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Preparing for a New World of Climate Extremes
Climate risk is about computing very small probabilities

Climate change is worsening weather extremes

« Megadroughts

« Sea level rise

« Stronger hurricanes

« Extreme rainfall and flooding
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Preparing for a New World of Climate Extremes
Climate risk is about computing very small probabilities

Climate change is worsening weather extremes

Megadroughts

Sea level rise

Stronger hurricanes

Extreme rainfall and flooding

Risk assessment of extremes is challenging

Worst outcomes have low probability
Weather perils are interconnected

2020-
2039

@ !ncrease in losses
from sea level
rise alone
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from sea level rise &
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Projected increases in U.S. property losses due to sea level rise
and stronger hurricanes (Houser et al., 2015)
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Physics-Based GCM + Observations = ML opportunity

Low-resolution
GCM simulation
(fast but biased)
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Physics-Based GCM + Observations = ML opportunity

Reanalysis data

e X

Low-resolution Step 1:
GCM simulation Bias correction
(fast but biased)
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Reanalysis data
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Low-resolution Step 1: Low-resolution
GCM simulation Bias correction debiased simulation
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Physics-Based GCM + Observations = ML opportunity

Reanalysis data

e X

Low-resolution Step 1: Low-resolution Step 2:
GCM simulation Bias correction debiased simulation Downscaling
(fast but biased)
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Physics-Based GCM + Observations = ML opportunity

Reanalysis data

e X

Low-resolution Step 1: Low-resolution Step 2: High-resolution
GCM simulation Bias correction debiased simulation Downscaling debiased simulation
(fast but biased)
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Atmosphere Dynamics Involve Many Spatial Scales
Compact representation of atmospheric processes is heeded

Discrete spherical wavelet frame is used to » reduces dimensionality
represent phenomena on a hierarchy of levels > allows training of local models

Wavelet level 2
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Multi-Scale Deep Learning for Weather Extremes

Neural Networks

Wavelet transform
LSTM-based

Coarse-scale biased Coarse-scale debiased
Coarse-scale biased wavelet coefficients wavelet coefficients
GCM simulation

Inverse wavelet transform

Bias-correction

Coarse-scale debiased
simulation
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Multi-Scale Deep Learning for Weather Extremes
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Coarse-scale
reanalysis
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Wavelet transform

Wavelet transform

Coarse-scale biased
wavelet coefficients
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Coarse-scale
wavelet coefficients

LSTM-based
Neural Networks

TCN-based
Neural Networks

Coarse-scale debiased
wavelet coefficients

Inverse wavelet transform

Fine-scale
wavelet coefficients

Inverse wavelet transform

Coarse-scale debiased
simulation

Fine-scale
reanalysis
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Multi-Scale Deep Learning for Weather Extremes
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Wavelet transform

Wavelet transform

Coarse-scale biased
wavelet coefficients
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Coarse-scale
wavelet coefficients

Inverse wavelet transform

Coarse-scale debiased
simulation
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Fine-scale
wavelet coefficients

Inverse wavelet transform

Full-scale debiased simulation
with realistic statistics

Fine-scale
reanalysis
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Statistical Loss Functions
How to make ML predictions statistically consistent with observations

ML output Reanalysis
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Statistical Loss Functions
How to make ML predictions statistically consistent with observations
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ML output Reanalysis
= A',,»fg'ﬂ“?b‘*.i wif( URSOY A ] ] f‘f L ’;3" Fa R d A A A . |
ij (v (& Y l M ‘ A | 2 j &J 3 (S D A A A . |
vV 9000060 y - - | V- 90000 . |
) ) ‘}i‘ "9 ¢ A AL | N ) ) 5{:.“, ‘ A A _A .
.\ "). ¢.7(}~\,€) ‘%-‘J. ﬂ.(/‘ G
‘/pr. Y R ’ ‘,!!\&f W i
;. [ ] ‘J.IQ LQI""\:}/ | e S X ) bj." “Q;‘?:zf B
A N / 1 1 1 A AN a L i L
Y o AN /// g = AN
4 y = \ Al -l
— =

©Verisk Analytics, Inc. All rights reserved.



V:E Verisk’

Statistical Loss Functions
How to make ML predictions statistically consistent with observations
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Quantile loss heavy tails and extremes L(y,y") = MSE(Q,, Q")
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Statistical Loss Functions
How to make ML predictions statistically consistent with observations

ML output Reanalysis
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Statistical Loss Functions
How to make ML predictions statistically consistent with observations

ML output Reanalysis
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Debiased, High-Resolution Simulation over Europe

« Training protocol described in NeurlPS paper (arXiv:2210.12137)
» Fronts and waves present in the full-scale ML simulation

« Statistics and correlations consistent with reanalysis

Vorticity close to ocean surface
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Debiased, High-Resolution Simulation over Europe

« Training protocol described in NeurlPS paper (arXiv:2210.12137) Reanalysis
» Fronts and waves present in the full-scale ML simulation et

« Statistics and correlations consistent with reanalysis

STEP 1 STEP 2
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Vorticity close to ocean surface
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Debiased, High-Resolution Simulation over Europe

« Training protocol described in NeurlPS paper (arXiv:2210.12137)
« Fronts and waves present in the full-scale ML simulation
 Statistics and correlations consistent with reanalysis
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Debiased, High-Resolution Simulation over Europe
« Training protocol described in NeurlPS paper (arXiv:2210.12137)

« Fronts and waves present in the full-scale ML simulation

 Statistics and correlations consistent with reanalysis
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Conclusions
More details available in NeurlPS paper (arXiv:2210.12137)

Key ingredients:

« compact, multi-scale representation of atmospheric processes
 statistical loss functions for extremes and space-time coherency
« divide-and-conquer strategy for efficient training of regional models
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Conclusions
More details available in NeurlPS paper (arXiv:2210.12137)

Key ingredients:

« compact, multi-scale representation of atmospheric processes
 statistical loss functions for extremes and space-time coherency
« divide-and-conquer strategy for efficient training of regional models

— Better, faster (> 10x) quantification of weather extremes
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Conclusions
More details available in NeurlPS paper (arXiv:2210.12137)

Key ingredients:

« compact, multi-scale representation of atmospheric processes
 statistical loss functions for extremes and space-time coherency
« divide-and-conquer strategy for efficient training of regional models

— Better, faster (> 10x) quantification of weather extremes

Current thrusts:

* incorporate more physics and perils
* benchmark different seqg-to-seq/generative models
« upgrade GCM from SPEEDY to CAM (NCAR)

©Verisk Analytics, Inc. All rights reserved.

V= Verisk:

24



	Slide 1: A Multi-Scale Deep Learning Framework for Projecting Weather Extremes
	Slide 2: Preparing for a New World of Climate Extremes
	Slide 3: Preparing for a New World of Climate Extremes
	Slide 4: Physics-Based GCM + Observations = ML opportunity
	Slide 5: Physics-Based GCM + Observations = ML opportunity
	Slide 6: Physics-Based GCM + Observations = ML opportunity
	Slide 7: Physics-Based GCM + Observations = ML opportunity
	Slide 8: Physics-Based GCM + Observations = ML opportunity
	Slide 9: Atmosphere Dynamics Involve Many Spatial Scales
	Slide 10: Multi-Scale Deep Learning for Weather Extremes
	Slide 11: Multi-Scale Deep Learning for Weather Extremes
	Slide 12: Multi-Scale Deep Learning for Weather Extremes
	Slide 13: Statistical Loss Functions
	Slide 14: Statistical Loss Functions
	Slide 15: Statistical Loss Functions
	Slide 16: Statistical Loss Functions
	Slide 17: Statistical Loss Functions
	Slide 18: Debiased, High-Resolution Simulation over Europe
	Slide 19: Debiased, High-Resolution Simulation over Europe
	Slide 20: Debiased, High-Resolution Simulation over Europe
	Slide 21: Debiased, High-Resolution Simulation over Europe
	Slide 22: Conclusions
	Slide 23: Conclusions
	Slide 24: Conclusions

