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Neural networks and differential equations

  ◦ Use (applied) mathematics to improve understanding of 
and computations with neural networks 

  ◦ Use neural network to improve simulation of differen-
tial equations (and in general the solution of problems in 
numerical analysis)
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What is a neural network?

Element-wise nonlinearity, 
e.g. sigmoid

  ◦ Nonlinear mapping of the form

   with layers 
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   with layers 
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Parameters that are learned / 
fitted to data
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  ◦ Training of neural network using data

   Weight matrices and bias vectors
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What is a neural network?

  ◦ Training of neural network using data

    with loss function
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What is a neural network?

  ◦ Training of neural network using data

   Objective:

Good performance on unseen data 
from the same distribution as     .
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We �rst train the standard ResNet and the antisymmetric variant where we use a width of 
n = 8 by duplicating the features. The performance of both models is approximately the same; 
see right subplot in �gure 3. The optimal accuracy, achieved for N = 1024, is around 98.8%.

For the Hamiltonian network with Verlet forward propagation we use a narrower network 
containing only the original features (i.e. n = 2 and no duplication). As in the previous experi-
ments the accuracy generally improves with increasing depth (with one exception between 
levels 4 and 5). The optimal accuracy is obtained at the �nal level (N = 1024) with a valida-
tion error of 99.1%. We illustrate the results for the Verlet network in �gure 6. The center 
subplot shows how the forward propagation successfully rearranges the features such that they 
can be labeled using a linear classi�er. The right subplot shows that the prediction function �ts 
the training data, but also approximates the true level sets.

6.4. MNIST

We use the MNIST dataset of hand-written digits [36, 37] to illustrate the applicability of 
our methods in image classi�cation problems. The data set consists of 60 000 labeled digital 
images of size 28 × 28 showing hand written digits from 0 to 9. We randomly divide the data 
into 50 000 training and 10 000 validation examples. We train the network using the standard 
and antisymmetric ResNet and the �rst-order Hamiltonian network using Verlet integration.

We use a three-level multi-level strategy where the number of layers is 4, 8, and 16. In each 
step we use the block coordinate descent method to approximately solve the learning problem 
and prolongate the forward propagation parameters to the next level using piecewise linear 
interpolation. The width of the network is 6 (yielding n = 4704 features used in the classi�-
cation) and we use 3 × 3 convolution operators that are fully connected within a given layer 
to model the linear transformation matrices K0, . . . , KN−1. The �nal time is set to T = 6. To 
compute the Gauss–Newton step we �rst compute the full gradient over all 50 000 examples 
and then randomly subsample 5000 terms for Hessian computations in the PCG step. The 
maximum number of iterations is set to 20 at each layer.

Within each step of the block coordinate descent we solve the classi�cation problem 
using at most 5 iterations of Newton-PCG with up to 10 inner iterations. We use a discretized 
Laplacian as a regularization operator in equation (5.25) and its shifted symmetric product 
as a preconditioner to favor smooth modes; see [15]. The regularization parameter used in 

Figure 6. Classi�cation results for peaks example described in section  6.3 using a 
Hamiltonian network with n = 1024 layers and the Verlet forward propagation. Left: 
we illustrate the training data by colored dots that represent the class. Center: we show 
the propagated features and the predictions of the softmax classi�er. Right: we depict 
the predictions of our network (colored background) and the training data (This �gure is 
optimized for screen use as provided in the online version of this journal.).
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  ◦ Neural net is nonlinear map

  › Between vector spaces / manifolds

  › Consists of simple building blocks with simple 
nonlinearity

  › Linear superposition (as in bases, frames) is      
replaced by nonlinear composition

What is a neural network?
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  ◦ Residual neural network

Neural nets as ordinary differential equations

[1] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and 
Pattern Recognition (CVPR), June 2016.
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Neural nets as ordinary differential equations

  ◦ Residual neural network

With                 a layer is an explicit Euler step of the 
nonlinear ordinary differential equation

W. E. A proposal on machine learning via dynamical systems. Communications in Mathematics and Statistics, 5(1):1–11, 2017.
R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud. Neural Ordinary Differential Equations. NIPS 2018, jun 2018.
E. Haber and L. Ruthotto. Stable architectures for deep neural networks. Inverse Problems, 34(1):014004, dec 2017.



34© Thomas Richter and Christian Lessig, 2021 

Neural nets as ordinary differential equations

input

output



35© Thomas Richter and Christian Lessig, 2021 

Neural nets as ordinary differential equations

input

output



36© Thomas Richter and Christian Lessig, 2021 

Neural nets as ordinary differential equations

input

output



37© Thomas Richter and Christian Lessig, 2021 

Neural nets as ordinary differential equations

input

output



38© Thomas Richter and Christian Lessig, 2021 

Neural nets as ordinary differential equations

  ◦ Higher order / implicit time integration schemes (e.g. 
[Chen et al. 2018])

  ◦ Stability (e.g. [Haber and Ruthotto 2017])

  ◦ Gradient computation (e.g. [E 2017], [Chang et al. 2018])

  ◦ Optimization / parameter estimation (e.g. [Li et al. 2017])

W. E. A proposal on machine learning via dynamical systems. Communications in Mathematics and Statistics, 5(1):1–11, 2017.
R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud. Neural Ordinary Differential Equations. NIPS 2018, jun 2018.
E. Haber and L. Ruthotto. Stable architectures for deep neural networks. Inverse Problems, 34(1):014004, dec 2017.
Q. Li, L. Chen, C. Tai, and E. Weinan. Maximum principle based algorithms for deep learning. J. Mach. Learn. Res., 18(1):5998–6026, Jan. 2017.
B. Chang, L. Meng, et al.. Reversible architectures for arbitrarily deep residual neural networks. In AAAI Conference on Artificial Intelligence, 2018.
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Neural nets as ordinary differential equations

  ◦ Stability:

Good performance on unseen data 
from the same distribution as     .

Objective:
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containing only the original features (i.e. n = 2 and no duplication). As in the previous experi-
ments the accuracy generally improves with increasing depth (with one exception between 
levels 4 and 5). The optimal accuracy is obtained at the �nal level (N = 1024) with a valida-
tion error of 99.1%. We illustrate the results for the Verlet network in �gure 6. The center 
subplot shows how the forward propagation successfully rearranges the features such that they 
can be labeled using a linear classi�er. The right subplot shows that the prediction function �ts 
the training data, but also approximates the true level sets.

6.4. MNIST

We use the MNIST dataset of hand-written digits [36, 37] to illustrate the applicability of 
our methods in image classi�cation problems. The data set consists of 60 000 labeled digital 
images of size 28 × 28 showing hand written digits from 0 to 9. We randomly divide the data 
into 50 000 training and 10 000 validation examples. We train the network using the standard 
and antisymmetric ResNet and the �rst-order Hamiltonian network using Verlet integration.

We use a three-level multi-level strategy where the number of layers is 4, 8, and 16. In each 
step we use the block coordinate descent method to approximately solve the learning problem 
and prolongate the forward propagation parameters to the next level using piecewise linear 
interpolation. The width of the network is 6 (yielding n = 4704 features used in the classi�-
cation) and we use 3 × 3 convolution operators that are fully connected within a given layer 
to model the linear transformation matrices K0, . . . , KN−1. The �nal time is set to T = 6. To 
compute the Gauss–Newton step we �rst compute the full gradient over all 50 000 examples 
and then randomly subsample 5000 terms for Hessian computations in the PCG step. The 
maximum number of iterations is set to 20 at each layer.

Within each step of the block coordinate descent we solve the classi�cation problem 
using at most 5 iterations of Newton-PCG with up to 10 inner iterations. We use a discretized 
Laplacian as a regularization operator in equation (5.25) and its shifted symmetric product 
as a preconditioner to favor smooth modes; see [15]. The regularization parameter used in 

Figure 6. Classi�cation results for peaks example described in section  6.3 using a 
Hamiltonian network with n = 1024 layers and the Verlet forward propagation. Left: 
we illustrate the training data by colored dots that represent the class. Center: we show 
the propagated features and the predictions of the softmax classi�er. Right: we depict 
the predictions of our network (colored background) and the training data (This �gure is 
optimized for screen use as provided in the online version of this journal.).
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We �rst train the standard ResNet and the antisymmetric variant where we use a width of 
n = 8 by duplicating the features. The performance of both models is approximately the same; 
see right subplot in �gure 3. The optimal accuracy, achieved for N = 1024, is around 98.8%.

For the Hamiltonian network with Verlet forward propagation we use a narrower network 
containing only the original features (i.e. n = 2 and no duplication). As in the previous experi-
ments the accuracy generally improves with increasing depth (with one exception between 
levels 4 and 5). The optimal accuracy is obtained at the �nal level (N = 1024) with a valida-
tion error of 99.1%. We illustrate the results for the Verlet network in �gure 6. The center 
subplot shows how the forward propagation successfully rearranges the features such that they 
can be labeled using a linear classi�er. The right subplot shows that the prediction function �ts 
the training data, but also approximates the true level sets.
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We use the MNIST dataset of hand-written digits [36, 37] to illustrate the applicability of 
our methods in image classi�cation problems. The data set consists of 60 000 labeled digital 
images of size 28 × 28 showing hand written digits from 0 to 9. We randomly divide the data 
into 50 000 training and 10 000 validation examples. We train the network using the standard 
and antisymmetric ResNet and the �rst-order Hamiltonian network using Verlet integration.

We use a three-level multi-level strategy where the number of layers is 4, 8, and 16. In each 
step we use the block coordinate descent method to approximately solve the learning problem 
and prolongate the forward propagation parameters to the next level using piecewise linear 
interpolation. The width of the network is 6 (yielding n = 4704 features used in the classi�-
cation) and we use 3 × 3 convolution operators that are fully connected within a given layer 
to model the linear transformation matrices K0, . . . , KN−1. The �nal time is set to T = 6. To 
compute the Gauss–Newton step we �rst compute the full gradient over all 50 000 examples 
and then randomly subsample 5000 terms for Hessian computations in the PCG step. The 
maximum number of iterations is set to 20 at each layer.

Within each step of the block coordinate descent we solve the classi�cation problem 
using at most 5 iterations of Newton-PCG with up to 10 inner iterations. We use a discretized 
Laplacian as a regularization operator in equation (5.25) and its shifted symmetric product 
as a preconditioner to favor smooth modes; see [15]. The regularization parameter used in 

Figure 6. Classi�cation results for peaks example described in section  6.3 using a 
Hamiltonian network with n = 1024 layers and the Verlet forward propagation. Left: 
we illustrate the training data by colored dots that represent the class. Center: we show 
the propagated features and the predictions of the softmax classi�er. Right: we depict 
the predictions of our network (colored background) and the training data (This �gure is 
optimized for screen use as provided in the online version of this journal.).
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We �rst train the standard ResNet and the antisymmetric variant where we use a width of 
n = 8 by duplicating the features. The performance of both models is approximately the same; 
see right subplot in �gure 3. The optimal accuracy, achieved for N = 1024, is around 98.8%.

For the Hamiltonian network with Verlet forward propagation we use a narrower network 
containing only the original features (i.e. n = 2 and no duplication). As in the previous experi-
ments the accuracy generally improves with increasing depth (with one exception between 
levels 4 and 5). The optimal accuracy is obtained at the �nal level (N = 1024) with a valida-
tion error of 99.1%. We illustrate the results for the Verlet network in �gure 6. The center 
subplot shows how the forward propagation successfully rearranges the features such that they 
can be labeled using a linear classi�er. The right subplot shows that the prediction function �ts 
the training data, but also approximates the true level sets.

6.4. MNIST

We use the MNIST dataset of hand-written digits [36, 37] to illustrate the applicability of 
our methods in image classi�cation problems. The data set consists of 60 000 labeled digital 
images of size 28 × 28 showing hand written digits from 0 to 9. We randomly divide the data 
into 50 000 training and 10 000 validation examples. We train the network using the standard 
and antisymmetric ResNet and the �rst-order Hamiltonian network using Verlet integration.

We use a three-level multi-level strategy where the number of layers is 4, 8, and 16. In each 
step we use the block coordinate descent method to approximately solve the learning problem 
and prolongate the forward propagation parameters to the next level using piecewise linear 
interpolation. The width of the network is 6 (yielding n = 4704 features used in the classi�-
cation) and we use 3 × 3 convolution operators that are fully connected within a given layer 
to model the linear transformation matrices K0, . . . , KN−1. The �nal time is set to T = 6. To 
compute the Gauss–Newton step we �rst compute the full gradient over all 50 000 examples 
and then randomly subsample 5000 terms for Hessian computations in the PCG step. The 
maximum number of iterations is set to 20 at each layer.

Within each step of the block coordinate descent we solve the classi�cation problem 
using at most 5 iterations of Newton-PCG with up to 10 inner iterations. We use a discretized 
Laplacian as a regularization operator in equation (5.25) and its shifted symmetric product 
as a preconditioner to favor smooth modes; see [15]. The regularization parameter used in 

Figure 6. Classi�cation results for peaks example described in section  6.3 using a 
Hamiltonian network with n = 1024 layers and the Verlet forward propagation. Left: 
we illustrate the training data by colored dots that represent the class. Center: we show 
the propagated features and the predictions of the softmax classi�er. Right: we depict 
the predictions of our network (colored background) and the training data (This �gure is 
optimized for screen use as provided in the online version of this journal.).
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We �rst train the standard ResNet and the antisymmetric variant where we use a width of 
n = 8 by duplicating the features. The performance of both models is approximately the same; 
see right subplot in �gure 3. The optimal accuracy, achieved for N = 1024, is around 98.8%.

For the Hamiltonian network with Verlet forward propagation we use a narrower network 
containing only the original features (i.e. n = 2 and no duplication). As in the previous experi-
ments the accuracy generally improves with increasing depth (with one exception between 
levels 4 and 5). The optimal accuracy is obtained at the �nal level (N = 1024) with a valida-
tion error of 99.1%. We illustrate the results for the Verlet network in �gure 6. The center 
subplot shows how the forward propagation successfully rearranges the features such that they 
can be labeled using a linear classi�er. The right subplot shows that the prediction function �ts 
the training data, but also approximates the true level sets.

6.4. MNIST

We use the MNIST dataset of hand-written digits [36, 37] to illustrate the applicability of 
our methods in image classi�cation problems. The data set consists of 60 000 labeled digital 
images of size 28 × 28 showing hand written digits from 0 to 9. We randomly divide the data 
into 50 000 training and 10 000 validation examples. We train the network using the standard 
and antisymmetric ResNet and the �rst-order Hamiltonian network using Verlet integration.

We use a three-level multi-level strategy where the number of layers is 4, 8, and 16. In each 
step we use the block coordinate descent method to approximately solve the learning problem 
and prolongate the forward propagation parameters to the next level using piecewise linear 
interpolation. The width of the network is 6 (yielding n = 4704 features used in the classi�-
cation) and we use 3 × 3 convolution operators that are fully connected within a given layer 
to model the linear transformation matrices K0, . . . , KN−1. The �nal time is set to T = 6. To 
compute the Gauss–Newton step we �rst compute the full gradient over all 50 000 examples 
and then randomly subsample 5000 terms for Hessian computations in the PCG step. The 
maximum number of iterations is set to 20 at each layer.

Within each step of the block coordinate descent we solve the classi�cation problem 
using at most 5 iterations of Newton-PCG with up to 10 inner iterations. We use a discretized 
Laplacian as a regularization operator in equation (5.25) and its shifted symmetric product 
as a preconditioner to favor smooth modes; see [15]. The regularization parameter used in 

Figure 6. Classi�cation results for peaks example described in section  6.3 using a 
Hamiltonian network with n = 1024 layers and the Verlet forward propagation. Left: 
we illustrate the training data by colored dots that represent the class. Center: we show 
the propagated features and the predictions of the softmax classi�er. Right: we depict 
the predictions of our network (colored background) and the training data (This �gure is 
optimized for screen use as provided in the online version of this journal.).
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We �rst train the standard ResNet and the antisymmetric variant where we use a width of 
n = 8 by duplicating the features. The performance of both models is approximately the same; 
see right subplot in �gure 3. The optimal accuracy, achieved for N = 1024, is around 98.8%.

For the Hamiltonian network with Verlet forward propagation we use a narrower network 
containing only the original features (i.e. n = 2 and no duplication). As in the previous experi-
ments the accuracy generally improves with increasing depth (with one exception between 
levels 4 and 5). The optimal accuracy is obtained at the �nal level (N = 1024) with a valida-
tion error of 99.1%. We illustrate the results for the Verlet network in �gure 6. The center 
subplot shows how the forward propagation successfully rearranges the features such that they 
can be labeled using a linear classi�er. The right subplot shows that the prediction function �ts 
the training data, but also approximates the true level sets.

6.4. MNIST

We use the MNIST dataset of hand-written digits [36, 37] to illustrate the applicability of 
our methods in image classi�cation problems. The data set consists of 60 000 labeled digital 
images of size 28 × 28 showing hand written digits from 0 to 9. We randomly divide the data 
into 50 000 training and 10 000 validation examples. We train the network using the standard 
and antisymmetric ResNet and the �rst-order Hamiltonian network using Verlet integration.

We use a three-level multi-level strategy where the number of layers is 4, 8, and 16. In each 
step we use the block coordinate descent method to approximately solve the learning problem 
and prolongate the forward propagation parameters to the next level using piecewise linear 
interpolation. The width of the network is 6 (yielding n = 4704 features used in the classi�-
cation) and we use 3 × 3 convolution operators that are fully connected within a given layer 
to model the linear transformation matrices K0, . . . , KN−1. The �nal time is set to T = 6. To 
compute the Gauss–Newton step we �rst compute the full gradient over all 50 000 examples 
and then randomly subsample 5000 terms for Hessian computations in the PCG step. The 
maximum number of iterations is set to 20 at each layer.

Within each step of the block coordinate descent we solve the classi�cation problem 
using at most 5 iterations of Newton-PCG with up to 10 inner iterations. We use a discretized 
Laplacian as a regularization operator in equation (5.25) and its shifted symmetric product 
as a preconditioner to favor smooth modes; see [15]. The regularization parameter used in 
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the predictions of our network (colored background) and the training data (This �gure is 
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We �rst train the standard ResNet and the antisymmetric variant where we use a width of 
n = 8 by duplicating the features. The performance of both models is approximately the same; 
see right subplot in �gure 3. The optimal accuracy, achieved for N = 1024, is around 98.8%.

For the Hamiltonian network with Verlet forward propagation we use a narrower network 
containing only the original features (i.e. n = 2 and no duplication). As in the previous experi-
ments the accuracy generally improves with increasing depth (with one exception between 
levels 4 and 5). The optimal accuracy is obtained at the �nal level (N = 1024) with a valida-
tion error of 99.1%. We illustrate the results for the Verlet network in �gure 6. The center 
subplot shows how the forward propagation successfully rearranges the features such that they 
can be labeled using a linear classi�er. The right subplot shows that the prediction function �ts 
the training data, but also approximates the true level sets.
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into 50 000 training and 10 000 validation examples. We train the network using the standard 
and antisymmetric ResNet and the �rst-order Hamiltonian network using Verlet integration.

We use a three-level multi-level strategy where the number of layers is 4, 8, and 16. In each 
step we use the block coordinate descent method to approximately solve the learning problem 
and prolongate the forward propagation parameters to the next level using piecewise linear 
interpolation. The width of the network is 6 (yielding n = 4704 features used in the classi�-
cation) and we use 3 × 3 convolution operators that are fully connected within a given layer 
to model the linear transformation matrices K0, . . . , KN−1. The �nal time is set to T = 6. To 
compute the Gauss–Newton step we �rst compute the full gradient over all 50 000 examples 
and then randomly subsample 5000 terms for Hessian computations in the PCG step. The 
maximum number of iterations is set to 20 at each layer.

Within each step of the block coordinate descent we solve the classi�cation problem 
using at most 5 iterations of Newton-PCG with up to 10 inner iterations. We use a discretized 
Laplacian as a regularization operator in equation (5.25) and its shifted symmetric product 
as a preconditioner to favor smooth modes; see [15]. The regularization parameter used in 
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We �rst train the standard ResNet and the antisymmetric variant where we use a width of 
n = 8 by duplicating the features. The performance of both models is approximately the same; 
see right subplot in �gure 3. The optimal accuracy, achieved for N = 1024, is around 98.8%.

For the Hamiltonian network with Verlet forward propagation we use a narrower network 
containing only the original features (i.e. n = 2 and no duplication). As in the previous experi-
ments the accuracy generally improves with increasing depth (with one exception between 
levels 4 and 5). The optimal accuracy is obtained at the �nal level (N = 1024) with a valida-
tion error of 99.1%. We illustrate the results for the Verlet network in �gure 6. The center 
subplot shows how the forward propagation successfully rearranges the features such that they 
can be labeled using a linear classi�er. The right subplot shows that the prediction function �ts 
the training data, but also approximates the true level sets.

6.4. MNIST

We use the MNIST dataset of hand-written digits [36, 37] to illustrate the applicability of 
our methods in image classi�cation problems. The data set consists of 60 000 labeled digital 
images of size 28 × 28 showing hand written digits from 0 to 9. We randomly divide the data 
into 50 000 training and 10 000 validation examples. We train the network using the standard 
and antisymmetric ResNet and the �rst-order Hamiltonian network using Verlet integration.

We use a three-level multi-level strategy where the number of layers is 4, 8, and 16. In each 
step we use the block coordinate descent method to approximately solve the learning problem 
and prolongate the forward propagation parameters to the next level using piecewise linear 
interpolation. The width of the network is 6 (yielding n = 4704 features used in the classi�-
cation) and we use 3 × 3 convolution operators that are fully connected within a given layer 
to model the linear transformation matrices K0, . . . , KN−1. The �nal time is set to T = 6. To 
compute the Gauss–Newton step we �rst compute the full gradient over all 50 000 examples 
and then randomly subsample 5000 terms for Hessian computations in the PCG step. The 
maximum number of iterations is set to 20 at each layer.

Within each step of the block coordinate descent we solve the classi�cation problem 
using at most 5 iterations of Newton-PCG with up to 10 inner iterations. We use a discretized 
Laplacian as a regularization operator in equation (5.25) and its shifted symmetric product 
as a preconditioner to favor smooth modes; see [15]. The regularization parameter used in 

Figure 6. Classi�cation results for peaks example described in section  6.3 using a 
Hamiltonian network with n = 1024 layers and the Verlet forward propagation. Left: 
we illustrate the training data by colored dots that represent the class. Center: we show 
the propagated features and the predictions of the softmax classi�er. Right: we depict 
the predictions of our network (colored background) and the training data (This �gure is 
optimized for screen use as provided in the online version of this journal.).
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Neural nets as ordinary differential equations

  ◦ Simple example with 20 layers given by:
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Neural nets as ordinary differential equations

  ◦ Stability ≈ generalization
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Neural nets as ordinary differential equations

  ◦ Stability ≈ generalization

  ◦ Stability is necessary condition for well posedness of 
(inverse) learning problem ≈ vanishing / exploding gra-
dients
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Neural nets as ordinary differential equations

  ◦ Neural networks that are intrinsically stable:
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Neural nets as ordinary differential equations

  ◦ Neural networks that are intrinsically stable:
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Neural nets as ordinary differential equations

  ◦ Neural networks that are intrinsically stable:

Conservation of energy:
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Neural nets as ordinary differential equations

  ◦ Neural networks that are intrinsically stable:

E. Haber and L. Ruthotto. Stable architectures for deep neural networks. Inverse Problems, 34(1):014004, dec 2017.
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Extension to partial differential equations
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Extension to partial differential equations
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  ◦ Neural nets as discretization of partial differential equations

  › Inputs and layers as spatial discretization (finite differ-
ence, Galerkin projection, ...)

Extension to partial differential equations
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  ◦ Neural nets as discretization of partial differential equations

  › Inputs and layers as spatial discretization (finite differ-
ence, Galerkin projection, ...)

  › Hyperbolic, parabolic, ... PDEs  

L. Ruthotto and E. Haber. Deep neural networks motivated by partial differential equations. Journal of Mathematical Imaging and Vision, 62(3):352–364, 2020.

Extension to partial differential equations
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Extension to partial differential equations

  ◦ 3 channel convolution of 1D signal:
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Extension to partial differential equations

Non-singular for 

  ◦ 3 channel convolution of 1D signal:
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Extension to partial differential equations

  ◦ 3 channel convolution of 1D signal:
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Extension to partial differential equations

  ◦ 3 channel convolution of 1D signal:
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  ◦ 3 channel convolution of 1D signal:
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  ◦ 3 channel convolution of 1D signal:

Extension to partial differential equations
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Benign overfitting
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Benign overfitting

A B

Fig. 1. Curves for training risk (dashed line) and test risk (solid line). (A) The classical U-shaped risk curve arising from the bias–variance trade-off. (B) The
double-descent risk curve, which incorporates the U-shaped risk curve (i.e., the “classical” regime) together with the observed behavior from using high-
capacity function classes (i.e., the “modern” interpolating regime), separated by the interpolation threshold. The predictors to the right of the interpolation
threshold have zero training risk.

networks and kernel machines trained to interpolate the training
data obtain near-optimal test results even when the training data
are corrupted with high levels of noise (5, 6).

The main finding of this work is a pattern in how perfor-
mance on unseen data depends on model capacity and the
mechanism underlying its emergence. This dependence, empir-
ically witnessed with important model classes including neural
networks and a range of datasets, is summarized in the “double-
descent” risk curve shown in Fig. 1B. The curve subsumes the
classical U-shaped risk curve from Fig. 1A by extending it beyond
the point of interpolation.

When function class capacity is below the “interpolation
threshold,” learned predictors exhibit the classical U-shaped
curve from Fig. 1A. (In this paper, function class capacity is iden-
tified with the number of parameters needed to specify a function
within the class.) The bottom of the U is achieved at the sweet
spot which balances the fit to the training data and the suscepti-
bility to overfitting: To the left of the sweet spot, predictors are
underfitted, and immediately to the right, predictors are overfit-
ted. When we increase the function class capacity high enough
(e.g., by increasing the number of features or the size of the neu-
ral network architecture), the learned predictors achieve (near)
perfect fits to the training data—i.e., interpolation. Although
the learned predictors obtained at the interpolation threshold
typically have high risk, we show that increasing the function
class capacity beyond this point leads to decreasing risk, typically
going below the risk achieved at the sweet spot in the “classical”
regime.

All of the learned predictors to the right of the interpolation
threshold fit the training data perfectly and have zero empiri-
cal risk. So why should some—in particular, those from richer
functions classes—have lower test risk than others? The answer
is that the capacity of the function class does not necessarily
reflect how well the predictor matches the inductive bias appro-
priate for the problem at hand. For the learning problems we
consider (a range of real-world datasets as well as synthetic
data), the inductive bias that seems appropriate is the regular-
ity or smoothness of a function as measured by a certain function
space norm. Choosing the smoothest function that perfectly fits
observed data is a form of Occam’s razor: The simplest expla-
nation compatible with the observations should be preferred (cf.
refs. 7 and 8). By considering larger function classes, which con-
tain more candidate predictors compatible with the data, we
are able to find interpolating functions that have smaller norm
and are thus “simpler.” Thus, increasing function class capacity
improves performance of classifiers.

Related ideas have been considered in the context of margins
theory (7, 9, 10), where a larger function class H may permit
the discovery of a classifier with a larger margin. While the
margins theory can be used to study classification, it does not

apply to regression and also does not predict the second descent
beyond the interpolation threshold. Recently, there has been an
emerging recognition that certain interpolating predictors (not
based on ERM) can indeed be provably statistically optimal or
near optimal (11, 12), which is compatible with our empirical
observations in the interpolating regime.

In the remainder of this article, we discuss empirical evidence
for the double-descent curve and the mechanism for its emer-
gence and conclude with some final observations and parting
thoughts.

Neural Networks
In this section, we discuss the double-descent risk curve in the
context of neural networks.

Random Fourier Features. We first consider a popular class of non-
linear parametric models called random Fourier features (RFF)
(13), which can be viewed as a class of 2-layer neural networks
with fixed weights in the first layer. The RFF model family
HN with N (complex-valued) parameters consists of functions
h : Rd

!C of the form

h(x )=

NX

k=1

akφ(x ; vk ) where φ(x ; v):=e
p
−1hvk ,xi,

and the vectors v1, . . . , vN are sampled independently from the
standard normal distribution in Rd . (We consider HN as a class
of real-valued functions with 2N real-valued parameters by tak-
ing real and imaginary parts separately.) Note that HN is a
randomized function class, but as N !1, the function class
becomes a closer and closer approximation to the reproducing
kernel Hilbert space (RKHS) corresponding to the Gaussian
kernel, denoted by H1. While it is possible to directly use
H1 [e.g., as is done with kernel machines (14)], the random
classes HN are computationally attractive to use when the sam-
ple size n is large but the number of parameters N is small
compared with n .

Our learning procedure using HN is as follows. Given data
(x1, y1), . . . , (xn , yn) from Rd

⇥R, we find the predictor hn,N 2

HN via ERM with squared loss. That is, we minimize the empiri-
cal risk objective 1

n

Pn
i=1(h(xi)− yi)

2 over all functions h 2HN .
When the minimizer is not unique (as is always the case when
N >n), we choose the minimizer whose coefficients (a1, . . . , aN )
have the minimum `2 norm. This choice of norm is intended as
an approximation to the RKHS norm khk

H1
, which is generally

difficult to compute for arbitrary functions in HN . For prob-
lems with multiple outputs (e.g., multiclass classification), we use
functions with vector-valued outputs and the sum of the squared
losses for each output.

15850 | www.pnas.org/cgi/doi/10.1073/pnas.1903070116 Belkin et al.
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Benign overfitting

A B

Fig. 1. Curves for training risk (dashed line) and test risk (solid line). (A) The classical U-shaped risk curve arising from the bias–variance trade-off. (B) The
double-descent risk curve, which incorporates the U-shaped risk curve (i.e., the “classical” regime) together with the observed behavior from using high-
capacity function classes (i.e., the “modern” interpolating regime), separated by the interpolation threshold. The predictors to the right of the interpolation
threshold have zero training risk.

networks and kernel machines trained to interpolate the training
data obtain near-optimal test results even when the training data
are corrupted with high levels of noise (5, 6).

The main finding of this work is a pattern in how perfor-
mance on unseen data depends on model capacity and the
mechanism underlying its emergence. This dependence, empir-
ically witnessed with important model classes including neural
networks and a range of datasets, is summarized in the “double-
descent” risk curve shown in Fig. 1B. The curve subsumes the
classical U-shaped risk curve from Fig. 1A by extending it beyond
the point of interpolation.

When function class capacity is below the “interpolation
threshold,” learned predictors exhibit the classical U-shaped
curve from Fig. 1A. (In this paper, function class capacity is iden-
tified with the number of parameters needed to specify a function
within the class.) The bottom of the U is achieved at the sweet
spot which balances the fit to the training data and the suscepti-
bility to overfitting: To the left of the sweet spot, predictors are
underfitted, and immediately to the right, predictors are overfit-
ted. When we increase the function class capacity high enough
(e.g., by increasing the number of features or the size of the neu-
ral network architecture), the learned predictors achieve (near)
perfect fits to the training data—i.e., interpolation. Although
the learned predictors obtained at the interpolation threshold
typically have high risk, we show that increasing the function
class capacity beyond this point leads to decreasing risk, typically
going below the risk achieved at the sweet spot in the “classical”
regime.

All of the learned predictors to the right of the interpolation
threshold fit the training data perfectly and have zero empiri-
cal risk. So why should some—in particular, those from richer
functions classes—have lower test risk than others? The answer
is that the capacity of the function class does not necessarily
reflect how well the predictor matches the inductive bias appro-
priate for the problem at hand. For the learning problems we
consider (a range of real-world datasets as well as synthetic
data), the inductive bias that seems appropriate is the regular-
ity or smoothness of a function as measured by a certain function
space norm. Choosing the smoothest function that perfectly fits
observed data is a form of Occam’s razor: The simplest expla-
nation compatible with the observations should be preferred (cf.
refs. 7 and 8). By considering larger function classes, which con-
tain more candidate predictors compatible with the data, we
are able to find interpolating functions that have smaller norm
and are thus “simpler.” Thus, increasing function class capacity
improves performance of classifiers.

Related ideas have been considered in the context of margins
theory (7, 9, 10), where a larger function class H may permit
the discovery of a classifier with a larger margin. While the
margins theory can be used to study classification, it does not

apply to regression and also does not predict the second descent
beyond the interpolation threshold. Recently, there has been an
emerging recognition that certain interpolating predictors (not
based on ERM) can indeed be provably statistically optimal or
near optimal (11, 12), which is compatible with our empirical
observations in the interpolating regime.

In the remainder of this article, we discuss empirical evidence
for the double-descent curve and the mechanism for its emer-
gence and conclude with some final observations and parting
thoughts.

Neural Networks
In this section, we discuss the double-descent risk curve in the
context of neural networks.

Random Fourier Features. We first consider a popular class of non-
linear parametric models called random Fourier features (RFF)
(13), which can be viewed as a class of 2-layer neural networks
with fixed weights in the first layer. The RFF model family
HN with N (complex-valued) parameters consists of functions
h : Rd

!C of the form

h(x )=

NX

k=1

akφ(x ; vk ) where φ(x ; v):=e
p
−1hvk ,xi,

and the vectors v1, . . . , vN are sampled independently from the
standard normal distribution in Rd . (We consider HN as a class
of real-valued functions with 2N real-valued parameters by tak-
ing real and imaginary parts separately.) Note that HN is a
randomized function class, but as N !1, the function class
becomes a closer and closer approximation to the reproducing
kernel Hilbert space (RKHS) corresponding to the Gaussian
kernel, denoted by H1. While it is possible to directly use
H1 [e.g., as is done with kernel machines (14)], the random
classes HN are computationally attractive to use when the sam-
ple size n is large but the number of parameters N is small
compared with n .

Our learning procedure using HN is as follows. Given data
(x1, y1), . . . , (xn , yn) from Rd

⇥R, we find the predictor hn,N 2

HN via ERM with squared loss. That is, we minimize the empiri-
cal risk objective 1

n

Pn
i=1(h(xi)− yi)

2 over all functions h 2HN .
When the minimizer is not unique (as is always the case when
N >n), we choose the minimizer whose coefficients (a1, . . . , aN )
have the minimum `2 norm. This choice of norm is intended as
an approximation to the RKHS norm khk

H1
, which is generally

difficult to compute for arbitrary functions in HN . For prob-
lems with multiple outputs (e.g., multiclass classification), we use
functions with vector-valued outputs and the sum of the squared
losses for each output.

15850 | www.pnas.org/cgi/doi/10.1073/pnas.1903070116 Belkin et al.
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Benign overfitting

A B

Fig. 1. Curves for training risk (dashed line) and test risk (solid line). (A) The classical U-shaped risk curve arising from the bias–variance trade-off. (B) The
double-descent risk curve, which incorporates the U-shaped risk curve (i.e., the “classical” regime) together with the observed behavior from using high-
capacity function classes (i.e., the “modern” interpolating regime), separated by the interpolation threshold. The predictors to the right of the interpolation
threshold have zero training risk.

networks and kernel machines trained to interpolate the training
data obtain near-optimal test results even when the training data
are corrupted with high levels of noise (5, 6).

The main finding of this work is a pattern in how perfor-
mance on unseen data depends on model capacity and the
mechanism underlying its emergence. This dependence, empir-
ically witnessed with important model classes including neural
networks and a range of datasets, is summarized in the “double-
descent” risk curve shown in Fig. 1B. The curve subsumes the
classical U-shaped risk curve from Fig. 1A by extending it beyond
the point of interpolation.

When function class capacity is below the “interpolation
threshold,” learned predictors exhibit the classical U-shaped
curve from Fig. 1A. (In this paper, function class capacity is iden-
tified with the number of parameters needed to specify a function
within the class.) The bottom of the U is achieved at the sweet
spot which balances the fit to the training data and the suscepti-
bility to overfitting: To the left of the sweet spot, predictors are
underfitted, and immediately to the right, predictors are overfit-
ted. When we increase the function class capacity high enough
(e.g., by increasing the number of features or the size of the neu-
ral network architecture), the learned predictors achieve (near)
perfect fits to the training data—i.e., interpolation. Although
the learned predictors obtained at the interpolation threshold
typically have high risk, we show that increasing the function
class capacity beyond this point leads to decreasing risk, typically
going below the risk achieved at the sweet spot in the “classical”
regime.

All of the learned predictors to the right of the interpolation
threshold fit the training data perfectly and have zero empiri-
cal risk. So why should some—in particular, those from richer
functions classes—have lower test risk than others? The answer
is that the capacity of the function class does not necessarily
reflect how well the predictor matches the inductive bias appro-
priate for the problem at hand. For the learning problems we
consider (a range of real-world datasets as well as synthetic
data), the inductive bias that seems appropriate is the regular-
ity or smoothness of a function as measured by a certain function
space norm. Choosing the smoothest function that perfectly fits
observed data is a form of Occam’s razor: The simplest expla-
nation compatible with the observations should be preferred (cf.
refs. 7 and 8). By considering larger function classes, which con-
tain more candidate predictors compatible with the data, we
are able to find interpolating functions that have smaller norm
and are thus “simpler.” Thus, increasing function class capacity
improves performance of classifiers.

Related ideas have been considered in the context of margins
theory (7, 9, 10), where a larger function class H may permit
the discovery of a classifier with a larger margin. While the
margins theory can be used to study classification, it does not

apply to regression and also does not predict the second descent
beyond the interpolation threshold. Recently, there has been an
emerging recognition that certain interpolating predictors (not
based on ERM) can indeed be provably statistically optimal or
near optimal (11, 12), which is compatible with our empirical
observations in the interpolating regime.

In the remainder of this article, we discuss empirical evidence
for the double-descent curve and the mechanism for its emer-
gence and conclude with some final observations and parting
thoughts.

Neural Networks
In this section, we discuss the double-descent risk curve in the
context of neural networks.

Random Fourier Features. We first consider a popular class of non-
linear parametric models called random Fourier features (RFF)
(13), which can be viewed as a class of 2-layer neural networks
with fixed weights in the first layer. The RFF model family
HN with N (complex-valued) parameters consists of functions
h : Rd

!C of the form

h(x )=

NX

k=1

akφ(x ; vk ) where φ(x ; v):=e
p
−1hvk ,xi,

and the vectors v1, . . . , vN are sampled independently from the
standard normal distribution in Rd . (We consider HN as a class
of real-valued functions with 2N real-valued parameters by tak-
ing real and imaginary parts separately.) Note that HN is a
randomized function class, but as N !1, the function class
becomes a closer and closer approximation to the reproducing
kernel Hilbert space (RKHS) corresponding to the Gaussian
kernel, denoted by H1. While it is possible to directly use
H1 [e.g., as is done with kernel machines (14)], the random
classes HN are computationally attractive to use when the sam-
ple size n is large but the number of parameters N is small
compared with n .

Our learning procedure using HN is as follows. Given data
(x1, y1), . . . , (xn , yn) from Rd

⇥R, we find the predictor hn,N 2

HN via ERM with squared loss. That is, we minimize the empiri-
cal risk objective 1

n

Pn
i=1(h(xi)− yi)

2 over all functions h 2HN .
When the minimizer is not unique (as is always the case when
N >n), we choose the minimizer whose coefficients (a1, . . . , aN )
have the minimum `2 norm. This choice of norm is intended as
an approximation to the RKHS norm khk

H1
, which is generally

difficult to compute for arbitrary functions in HN . For prob-
lems with multiple outputs (e.g., multiclass classification), we use
functions with vector-valued outputs and the sum of the squared
losses for each output.

15850 | www.pnas.org/cgi/doi/10.1073/pnas.1903070116 Belkin et al.
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Benign overfitting

A B

Fig. 1. Curves for training risk (dashed line) and test risk (solid line). (A) The classical U-shaped risk curve arising from the bias–variance trade-off. (B) The
double-descent risk curve, which incorporates the U-shaped risk curve (i.e., the “classical” regime) together with the observed behavior from using high-
capacity function classes (i.e., the “modern” interpolating regime), separated by the interpolation threshold. The predictors to the right of the interpolation
threshold have zero training risk.

networks and kernel machines trained to interpolate the training
data obtain near-optimal test results even when the training data
are corrupted with high levels of noise (5, 6).

The main finding of this work is a pattern in how perfor-
mance on unseen data depends on model capacity and the
mechanism underlying its emergence. This dependence, empir-
ically witnessed with important model classes including neural
networks and a range of datasets, is summarized in the “double-
descent” risk curve shown in Fig. 1B. The curve subsumes the
classical U-shaped risk curve from Fig. 1A by extending it beyond
the point of interpolation.

When function class capacity is below the “interpolation
threshold,” learned predictors exhibit the classical U-shaped
curve from Fig. 1A. (In this paper, function class capacity is iden-
tified with the number of parameters needed to specify a function
within the class.) The bottom of the U is achieved at the sweet
spot which balances the fit to the training data and the suscepti-
bility to overfitting: To the left of the sweet spot, predictors are
underfitted, and immediately to the right, predictors are overfit-
ted. When we increase the function class capacity high enough
(e.g., by increasing the number of features or the size of the neu-
ral network architecture), the learned predictors achieve (near)
perfect fits to the training data—i.e., interpolation. Although
the learned predictors obtained at the interpolation threshold
typically have high risk, we show that increasing the function
class capacity beyond this point leads to decreasing risk, typically
going below the risk achieved at the sweet spot in the “classical”
regime.

All of the learned predictors to the right of the interpolation
threshold fit the training data perfectly and have zero empiri-
cal risk. So why should some—in particular, those from richer
functions classes—have lower test risk than others? The answer
is that the capacity of the function class does not necessarily
reflect how well the predictor matches the inductive bias appro-
priate for the problem at hand. For the learning problems we
consider (a range of real-world datasets as well as synthetic
data), the inductive bias that seems appropriate is the regular-
ity or smoothness of a function as measured by a certain function
space norm. Choosing the smoothest function that perfectly fits
observed data is a form of Occam’s razor: The simplest expla-
nation compatible with the observations should be preferred (cf.
refs. 7 and 8). By considering larger function classes, which con-
tain more candidate predictors compatible with the data, we
are able to find interpolating functions that have smaller norm
and are thus “simpler.” Thus, increasing function class capacity
improves performance of classifiers.

Related ideas have been considered in the context of margins
theory (7, 9, 10), where a larger function class H may permit
the discovery of a classifier with a larger margin. While the
margins theory can be used to study classification, it does not

apply to regression and also does not predict the second descent
beyond the interpolation threshold. Recently, there has been an
emerging recognition that certain interpolating predictors (not
based on ERM) can indeed be provably statistically optimal or
near optimal (11, 12), which is compatible with our empirical
observations in the interpolating regime.

In the remainder of this article, we discuss empirical evidence
for the double-descent curve and the mechanism for its emer-
gence and conclude with some final observations and parting
thoughts.

Neural Networks
In this section, we discuss the double-descent risk curve in the
context of neural networks.

Random Fourier Features. We first consider a popular class of non-
linear parametric models called random Fourier features (RFF)
(13), which can be viewed as a class of 2-layer neural networks
with fixed weights in the first layer. The RFF model family
HN with N (complex-valued) parameters consists of functions
h : Rd

!C of the form

h(x )=

NX

k=1

akφ(x ; vk ) where φ(x ; v):=e
p
−1hvk ,xi,

and the vectors v1, . . . , vN are sampled independently from the
standard normal distribution in Rd . (We consider HN as a class
of real-valued functions with 2N real-valued parameters by tak-
ing real and imaginary parts separately.) Note that HN is a
randomized function class, but as N !1, the function class
becomes a closer and closer approximation to the reproducing
kernel Hilbert space (RKHS) corresponding to the Gaussian
kernel, denoted by H1. While it is possible to directly use
H1 [e.g., as is done with kernel machines (14)], the random
classes HN are computationally attractive to use when the sam-
ple size n is large but the number of parameters N is small
compared with n .

Our learning procedure using HN is as follows. Given data
(x1, y1), . . . , (xn , yn) from Rd

⇥R, we find the predictor hn,N 2

HN via ERM with squared loss. That is, we minimize the empiri-
cal risk objective 1

n

Pn
i=1(h(xi)− yi)

2 over all functions h 2HN .
When the minimizer is not unique (as is always the case when
N >n), we choose the minimizer whose coefficients (a1, . . . , aN )
have the minimum `2 norm. This choice of norm is intended as
an approximation to the RKHS norm khk

H1
, which is generally

difficult to compute for arbitrary functions in HN . For prob-
lems with multiple outputs (e.g., multiclass classification), we use
functions with vector-valued outputs and the sum of the squared
losses for each output.

15850 | www.pnas.org/cgi/doi/10.1073/pnas.1903070116 Belkin et al.
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Benign overfitting

A B

Fig. 1. Curves for training risk (dashed line) and test risk (solid line). (A) The classical U-shaped risk curve arising from the bias–variance trade-off. (B) The
double-descent risk curve, which incorporates the U-shaped risk curve (i.e., the “classical” regime) together with the observed behavior from using high-
capacity function classes (i.e., the “modern” interpolating regime), separated by the interpolation threshold. The predictors to the right of the interpolation
threshold have zero training risk.

networks and kernel machines trained to interpolate the training
data obtain near-optimal test results even when the training data
are corrupted with high levels of noise (5, 6).

The main finding of this work is a pattern in how perfor-
mance on unseen data depends on model capacity and the
mechanism underlying its emergence. This dependence, empir-
ically witnessed with important model classes including neural
networks and a range of datasets, is summarized in the “double-
descent” risk curve shown in Fig. 1B. The curve subsumes the
classical U-shaped risk curve from Fig. 1A by extending it beyond
the point of interpolation.

When function class capacity is below the “interpolation
threshold,” learned predictors exhibit the classical U-shaped
curve from Fig. 1A. (In this paper, function class capacity is iden-
tified with the number of parameters needed to specify a function
within the class.) The bottom of the U is achieved at the sweet
spot which balances the fit to the training data and the suscepti-
bility to overfitting: To the left of the sweet spot, predictors are
underfitted, and immediately to the right, predictors are overfit-
ted. When we increase the function class capacity high enough
(e.g., by increasing the number of features or the size of the neu-
ral network architecture), the learned predictors achieve (near)
perfect fits to the training data—i.e., interpolation. Although
the learned predictors obtained at the interpolation threshold
typically have high risk, we show that increasing the function
class capacity beyond this point leads to decreasing risk, typically
going below the risk achieved at the sweet spot in the “classical”
regime.

All of the learned predictors to the right of the interpolation
threshold fit the training data perfectly and have zero empiri-
cal risk. So why should some—in particular, those from richer
functions classes—have lower test risk than others? The answer
is that the capacity of the function class does not necessarily
reflect how well the predictor matches the inductive bias appro-
priate for the problem at hand. For the learning problems we
consider (a range of real-world datasets as well as synthetic
data), the inductive bias that seems appropriate is the regular-
ity or smoothness of a function as measured by a certain function
space norm. Choosing the smoothest function that perfectly fits
observed data is a form of Occam’s razor: The simplest expla-
nation compatible with the observations should be preferred (cf.
refs. 7 and 8). By considering larger function classes, which con-
tain more candidate predictors compatible with the data, we
are able to find interpolating functions that have smaller norm
and are thus “simpler.” Thus, increasing function class capacity
improves performance of classifiers.

Related ideas have been considered in the context of margins
theory (7, 9, 10), where a larger function class H may permit
the discovery of a classifier with a larger margin. While the
margins theory can be used to study classification, it does not

apply to regression and also does not predict the second descent
beyond the interpolation threshold. Recently, there has been an
emerging recognition that certain interpolating predictors (not
based on ERM) can indeed be provably statistically optimal or
near optimal (11, 12), which is compatible with our empirical
observations in the interpolating regime.

In the remainder of this article, we discuss empirical evidence
for the double-descent curve and the mechanism for its emer-
gence and conclude with some final observations and parting
thoughts.

Neural Networks
In this section, we discuss the double-descent risk curve in the
context of neural networks.

Random Fourier Features. We first consider a popular class of non-
linear parametric models called random Fourier features (RFF)
(13), which can be viewed as a class of 2-layer neural networks
with fixed weights in the first layer. The RFF model family
HN with N (complex-valued) parameters consists of functions
h : Rd

!C of the form

h(x )=

NX

k=1

akφ(x ; vk ) where φ(x ; v):=e
p
−1hvk ,xi,

and the vectors v1, . . . , vN are sampled independently from the
standard normal distribution in Rd . (We consider HN as a class
of real-valued functions with 2N real-valued parameters by tak-
ing real and imaginary parts separately.) Note that HN is a
randomized function class, but as N !1, the function class
becomes a closer and closer approximation to the reproducing
kernel Hilbert space (RKHS) corresponding to the Gaussian
kernel, denoted by H1. While it is possible to directly use
H1 [e.g., as is done with kernel machines (14)], the random
classes HN are computationally attractive to use when the sam-
ple size n is large but the number of parameters N is small
compared with n .

Our learning procedure using HN is as follows. Given data
(x1, y1), . . . , (xn , yn) from Rd

⇥R, we find the predictor hn,N 2

HN via ERM with squared loss. That is, we minimize the empiri-
cal risk objective 1

n

Pn
i=1(h(xi)− yi)

2 over all functions h 2HN .
When the minimizer is not unique (as is always the case when
N >n), we choose the minimizer whose coefficients (a1, . . . , aN )
have the minimum `2 norm. This choice of norm is intended as
an approximation to the RKHS norm khk

H1
, which is generally

difficult to compute for arbitrary functions in HN . For prob-
lems with multiple outputs (e.g., multiclass classification), we use
functions with vector-valued outputs and the sum of the squared
losses for each output.

15850 | www.pnas.org/cgi/doi/10.1073/pnas.1903070116 Belkin et al.
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Benign overfitting

A B

Fig. 1. Curves for training risk (dashed line) and test risk (solid line). (A) The classical U-shaped risk curve arising from the bias–variance trade-off. (B) The
double-descent risk curve, which incorporates the U-shaped risk curve (i.e., the “classical” regime) together with the observed behavior from using high-
capacity function classes (i.e., the “modern” interpolating regime), separated by the interpolation threshold. The predictors to the right of the interpolation
threshold have zero training risk.

networks and kernel machines trained to interpolate the training
data obtain near-optimal test results even when the training data
are corrupted with high levels of noise (5, 6).

The main finding of this work is a pattern in how perfor-
mance on unseen data depends on model capacity and the
mechanism underlying its emergence. This dependence, empir-
ically witnessed with important model classes including neural
networks and a range of datasets, is summarized in the “double-
descent” risk curve shown in Fig. 1B. The curve subsumes the
classical U-shaped risk curve from Fig. 1A by extending it beyond
the point of interpolation.

When function class capacity is below the “interpolation
threshold,” learned predictors exhibit the classical U-shaped
curve from Fig. 1A. (In this paper, function class capacity is iden-
tified with the number of parameters needed to specify a function
within the class.) The bottom of the U is achieved at the sweet
spot which balances the fit to the training data and the suscepti-
bility to overfitting: To the left of the sweet spot, predictors are
underfitted, and immediately to the right, predictors are overfit-
ted. When we increase the function class capacity high enough
(e.g., by increasing the number of features or the size of the neu-
ral network architecture), the learned predictors achieve (near)
perfect fits to the training data—i.e., interpolation. Although
the learned predictors obtained at the interpolation threshold
typically have high risk, we show that increasing the function
class capacity beyond this point leads to decreasing risk, typically
going below the risk achieved at the sweet spot in the “classical”
regime.

All of the learned predictors to the right of the interpolation
threshold fit the training data perfectly and have zero empiri-
cal risk. So why should some—in particular, those from richer
functions classes—have lower test risk than others? The answer
is that the capacity of the function class does not necessarily
reflect how well the predictor matches the inductive bias appro-
priate for the problem at hand. For the learning problems we
consider (a range of real-world datasets as well as synthetic
data), the inductive bias that seems appropriate is the regular-
ity or smoothness of a function as measured by a certain function
space norm. Choosing the smoothest function that perfectly fits
observed data is a form of Occam’s razor: The simplest expla-
nation compatible with the observations should be preferred (cf.
refs. 7 and 8). By considering larger function classes, which con-
tain more candidate predictors compatible with the data, we
are able to find interpolating functions that have smaller norm
and are thus “simpler.” Thus, increasing function class capacity
improves performance of classifiers.

Related ideas have been considered in the context of margins
theory (7, 9, 10), where a larger function class H may permit
the discovery of a classifier with a larger margin. While the
margins theory can be used to study classification, it does not

apply to regression and also does not predict the second descent
beyond the interpolation threshold. Recently, there has been an
emerging recognition that certain interpolating predictors (not
based on ERM) can indeed be provably statistically optimal or
near optimal (11, 12), which is compatible with our empirical
observations in the interpolating regime.

In the remainder of this article, we discuss empirical evidence
for the double-descent curve and the mechanism for its emer-
gence and conclude with some final observations and parting
thoughts.

Neural Networks
In this section, we discuss the double-descent risk curve in the
context of neural networks.

Random Fourier Features. We first consider a popular class of non-
linear parametric models called random Fourier features (RFF)
(13), which can be viewed as a class of 2-layer neural networks
with fixed weights in the first layer. The RFF model family
HN with N (complex-valued) parameters consists of functions
h : Rd

!C of the form

h(x )=

NX

k=1

akφ(x ; vk ) where φ(x ; v):=e
p
−1hvk ,xi,

and the vectors v1, . . . , vN are sampled independently from the
standard normal distribution in Rd . (We consider HN as a class
of real-valued functions with 2N real-valued parameters by tak-
ing real and imaginary parts separately.) Note that HN is a
randomized function class, but as N !1, the function class
becomes a closer and closer approximation to the reproducing
kernel Hilbert space (RKHS) corresponding to the Gaussian
kernel, denoted by H1. While it is possible to directly use
H1 [e.g., as is done with kernel machines (14)], the random
classes HN are computationally attractive to use when the sam-
ple size n is large but the number of parameters N is small
compared with n .

Our learning procedure using HN is as follows. Given data
(x1, y1), . . . , (xn , yn) from Rd

⇥R, we find the predictor hn,N 2

HN via ERM with squared loss. That is, we minimize the empiri-
cal risk objective 1

n

Pn
i=1(h(xi)− yi)

2 over all functions h 2HN .
When the minimizer is not unique (as is always the case when
N >n), we choose the minimizer whose coefficients (a1, . . . , aN )
have the minimum `2 norm. This choice of norm is intended as
an approximation to the RKHS norm khk

H1
, which is generally

difficult to compute for arbitrary functions in HN . For prob-
lems with multiple outputs (e.g., multiclass classification), we use
functions with vector-valued outputs and the sum of the squared
losses for each output.

15850 | www.pnas.org/cgi/doi/10.1073/pnas.1903070116 Belkin et al.
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Benign overfitting

A B

Fig. 1. Curves for training risk (dashed line) and test risk (solid line). (A) The classical U-shaped risk curve arising from the bias–variance trade-off. (B) The
double-descent risk curve, which incorporates the U-shaped risk curve (i.e., the “classical” regime) together with the observed behavior from using high-
capacity function classes (i.e., the “modern” interpolating regime), separated by the interpolation threshold. The predictors to the right of the interpolation
threshold have zero training risk.

networks and kernel machines trained to interpolate the training
data obtain near-optimal test results even when the training data
are corrupted with high levels of noise (5, 6).

The main finding of this work is a pattern in how perfor-
mance on unseen data depends on model capacity and the
mechanism underlying its emergence. This dependence, empir-
ically witnessed with important model classes including neural
networks and a range of datasets, is summarized in the “double-
descent” risk curve shown in Fig. 1B. The curve subsumes the
classical U-shaped risk curve from Fig. 1A by extending it beyond
the point of interpolation.

When function class capacity is below the “interpolation
threshold,” learned predictors exhibit the classical U-shaped
curve from Fig. 1A. (In this paper, function class capacity is iden-
tified with the number of parameters needed to specify a function
within the class.) The bottom of the U is achieved at the sweet
spot which balances the fit to the training data and the suscepti-
bility to overfitting: To the left of the sweet spot, predictors are
underfitted, and immediately to the right, predictors are overfit-
ted. When we increase the function class capacity high enough
(e.g., by increasing the number of features or the size of the neu-
ral network architecture), the learned predictors achieve (near)
perfect fits to the training data—i.e., interpolation. Although
the learned predictors obtained at the interpolation threshold
typically have high risk, we show that increasing the function
class capacity beyond this point leads to decreasing risk, typically
going below the risk achieved at the sweet spot in the “classical”
regime.

All of the learned predictors to the right of the interpolation
threshold fit the training data perfectly and have zero empiri-
cal risk. So why should some—in particular, those from richer
functions classes—have lower test risk than others? The answer
is that the capacity of the function class does not necessarily
reflect how well the predictor matches the inductive bias appro-
priate for the problem at hand. For the learning problems we
consider (a range of real-world datasets as well as synthetic
data), the inductive bias that seems appropriate is the regular-
ity or smoothness of a function as measured by a certain function
space norm. Choosing the smoothest function that perfectly fits
observed data is a form of Occam’s razor: The simplest expla-
nation compatible with the observations should be preferred (cf.
refs. 7 and 8). By considering larger function classes, which con-
tain more candidate predictors compatible with the data, we
are able to find interpolating functions that have smaller norm
and are thus “simpler.” Thus, increasing function class capacity
improves performance of classifiers.

Related ideas have been considered in the context of margins
theory (7, 9, 10), where a larger function class H may permit
the discovery of a classifier with a larger margin. While the
margins theory can be used to study classification, it does not

apply to regression and also does not predict the second descent
beyond the interpolation threshold. Recently, there has been an
emerging recognition that certain interpolating predictors (not
based on ERM) can indeed be provably statistically optimal or
near optimal (11, 12), which is compatible with our empirical
observations in the interpolating regime.

In the remainder of this article, we discuss empirical evidence
for the double-descent curve and the mechanism for its emer-
gence and conclude with some final observations and parting
thoughts.

Neural Networks
In this section, we discuss the double-descent risk curve in the
context of neural networks.

Random Fourier Features. We first consider a popular class of non-
linear parametric models called random Fourier features (RFF)
(13), which can be viewed as a class of 2-layer neural networks
with fixed weights in the first layer. The RFF model family
HN with N (complex-valued) parameters consists of functions
h : Rd

!C of the form

h(x )=

NX

k=1

akφ(x ; vk ) where φ(x ; v):=e
p
−1hvk ,xi,

and the vectors v1, . . . , vN are sampled independently from the
standard normal distribution in Rd . (We consider HN as a class
of real-valued functions with 2N real-valued parameters by tak-
ing real and imaginary parts separately.) Note that HN is a
randomized function class, but as N !1, the function class
becomes a closer and closer approximation to the reproducing
kernel Hilbert space (RKHS) corresponding to the Gaussian
kernel, denoted by H1. While it is possible to directly use
H1 [e.g., as is done with kernel machines (14)], the random
classes HN are computationally attractive to use when the sam-
ple size n is large but the number of parameters N is small
compared with n .

Our learning procedure using HN is as follows. Given data
(x1, y1), . . . , (xn , yn) from Rd

⇥R, we find the predictor hn,N 2

HN via ERM with squared loss. That is, we minimize the empiri-
cal risk objective 1

n

Pn
i=1(h(xi)− yi)

2 over all functions h 2HN .
When the minimizer is not unique (as is always the case when
N >n), we choose the minimizer whose coefficients (a1, . . . , aN )
have the minimum `2 norm. This choice of norm is intended as
an approximation to the RKHS norm khk

H1
, which is generally

difficult to compute for arbitrary functions in HN . For prob-
lems with multiple outputs (e.g., multiclass classification), we use
functions with vector-valued outputs and the sum of the squared
losses for each output.

15850 | www.pnas.org/cgi/doi/10.1073/pnas.1903070116 Belkin et al.
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Benign overfitting

A B

Fig. 1. Curves for training risk (dashed line) and test risk (solid line). (A) The classical U-shaped risk curve arising from the bias–variance trade-off. (B) The
double-descent risk curve, which incorporates the U-shaped risk curve (i.e., the “classical” regime) together with the observed behavior from using high-
capacity function classes (i.e., the “modern” interpolating regime), separated by the interpolation threshold. The predictors to the right of the interpolation
threshold have zero training risk.

networks and kernel machines trained to interpolate the training
data obtain near-optimal test results even when the training data
are corrupted with high levels of noise (5, 6).

The main finding of this work is a pattern in how perfor-
mance on unseen data depends on model capacity and the
mechanism underlying its emergence. This dependence, empir-
ically witnessed with important model classes including neural
networks and a range of datasets, is summarized in the “double-
descent” risk curve shown in Fig. 1B. The curve subsumes the
classical U-shaped risk curve from Fig. 1A by extending it beyond
the point of interpolation.

When function class capacity is below the “interpolation
threshold,” learned predictors exhibit the classical U-shaped
curve from Fig. 1A. (In this paper, function class capacity is iden-
tified with the number of parameters needed to specify a function
within the class.) The bottom of the U is achieved at the sweet
spot which balances the fit to the training data and the suscepti-
bility to overfitting: To the left of the sweet spot, predictors are
underfitted, and immediately to the right, predictors are overfit-
ted. When we increase the function class capacity high enough
(e.g., by increasing the number of features or the size of the neu-
ral network architecture), the learned predictors achieve (near)
perfect fits to the training data—i.e., interpolation. Although
the learned predictors obtained at the interpolation threshold
typically have high risk, we show that increasing the function
class capacity beyond this point leads to decreasing risk, typically
going below the risk achieved at the sweet spot in the “classical”
regime.

All of the learned predictors to the right of the interpolation
threshold fit the training data perfectly and have zero empiri-
cal risk. So why should some—in particular, those from richer
functions classes—have lower test risk than others? The answer
is that the capacity of the function class does not necessarily
reflect how well the predictor matches the inductive bias appro-
priate for the problem at hand. For the learning problems we
consider (a range of real-world datasets as well as synthetic
data), the inductive bias that seems appropriate is the regular-
ity or smoothness of a function as measured by a certain function
space norm. Choosing the smoothest function that perfectly fits
observed data is a form of Occam’s razor: The simplest expla-
nation compatible with the observations should be preferred (cf.
refs. 7 and 8). By considering larger function classes, which con-
tain more candidate predictors compatible with the data, we
are able to find interpolating functions that have smaller norm
and are thus “simpler.” Thus, increasing function class capacity
improves performance of classifiers.

Related ideas have been considered in the context of margins
theory (7, 9, 10), where a larger function class H may permit
the discovery of a classifier with a larger margin. While the
margins theory can be used to study classification, it does not

apply to regression and also does not predict the second descent
beyond the interpolation threshold. Recently, there has been an
emerging recognition that certain interpolating predictors (not
based on ERM) can indeed be provably statistically optimal or
near optimal (11, 12), which is compatible with our empirical
observations in the interpolating regime.

In the remainder of this article, we discuss empirical evidence
for the double-descent curve and the mechanism for its emer-
gence and conclude with some final observations and parting
thoughts.

Neural Networks
In this section, we discuss the double-descent risk curve in the
context of neural networks.

Random Fourier Features. We first consider a popular class of non-
linear parametric models called random Fourier features (RFF)
(13), which can be viewed as a class of 2-layer neural networks
with fixed weights in the first layer. The RFF model family
HN with N (complex-valued) parameters consists of functions
h : Rd

!C of the form

h(x )=

NX

k=1

akφ(x ; vk ) where φ(x ; v):=e
p
−1hvk ,xi,

and the vectors v1, . . . , vN are sampled independently from the
standard normal distribution in Rd . (We consider HN as a class
of real-valued functions with 2N real-valued parameters by tak-
ing real and imaginary parts separately.) Note that HN is a
randomized function class, but as N !1, the function class
becomes a closer and closer approximation to the reproducing
kernel Hilbert space (RKHS) corresponding to the Gaussian
kernel, denoted by H1. While it is possible to directly use
H1 [e.g., as is done with kernel machines (14)], the random
classes HN are computationally attractive to use when the sam-
ple size n is large but the number of parameters N is small
compared with n .

Our learning procedure using HN is as follows. Given data
(x1, y1), . . . , (xn , yn) from Rd

⇥R, we find the predictor hn,N 2

HN via ERM with squared loss. That is, we minimize the empiri-
cal risk objective 1

n

Pn
i=1(h(xi)− yi)

2 over all functions h 2HN .
When the minimizer is not unique (as is always the case when
N >n), we choose the minimizer whose coefficients (a1, . . . , aN )
have the minimum `2 norm. This choice of norm is intended as
an approximation to the RKHS norm khk

H1
, which is generally

difficult to compute for arbitrary functions in HN . For prob-
lems with multiple outputs (e.g., multiclass classification), we use
functions with vector-valued outputs and the sum of the squared
losses for each output.
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A B

Fig. 1. Curves for training risk (dashed line) and test risk (solid line). (A) The classical U-shaped risk curve arising from the bias–variance trade-off. (B) The
double-descent risk curve, which incorporates the U-shaped risk curve (i.e., the “classical” regime) together with the observed behavior from using high-
capacity function classes (i.e., the “modern” interpolating regime), separated by the interpolation threshold. The predictors to the right of the interpolation
threshold have zero training risk.

networks and kernel machines trained to interpolate the training
data obtain near-optimal test results even when the training data
are corrupted with high levels of noise (5, 6).

The main finding of this work is a pattern in how perfor-
mance on unseen data depends on model capacity and the
mechanism underlying its emergence. This dependence, empir-
ically witnessed with important model classes including neural
networks and a range of datasets, is summarized in the “double-
descent” risk curve shown in Fig. 1B. The curve subsumes the
classical U-shaped risk curve from Fig. 1A by extending it beyond
the point of interpolation.

When function class capacity is below the “interpolation
threshold,” learned predictors exhibit the classical U-shaped
curve from Fig. 1A. (In this paper, function class capacity is iden-
tified with the number of parameters needed to specify a function
within the class.) The bottom of the U is achieved at the sweet
spot which balances the fit to the training data and the suscepti-
bility to overfitting: To the left of the sweet spot, predictors are
underfitted, and immediately to the right, predictors are overfit-
ted. When we increase the function class capacity high enough
(e.g., by increasing the number of features or the size of the neu-
ral network architecture), the learned predictors achieve (near)
perfect fits to the training data—i.e., interpolation. Although
the learned predictors obtained at the interpolation threshold
typically have high risk, we show that increasing the function
class capacity beyond this point leads to decreasing risk, typically
going below the risk achieved at the sweet spot in the “classical”
regime.

All of the learned predictors to the right of the interpolation
threshold fit the training data perfectly and have zero empiri-
cal risk. So why should some—in particular, those from richer
functions classes—have lower test risk than others? The answer
is that the capacity of the function class does not necessarily
reflect how well the predictor matches the inductive bias appro-
priate for the problem at hand. For the learning problems we
consider (a range of real-world datasets as well as synthetic
data), the inductive bias that seems appropriate is the regular-
ity or smoothness of a function as measured by a certain function
space norm. Choosing the smoothest function that perfectly fits
observed data is a form of Occam’s razor: The simplest expla-
nation compatible with the observations should be preferred (cf.
refs. 7 and 8). By considering larger function classes, which con-
tain more candidate predictors compatible with the data, we
are able to find interpolating functions that have smaller norm
and are thus “simpler.” Thus, increasing function class capacity
improves performance of classifiers.

Related ideas have been considered in the context of margins
theory (7, 9, 10), where a larger function class H may permit
the discovery of a classifier with a larger margin. While the
margins theory can be used to study classification, it does not

apply to regression and also does not predict the second descent
beyond the interpolation threshold. Recently, there has been an
emerging recognition that certain interpolating predictors (not
based on ERM) can indeed be provably statistically optimal or
near optimal (11, 12), which is compatible with our empirical
observations in the interpolating regime.

In the remainder of this article, we discuss empirical evidence
for the double-descent curve and the mechanism for its emer-
gence and conclude with some final observations and parting
thoughts.

Neural Networks
In this section, we discuss the double-descent risk curve in the
context of neural networks.

Random Fourier Features. We first consider a popular class of non-
linear parametric models called random Fourier features (RFF)
(13), which can be viewed as a class of 2-layer neural networks
with fixed weights in the first layer. The RFF model family
HN with N (complex-valued) parameters consists of functions
h : Rd

!C of the form

h(x )=

NX

k=1

akφ(x ; vk ) where φ(x ; v):=e
p
−1hvk ,xi,

and the vectors v1, . . . , vN are sampled independently from the
standard normal distribution in Rd . (We consider HN as a class
of real-valued functions with 2N real-valued parameters by tak-
ing real and imaginary parts separately.) Note that HN is a
randomized function class, but as N !1, the function class
becomes a closer and closer approximation to the reproducing
kernel Hilbert space (RKHS) corresponding to the Gaussian
kernel, denoted by H1. While it is possible to directly use
H1 [e.g., as is done with kernel machines (14)], the random
classes HN are computationally attractive to use when the sam-
ple size n is large but the number of parameters N is small
compared with n .

Our learning procedure using HN is as follows. Given data
(x1, y1), . . . , (xn , yn) from Rd

⇥R, we find the predictor hn,N 2

HN via ERM with squared loss. That is, we minimize the empiri-
cal risk objective 1

n

Pn
i=1(h(xi)− yi)

2 over all functions h 2HN .
When the minimizer is not unique (as is always the case when
N >n), we choose the minimizer whose coefficients (a1, . . . , aN )
have the minimum `2 norm. This choice of norm is intended as
an approximation to the RKHS norm khk

H1
, which is generally

difficult to compute for arbitrary functions in HN . For prob-
lems with multiple outputs (e.g., multiclass classification), we use
functions with vector-valued outputs and the sum of the squared
losses for each output.
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Fig. 1. Curves for training risk (dashed line) and test risk (solid line). (A) The classical U-shaped risk curve arising from the bias–variance trade-off. (B) The
double-descent risk curve, which incorporates the U-shaped risk curve (i.e., the “classical” regime) together with the observed behavior from using high-
capacity function classes (i.e., the “modern” interpolating regime), separated by the interpolation threshold. The predictors to the right of the interpolation
threshold have zero training risk.

networks and kernel machines trained to interpolate the training
data obtain near-optimal test results even when the training data
are corrupted with high levels of noise (5, 6).

The main finding of this work is a pattern in how perfor-
mance on unseen data depends on model capacity and the
mechanism underlying its emergence. This dependence, empir-
ically witnessed with important model classes including neural
networks and a range of datasets, is summarized in the “double-
descent” risk curve shown in Fig. 1B. The curve subsumes the
classical U-shaped risk curve from Fig. 1A by extending it beyond
the point of interpolation.

When function class capacity is below the “interpolation
threshold,” learned predictors exhibit the classical U-shaped
curve from Fig. 1A. (In this paper, function class capacity is iden-
tified with the number of parameters needed to specify a function
within the class.) The bottom of the U is achieved at the sweet
spot which balances the fit to the training data and the suscepti-
bility to overfitting: To the left of the sweet spot, predictors are
underfitted, and immediately to the right, predictors are overfit-
ted. When we increase the function class capacity high enough
(e.g., by increasing the number of features or the size of the neu-
ral network architecture), the learned predictors achieve (near)
perfect fits to the training data—i.e., interpolation. Although
the learned predictors obtained at the interpolation threshold
typically have high risk, we show that increasing the function
class capacity beyond this point leads to decreasing risk, typically
going below the risk achieved at the sweet spot in the “classical”
regime.

All of the learned predictors to the right of the interpolation
threshold fit the training data perfectly and have zero empiri-
cal risk. So why should some—in particular, those from richer
functions classes—have lower test risk than others? The answer
is that the capacity of the function class does not necessarily
reflect how well the predictor matches the inductive bias appro-
priate for the problem at hand. For the learning problems we
consider (a range of real-world datasets as well as synthetic
data), the inductive bias that seems appropriate is the regular-
ity or smoothness of a function as measured by a certain function
space norm. Choosing the smoothest function that perfectly fits
observed data is a form of Occam’s razor: The simplest expla-
nation compatible with the observations should be preferred (cf.
refs. 7 and 8). By considering larger function classes, which con-
tain more candidate predictors compatible with the data, we
are able to find interpolating functions that have smaller norm
and are thus “simpler.” Thus, increasing function class capacity
improves performance of classifiers.

Related ideas have been considered in the context of margins
theory (7, 9, 10), where a larger function class H may permit
the discovery of a classifier with a larger margin. While the
margins theory can be used to study classification, it does not

apply to regression and also does not predict the second descent
beyond the interpolation threshold. Recently, there has been an
emerging recognition that certain interpolating predictors (not
based on ERM) can indeed be provably statistically optimal or
near optimal (11, 12), which is compatible with our empirical
observations in the interpolating regime.

In the remainder of this article, we discuss empirical evidence
for the double-descent curve and the mechanism for its emer-
gence and conclude with some final observations and parting
thoughts.

Neural Networks
In this section, we discuss the double-descent risk curve in the
context of neural networks.

Random Fourier Features. We first consider a popular class of non-
linear parametric models called random Fourier features (RFF)
(13), which can be viewed as a class of 2-layer neural networks
with fixed weights in the first layer. The RFF model family
HN with N (complex-valued) parameters consists of functions
h : Rd

!C of the form

h(x )=

NX

k=1

akφ(x ; vk ) where φ(x ; v):=e
p
−1hvk ,xi,

and the vectors v1, . . . , vN are sampled independently from the
standard normal distribution in Rd . (We consider HN as a class
of real-valued functions with 2N real-valued parameters by tak-
ing real and imaginary parts separately.) Note that HN is a
randomized function class, but as N !1, the function class
becomes a closer and closer approximation to the reproducing
kernel Hilbert space (RKHS) corresponding to the Gaussian
kernel, denoted by H1. While it is possible to directly use
H1 [e.g., as is done with kernel machines (14)], the random
classes HN are computationally attractive to use when the sam-
ple size n is large but the number of parameters N is small
compared with n .

Our learning procedure using HN is as follows. Given data
(x1, y1), . . . , (xn , yn) from Rd

⇥R, we find the predictor hn,N 2

HN via ERM with squared loss. That is, we minimize the empiri-
cal risk objective 1

n

Pn
i=1(h(xi)− yi)

2 over all functions h 2HN .
When the minimizer is not unique (as is always the case when
N >n), we choose the minimizer whose coefficients (a1, . . . , aN )
have the minimum `2 norm. This choice of norm is intended as
an approximation to the RKHS norm khk

H1
, which is generally

difficult to compute for arbitrary functions in HN . For prob-
lems with multiple outputs (e.g., multiclass classification), we use
functions with vector-valued outputs and the sum of the squared
losses for each output.
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A B

Fig. 1. Curves for training risk (dashed line) and test risk (solid line). (A) The classical U-shaped risk curve arising from the bias–variance trade-off. (B) The
double-descent risk curve, which incorporates the U-shaped risk curve (i.e., the “classical” regime) together with the observed behavior from using high-
capacity function classes (i.e., the “modern” interpolating regime), separated by the interpolation threshold. The predictors to the right of the interpolation
threshold have zero training risk.

networks and kernel machines trained to interpolate the training
data obtain near-optimal test results even when the training data
are corrupted with high levels of noise (5, 6).

The main finding of this work is a pattern in how perfor-
mance on unseen data depends on model capacity and the
mechanism underlying its emergence. This dependence, empir-
ically witnessed with important model classes including neural
networks and a range of datasets, is summarized in the “double-
descent” risk curve shown in Fig. 1B. The curve subsumes the
classical U-shaped risk curve from Fig. 1A by extending it beyond
the point of interpolation.

When function class capacity is below the “interpolation
threshold,” learned predictors exhibit the classical U-shaped
curve from Fig. 1A. (In this paper, function class capacity is iden-
tified with the number of parameters needed to specify a function
within the class.) The bottom of the U is achieved at the sweet
spot which balances the fit to the training data and the suscepti-
bility to overfitting: To the left of the sweet spot, predictors are
underfitted, and immediately to the right, predictors are overfit-
ted. When we increase the function class capacity high enough
(e.g., by increasing the number of features or the size of the neu-
ral network architecture), the learned predictors achieve (near)
perfect fits to the training data—i.e., interpolation. Although
the learned predictors obtained at the interpolation threshold
typically have high risk, we show that increasing the function
class capacity beyond this point leads to decreasing risk, typically
going below the risk achieved at the sweet spot in the “classical”
regime.

All of the learned predictors to the right of the interpolation
threshold fit the training data perfectly and have zero empiri-
cal risk. So why should some—in particular, those from richer
functions classes—have lower test risk than others? The answer
is that the capacity of the function class does not necessarily
reflect how well the predictor matches the inductive bias appro-
priate for the problem at hand. For the learning problems we
consider (a range of real-world datasets as well as synthetic
data), the inductive bias that seems appropriate is the regular-
ity or smoothness of a function as measured by a certain function
space norm. Choosing the smoothest function that perfectly fits
observed data is a form of Occam’s razor: The simplest expla-
nation compatible with the observations should be preferred (cf.
refs. 7 and 8). By considering larger function classes, which con-
tain more candidate predictors compatible with the data, we
are able to find interpolating functions that have smaller norm
and are thus “simpler.” Thus, increasing function class capacity
improves performance of classifiers.

Related ideas have been considered in the context of margins
theory (7, 9, 10), where a larger function class H may permit
the discovery of a classifier with a larger margin. While the
margins theory can be used to study classification, it does not

apply to regression and also does not predict the second descent
beyond the interpolation threshold. Recently, there has been an
emerging recognition that certain interpolating predictors (not
based on ERM) can indeed be provably statistically optimal or
near optimal (11, 12), which is compatible with our empirical
observations in the interpolating regime.

In the remainder of this article, we discuss empirical evidence
for the double-descent curve and the mechanism for its emer-
gence and conclude with some final observations and parting
thoughts.

Neural Networks
In this section, we discuss the double-descent risk curve in the
context of neural networks.

Random Fourier Features. We first consider a popular class of non-
linear parametric models called random Fourier features (RFF)
(13), which can be viewed as a class of 2-layer neural networks
with fixed weights in the first layer. The RFF model family
HN with N (complex-valued) parameters consists of functions
h : Rd

!C of the form

h(x )=

NX

k=1

akφ(x ; vk ) where φ(x ; v):=e
p
−1hvk ,xi,

and the vectors v1, . . . , vN are sampled independently from the
standard normal distribution in Rd . (We consider HN as a class
of real-valued functions with 2N real-valued parameters by tak-
ing real and imaginary parts separately.) Note that HN is a
randomized function class, but as N !1, the function class
becomes a closer and closer approximation to the reproducing
kernel Hilbert space (RKHS) corresponding to the Gaussian
kernel, denoted by H1. While it is possible to directly use
H1 [e.g., as is done with kernel machines (14)], the random
classes HN are computationally attractive to use when the sam-
ple size n is large but the number of parameters N is small
compared with n .

Our learning procedure using HN is as follows. Given data
(x1, y1), . . . , (xn , yn) from Rd

⇥R, we find the predictor hn,N 2

HN via ERM with squared loss. That is, we minimize the empiri-
cal risk objective 1

n

Pn
i=1(h(xi)− yi)

2 over all functions h 2HN .
When the minimizer is not unique (as is always the case when
N >n), we choose the minimizer whose coefficients (a1, . . . , aN )
have the minimum `2 norm. This choice of norm is intended as
an approximation to the RKHS norm khk

H1
, which is generally

difficult to compute for arbitrary functions in HN . For prob-
lems with multiple outputs (e.g., multiclass classification), we use
functions with vector-valued outputs and the sum of the squared
losses for each output.

15850 | www.pnas.org/cgi/doi/10.1073/pnas.1903070116 Belkin et al.
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A B

Fig. 1. Curves for training risk (dashed line) and test risk (solid line). (A) The classical U-shaped risk curve arising from the bias–variance trade-off. (B) The
double-descent risk curve, which incorporates the U-shaped risk curve (i.e., the “classical” regime) together with the observed behavior from using high-
capacity function classes (i.e., the “modern” interpolating regime), separated by the interpolation threshold. The predictors to the right of the interpolation
threshold have zero training risk.

networks and kernel machines trained to interpolate the training
data obtain near-optimal test results even when the training data
are corrupted with high levels of noise (5, 6).

The main finding of this work is a pattern in how perfor-
mance on unseen data depends on model capacity and the
mechanism underlying its emergence. This dependence, empir-
ically witnessed with important model classes including neural
networks and a range of datasets, is summarized in the “double-
descent” risk curve shown in Fig. 1B. The curve subsumes the
classical U-shaped risk curve from Fig. 1A by extending it beyond
the point of interpolation.

When function class capacity is below the “interpolation
threshold,” learned predictors exhibit the classical U-shaped
curve from Fig. 1A. (In this paper, function class capacity is iden-
tified with the number of parameters needed to specify a function
within the class.) The bottom of the U is achieved at the sweet
spot which balances the fit to the training data and the suscepti-
bility to overfitting: To the left of the sweet spot, predictors are
underfitted, and immediately to the right, predictors are overfit-
ted. When we increase the function class capacity high enough
(e.g., by increasing the number of features or the size of the neu-
ral network architecture), the learned predictors achieve (near)
perfect fits to the training data—i.e., interpolation. Although
the learned predictors obtained at the interpolation threshold
typically have high risk, we show that increasing the function
class capacity beyond this point leads to decreasing risk, typically
going below the risk achieved at the sweet spot in the “classical”
regime.

All of the learned predictors to the right of the interpolation
threshold fit the training data perfectly and have zero empiri-
cal risk. So why should some—in particular, those from richer
functions classes—have lower test risk than others? The answer
is that the capacity of the function class does not necessarily
reflect how well the predictor matches the inductive bias appro-
priate for the problem at hand. For the learning problems we
consider (a range of real-world datasets as well as synthetic
data), the inductive bias that seems appropriate is the regular-
ity or smoothness of a function as measured by a certain function
space norm. Choosing the smoothest function that perfectly fits
observed data is a form of Occam’s razor: The simplest expla-
nation compatible with the observations should be preferred (cf.
refs. 7 and 8). By considering larger function classes, which con-
tain more candidate predictors compatible with the data, we
are able to find interpolating functions that have smaller norm
and are thus “simpler.” Thus, increasing function class capacity
improves performance of classifiers.

Related ideas have been considered in the context of margins
theory (7, 9, 10), where a larger function class H may permit
the discovery of a classifier with a larger margin. While the
margins theory can be used to study classification, it does not

apply to regression and also does not predict the second descent
beyond the interpolation threshold. Recently, there has been an
emerging recognition that certain interpolating predictors (not
based on ERM) can indeed be provably statistically optimal or
near optimal (11, 12), which is compatible with our empirical
observations in the interpolating regime.

In the remainder of this article, we discuss empirical evidence
for the double-descent curve and the mechanism for its emer-
gence and conclude with some final observations and parting
thoughts.

Neural Networks
In this section, we discuss the double-descent risk curve in the
context of neural networks.

Random Fourier Features. We first consider a popular class of non-
linear parametric models called random Fourier features (RFF)
(13), which can be viewed as a class of 2-layer neural networks
with fixed weights in the first layer. The RFF model family
HN with N (complex-valued) parameters consists of functions
h : Rd

!C of the form

h(x )=

NX

k=1

akφ(x ; vk ) where φ(x ; v):=e
p
−1hvk ,xi,

and the vectors v1, . . . , vN are sampled independently from the
standard normal distribution in Rd . (We consider HN as a class
of real-valued functions with 2N real-valued parameters by tak-
ing real and imaginary parts separately.) Note that HN is a
randomized function class, but as N !1, the function class
becomes a closer and closer approximation to the reproducing
kernel Hilbert space (RKHS) corresponding to the Gaussian
kernel, denoted by H1. While it is possible to directly use
H1 [e.g., as is done with kernel machines (14)], the random
classes HN are computationally attractive to use when the sam-
ple size n is large but the number of parameters N is small
compared with n .

Our learning procedure using HN is as follows. Given data
(x1, y1), . . . , (xn , yn) from Rd

⇥R, we find the predictor hn,N 2

HN via ERM with squared loss. That is, we minimize the empiri-
cal risk objective 1

n

Pn
i=1(h(xi)− yi)

2 over all functions h 2HN .
When the minimizer is not unique (as is always the case when
N >n), we choose the minimizer whose coefficients (a1, . . . , aN )
have the minimum `2 norm. This choice of norm is intended as
an approximation to the RKHS norm khk

H1
, which is generally

difficult to compute for arbitrary functions in HN . For prob-
lems with multiple outputs (e.g., multiclass classification), we use
functions with vector-valued outputs and the sum of the squared
losses for each output.
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D
ow

nl
oa

de
d 

by
 g

ue
st

 o
n 

Se
pt

em
be

r 2
7,

 2
02

1 

M
. B

el
ki

n,
 D

. H
su

, S
. M

a,
 a

nd
 S

. M
an

da
l. 

Re
co

nc
ili

ng
 m

od
er

n 
m

ac
hi

ne
-le

ar
ni

ng
 p

ra
c-

tic
e 

an
d 

th
e 

cl
as

si
ca

l b
ia

s-
va

ria
nc

e 
tr

ad
e-

of
f. 

PN
A

S,
 1

16
(3

2)
:1

58
49

–1
58

54
, 2

01
9.

 

least squares under-determined

Benign overfitting

optimization can 
“choose“ sub-space



105© Thomas Richter and Christian Lessig, 2021 

Conclusion and Outlook

  ◦ “Classical“ mathematial tools can be useful to model and 
understand neural networks

  › Neural networks as ODEs and PDEs (stability, gradient 
computation, training, ...)

  › Benign overfitting



106© Thomas Richter and Christian Lessig, 2021 

Conclusion and Outlook

  ◦ “Classical“ mathematial tools can be useful to model and 
understand neural networks

  › Neural networks as ODEs and PDEs (stability, gradient 
computation, training, ...)

  › Benign overfitting

  ◦ Still significant gap between theory and practice
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Questions?

http://graphics.cs.uni-magdeburg.de/
teaching/2021/imprs

http://graphics.cs.uni-magdeburg.de/teaching/2021/imprs
http://graphics.cs.uni-magdeburg.de/teaching/2021/imprs

