis

Vorticity close to ocean surface

Debiased, High-Resolution Simulation over Europe

- Training protocol described in NeurIPS paper (arXiv:2210.12137)
- Fronts and waves present in the full-scale ML simulation
- Statistics and correlations consistent with reanalysis

Debiased, High-Resolution Simulation over Europe

- Training protocol described in NeurIPS paper (arXiv:2210.12137)
- Fronts and waves present in the full-scale ML simulation
- Statistics and correlations consistent with reanalysis

Conclusions More details available in NeurIPS paper (arXiv:2210.12137)

Key ingredients:

- compact, multi-scale representation of atmospheric processes
- statistical loss functions for extremes and space-time coherency
- divide-and-conquer strategy for efficient training of regional models

Conclusions More details available in NeurIPS paper (arXiv:2210.12137)

Key ingredients:

- compact, multi-scale representation of atmospheric processes
- statistical loss functions for extremes and space-time coherency
- divide-and-conquer strategy for efficient training of regional models
- → Better, faster (> 10x) quantification of weather extremes

Conclusions More details available in NeurIPS paper (arXiv:2210.12137)

Key ingredients:

- compact, multi-scale representation of atmospheric processes
- statistical loss functions for extremes and space-time coherency
- divide-and-conquer strategy for efficient training of regional models
- → Better, faster (> 10x) quantification of weather extremes

Current thrusts:

- incorporate more physics and perils
- benchmark different seq-to-seq/generative models
- upgrade GCM from SPEEDY to CAM (NCAR)

