
1© Christian Lessig, 2019

GPU Programming

Higher-level parallelism

Christian Lessig

2© Christian Lessig, 2019

Motivation

◦ ◦ Correctness / determinism

◦ ◦ Composability

◦ ◦ Scalability

◦ ◦ Portability

◦ ◦ Maintainability

3© Christian Lessig, 2019

Motivation

◦ ◦ Correctness / determinism

◦ ◦ Composability

◦ ◦ Scalability

◦ ◦ Portability

◦ ◦ Maintainability

Difficult to ensure using
low level threads

4© Christian Lessig, 2019

Fork-join model

◦ ◦ Computations are decomposed into tasks.

5© Christian Lessig, 2019

Fork-join model

◦ ◦ Computations are decomposed into tasks.

› › Makes parallelism explicit but does not enforce it.

› › Classical programming languages encode serializa-
tion although it might not be necessary. Task avoid
this unnecessary serialization.

› › “Smart” scheduler can ensure efficient execution
(more or less) independent of hardware.

6© Christian Lessig, 2019

Fork-join model

◦ ◦ Can be represented as (directed, acyclic) graph:

7© Christian Lessig, 2019

Fork-join model

◦ ◦ Can be represented as (directed, acyclic) graph:

t_1 t_k...

8© Christian Lessig, 2019

Fork-join model

◦ ◦ Can be represented as (directed, acyclic) graph:

t_1 t_k...

spawn

sync

9© Christian Lessig, 2019

Fork-join model

◦ ◦ Example: int norm(T* a, int n) {

 int sum;
 for(tid = 0, tid < k, ++k) {
 spawn normWorker(tid, a, n, sum);
 }

	 sync;
 normT = sqrt(sum);
}

10© Christian Lessig, 2019

Futures / promises

◦ ◦ Communication is explicit, parallel execution implicit

11© Christian Lessig, 2019

Futures / promises

◦ ◦ Communication is explicit, parallel execution implicit

std::future<int> p = std::async(std::launch::async,
																	 																								computeLargePrime);

// do some other work
...

res = encodeMessage(p.get());

12© Christian Lessig, 2019

Futures / promises

◦ ◦ Communication is explicit, parallel execution implicit

std::promise<int> channel;
std::future<int> fut = channel.get_future();

// t2: put value in channel
channel.set_value(comp);

// t1: pick up value
int val = channel.get();

13© Christian Lessig, 2019

OpenMP

◦ ◦ Cross-industry pragma extension of C/C++

14© Christian Lessig, 2019

MPI

◦ ◦ Standard API for message passing

◦ ◦ Example program:

15© Christian Lessig, 2019

Container-based parallelism

◦ ◦ Data-parallel processing of data in pre-defined
containers

› › Functor applied to every data element with well
defined side effects

◦ ◦ parallel_for is variation with similar concept

16© Christian Lessig, 2019

Container-based parallelism

◦ ◦ In next C++ standard:

std::sort(std::execution::par, v.begin(), v.end());

std::for_each(std::execution::par,
																		 v.begin(), v.end(), func);

◦ ◦ Intel thread building blocks

◦ ◦ Various other libraries

17© Christian Lessig, 2019

Higher-level parallelism

◦ ◦ Various approaches

◦ ◦ Not composable

◦ ◦ Library or specific language?

18© Christian Lessig, 2019

Further reading

◦ ◦ M. D. McCool, J. Reinders, and A. Robison, Structured parallel pro-
gramming: patterns for efficient computation. Elsevier/Morgan
Kaufmann, 2012.

◦ ◦ T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms. The MIT Press, 2001.

◦ ◦ E. A. Lee, The Problem with Threads, Computer, vol. 39, no. 5, pp.
33–42, May 2006.

