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Source: NOAA

Preparing for a New World of Climate Extremes
Climate risk is about computing very small probabilities

Climate change is worsening weather extremes

• Megadroughts

• Sea level rise

• Stronger hurricanes

• Extreme rainfall and flooding

• …
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Preparing for a New World of Climate Extremes
Climate risk is about computing very small probabilities

Climate change is worsening weather extremes

• Megadroughts

• Sea level rise

• Stronger hurricanes

• Extreme rainfall and flooding

• …

Projected increases in U.S. property losses due to sea level rise 
and stronger hurricanes (Houser et al., 2015)

Risk assessment of extremes is challenging

• Worst outcomes have low probability

• Weather perils are interconnected
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Physics-Based GCM + Observations = ML opportunity

Low-resolution
GCM simulation
(fast but biased)
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Atmosphere Dynamics Involve Many Spatial Scales
Compact representation of atmospheric processes is needed

Discrete spherical wavelet frame is used to ➢ reduces dimensionality

represent phenomena on a hierarchy of levels ➢ allows training of local models
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Multi-Scale Deep Learning for Weather Extremes

Coarse-scale debiased 
simulation
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Multi-Scale Deep Learning for Weather Extremes

Coarse-scale 
reanalysis

Fine-scale 
reanalysis
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Multi-Scale Deep Learning for Weather Extremes

Full-scale debiased simulation 
with realistic statistics

Testing

Coarse-scale 
reanalysis

Fine-scale 
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Statistical Loss Functions
How to make ML predictions statistically consistent with observations

ML output Reanalysis
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Statistical Loss Functions
How to make ML predictions statistically consistent with observations

ML output Reanalysis

ℒ ,

Quantile loss heavy tails and extremes ℒ(𝑦, 𝑦∗) = MSE(𝑄𝑦, 𝑄𝑦∗)

quantiles

cross-spectrum

Cross-spectrum loss space-time coherency ℒ 𝑦, 𝑦∗ = MSE Re[Γ𝑦,𝐲𝑛], Re[Γ𝑦∗,𝐲𝑛∗ ]

+ MSE Im[Γ𝑦,𝐲𝑛], Im[Γ𝑦∗,𝐲𝑛∗ ]
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Statistical Loss Functions
How to make ML predictions statistically consistent with observations

ML output Reanalysis

ℒ ,
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quantiles

cross-spectrum
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Debiased, High-Resolution Simulation over Europe

• Training protocol described in NeurIPS paper (arXiv:2210.12137)

• Fronts and waves present in the full-scale ML simulation

• Statistics and correlations consistent with reanalysis

Vorticity close to ocean surface
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Conclusions
More details available in NeurIPS paper (arXiv:2210.12137)

Key ingredients:

• compact, multi-scale representation of atmospheric processes

• statistical loss functions for extremes and space-time coherency

• divide-and-conquer strategy for efficient training of regional models
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Conclusions
More details available in NeurIPS paper (arXiv:2210.12137)

Key ingredients:

• compact, multi-scale representation of atmospheric processes

• statistical loss functions for extremes and space-time coherency

• divide-and-conquer strategy for efficient training of regional models

 Better, faster (> 10x) quantification of weather extremes

Current thrusts:

• incorporate more physics and perils

• benchmark different seq-to-seq/generative models

• upgrade GCM from SPEEDY to CAM (NCAR)
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