
1© Christian Lessig, 2019

GPU Programming 2019/2020

Why parallelism?

Christian Lessig

2© Christian Lessig, 2019

More efficient programs!

Why parallelism?

3© Christian Lessig, 2019

Why parallel?

[1] J. L. Hennessy and D. A. Patterson, Computer architecture: a quantitative approach, sixth edition. Morgan
Kaufmann, 2017.

1.1 Introduction ■ 3

Second, this dramatic improvement in cost-performance leads to new classes
of computers. Personal computers and workstations emerged in the 1980s with
the availability of the microprocessor. The last decade saw the rise of smart cell
phones and tablet computers, which many people are using as their primary com-
puting platforms instead of PCs. These mobile client devices are increasingly
using the Internet to access warehouses containing tens of thousands of servers,
which are being designed as if they were a single gigantic computer.

Third, continuing improvement of semiconductor manufacturing as pre-
dicted by Moore’s law has led to the dominance of microprocessor-based com-
puters across the entire range of computer design. Minicomputers, which were

Figure 1.1 Growth in processor performance since the late 1970s. This chart plots performance relative to the VAX
11/780 as measured by the SPEC benchmarks (see Section 1.8). Prior to the mid-1980s, processor performance
growth was largely technology driven and averaged about 25% per year. The increase in growth to about 52% since
then is attributable to more advanced architectural and organizational ideas. By 2003, this growth led to a difference
in performance of about a factor of 25 versus if we had continued at the 25% rate. Performance for floating-point-ori-
ented calculations has increased even faster. Since 2003, the limits of power and available instruction-level parallel-
ism have slowed uniprocessor performance, to no more than 22% per year, or about 5 times slower than had we
continued at 52% per year. (The fastest SPEC performance since 2007 has had automatic parallelization turned on
with increasing number of cores per chip each year, so uniprocessor speed is harder to gauge. These results are lim-
ited to single-socket systems to reduce the impact of automatic parallelization.) Figure 1.11 on page 24 shows the
improvement in clock rates for these same three eras. Since SPEC has changed over the years, performance of newer
machines is estimated by a scaling factor that relates the performance for two different versions of SPEC (e.g.,
SPEC89, SPEC92, SPEC95, SPEC2000, and SPEC2006).

1

5

9

13
18

24

51

80

117

183

280

481
649

993
1,267

1,779
3,016

4,195
6,043 6,681

7,108

11,865
14,387

19,484
21,871

24,129

1

10

100

1000

10,000

100,000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

P
er

fo
rm

an
ce

 (
vs

. V
A

X
-1

1/
78

0)

25%/year

52%/year

22%/year

 IBM POWERstation 100, 150 MHz

Digital Alphastation 4/266, 266 MHz

Digital Alphastation 5/300, 300 MHz

Digital Alphastation 5/500, 500 MHz
AlphaServer 4000 5/600, 600 MHz 21164

Digital AlphaServer 8400 6/575, 575 MHz 21264
Professional Workstation XP1000, 667 MHz 21264A
Intel VC820 motherboard, 1.0 GHz Pentium III processor

 IBM Power4, 1.3 GHz

 Intel Xeon EE 3.2 GHz
 AMD Athlon, 2.6 GHz

 Intel Core 2 Extreme 2 cores, 2.9 GHz
 Intel Core Duo Extreme 2 cores, 3.0 GHz

 Intel Core i7 Extreme 4 cores 3.2 GHz (boost to 3.5 GHz)
 Intel Xeon 4 cores, 3.3 GHz (boost to 3.6 GHz)

 Intel Xeon 6 cores, 3.3 GHz (boost to 3.6 GHz)

Intel D850EMVR motherboard (3.06 GHz, Pentium 4 processor with Hyper-Threading Technology)

1.5, VAX-11/785

 AMD Athlon 64, 2.8 GHz

Digital 3000 AXP/500, 150 MHz

HP 9000/750, 66 MHz

IBM RS6000/540, 30 MHz
MIPS M2000, 25 MHz

MIPS M/120, 16.7 MHz

Sun-4/260, 16.7 MHz

VAX 8700, 22 MHz

AX-11/780, 5 MHz

4© Christian Lessig, 2019

Electronics, Volume 38, Number 8, April 19, 1965

a two-mil square can also contain several kilohms of resis-
tance or a few diodes. This allows at least 500 components
per linear inch or a quarter million per square inch. Thus,
65,000 components need occupy only about one-fourth a
square inch.

On the silicon wafer currently used, usually an inch or
more in diameter, there is ample room for such a structure if
the components can be closely packed with no space wasted
for interconnection patterns. This is realistic, since efforts to
achieve a level of complexity above the presently available
integrated circuits are already underway using multilayer
metalization patterns separated by dielectric films. Such a
density of components can be achieved by present optical
techniques and does not require the more exotic techniques,
such as electron beam operations, which are being studied to
make even smaller structures.

Increasing the yield
There is no fundamental obstacle to achieving device

yields of 100%. At present, packaging costs so far exceed
the cost of the semiconductor structure itself that there is no
incentive to improve yields, but they can be raised as high as

is economically justified. No barrier exists comparable to
the thermodynamic equilibrium considerations that often limit
yields in chemical reactions; it is not even necessary to do
any fundamental research or to replace present processes.
Only the engineering effort is needed.

In the early days of integrated circuitry, when yields were
extremely low, there was such incentive. Today ordinary in-
tegrated circuits are made with yields comparable with those
obtained for individual semiconductor devices. The same
pattern will make larger arrays economical, if other consid-
erations make such arrays desirable.

Heat problem
Will it be possible to remove the heat generated by tens

of thousands of components in a single silicon chip?
If we could shrink the volume of a standard high-speed

digital computer to that required for the components them-
selves, we would expect it to glow brightly with present power
dissipation. But it wonít happen with integrated circuits.
Since integrated electronic structures are two-dimensional,
they have a surface available for cooling close to each center
of heat generation. In addition, power is needed primarily to
drive the various lines and capacitances associated with the
system. As long as a function is confined to a small area on
a wafer, the amount of capacitance which must be driven is
distinctly limited. In fact, shrinking dimensions on an inte-
grated structure makes it possible to operate the structure at
higher speed for the same power per unit area.

Day of reckoning
Clearly, we will be able to build such component-

crammed equipment. Next, we ask under what circumstances
we should do it. The total cost of making a particular system
function must be minimized. To do so, we could amortize
the engineering over several identical items, or evolve flex-
ible techniques for the engineering of large functions so that
no disproportionate expense need be borne by a particular
array. Perhaps newly devised design automation procedures
could translate from logic diagram to technological realiza-
tion without any special engineering.

It may prove to be more economical to build large

G
. M

oo
re

, “
C

ra
m

m
in

g
m

or
e

co
m

po
ne

nt
s

on
to

 in
te

gr
at

ed
 c

irc
ui

ts
,”

El

ec
tr

on
ic

s,
 v

ol
. 3

8,
 n

o.
 8

, p
. 1

14
 ff

, 1
96

5.

Why parallel?

5© Christian Lessig, 2019

[1] J. L. Hennessy and D. A. Patterson, Computer architecture: a quantitative approach, sixth edition. Morgan
Kaufmann, 2017.

1.1 Introduction ■ 3

Second, this dramatic improvement in cost-performance leads to new classes
of computers. Personal computers and workstations emerged in the 1980s with
the availability of the microprocessor. The last decade saw the rise of smart cell
phones and tablet computers, which many people are using as their primary com-
puting platforms instead of PCs. These mobile client devices are increasingly
using the Internet to access warehouses containing tens of thousands of servers,
which are being designed as if they were a single gigantic computer.

Third, continuing improvement of semiconductor manufacturing as pre-
dicted by Moore’s law has led to the dominance of microprocessor-based com-
puters across the entire range of computer design. Minicomputers, which were

Figure 1.1 Growth in processor performance since the late 1970s. This chart plots performance relative to the VAX
11/780 as measured by the SPEC benchmarks (see Section 1.8). Prior to the mid-1980s, processor performance
growth was largely technology driven and averaged about 25% per year. The increase in growth to about 52% since
then is attributable to more advanced architectural and organizational ideas. By 2003, this growth led to a difference
in performance of about a factor of 25 versus if we had continued at the 25% rate. Performance for floating-point-ori-
ented calculations has increased even faster. Since 2003, the limits of power and available instruction-level parallel-
ism have slowed uniprocessor performance, to no more than 22% per year, or about 5 times slower than had we
continued at 52% per year. (The fastest SPEC performance since 2007 has had automatic parallelization turned on
with increasing number of cores per chip each year, so uniprocessor speed is harder to gauge. These results are lim-
ited to single-socket systems to reduce the impact of automatic parallelization.) Figure 1.11 on page 24 shows the
improvement in clock rates for these same three eras. Since SPEC has changed over the years, performance of newer
machines is estimated by a scaling factor that relates the performance for two different versions of SPEC (e.g.,
SPEC89, SPEC92, SPEC95, SPEC2000, and SPEC2006).

1

5

9

13
18

24

51

80

117

183

280

481
649

993
1,267

1,779
3,016

4,195
6,043 6,681

7,108

11,865
14,387

19,484
21,871

24,129

1

10

100

1000

10,000

100,000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

P
er

fo
rm

an
ce

 (
vs

. V
A

X
-1

1/
78

0)

25%/year

52%/year

22%/year

 IBM POWERstation 100, 150 MHz

Digital Alphastation 4/266, 266 MHz

Digital Alphastation 5/300, 300 MHz

Digital Alphastation 5/500, 500 MHz
AlphaServer 4000 5/600, 600 MHz 21164

Digital AlphaServer 8400 6/575, 575 MHz 21264
Professional Workstation XP1000, 667 MHz 21264A
Intel VC820 motherboard, 1.0 GHz Pentium III processor

 IBM Power4, 1.3 GHz

 Intel Xeon EE 3.2 GHz
 AMD Athlon, 2.6 GHz

 Intel Core 2 Extreme 2 cores, 2.9 GHz
 Intel Core Duo Extreme 2 cores, 3.0 GHz

 Intel Core i7 Extreme 4 cores 3.2 GHz (boost to 3.5 GHz)
 Intel Xeon 4 cores, 3.3 GHz (boost to 3.6 GHz)

 Intel Xeon 6 cores, 3.3 GHz (boost to 3.6 GHz)

Intel D850EMVR motherboard (3.06 GHz, Pentium 4 processor with Hyper-Threading Technology)

1.5, VAX-11/785

 AMD Athlon 64, 2.8 GHz

Digital 3000 AXP/500, 150 MHz

HP 9000/750, 66 MHz

IBM RS6000/540, 30 MHz
MIPS M2000, 25 MHz

MIPS M/120, 16.7 MHz

Sun-4/260, 16.7 MHz

VAX 8700, 22 MHz

AX-11/780, 5 MHz

Why parallel?

6© Christian Lessig, 2019

Why parallel?

“The La-Z-Boy programmer era of relying on
 hardware designers to make their programs go
 faster without lifting a finger is officially over.”

Hennessy & Patterson [2017]

7© Christian Lessig, 2019

[1] J. L. Hennessy and D. A. Patterson, Computer architecture: a quantitative approach, sixth edition. Morgan
Kaufmann, 2014.

1.1 Introduction ■ 3

Second, this dramatic improvement in cost-performance leads to new classes
of computers. Personal computers and workstations emerged in the 1980s with
the availability of the microprocessor. The last decade saw the rise of smart cell
phones and tablet computers, which many people are using as their primary com-
puting platforms instead of PCs. These mobile client devices are increasingly
using the Internet to access warehouses containing tens of thousands of servers,
which are being designed as if they were a single gigantic computer.

Third, continuing improvement of semiconductor manufacturing as pre-
dicted by Moore’s law has led to the dominance of microprocessor-based com-
puters across the entire range of computer design. Minicomputers, which were

Figure 1.1 Growth in processor performance since the late 1970s. This chart plots performance relative to the VAX
11/780 as measured by the SPEC benchmarks (see Section 1.8). Prior to the mid-1980s, processor performance
growth was largely technology driven and averaged about 25% per year. The increase in growth to about 52% since
then is attributable to more advanced architectural and organizational ideas. By 2003, this growth led to a difference
in performance of about a factor of 25 versus if we had continued at the 25% rate. Performance for floating-point-ori-
ented calculations has increased even faster. Since 2003, the limits of power and available instruction-level parallel-
ism have slowed uniprocessor performance, to no more than 22% per year, or about 5 times slower than had we
continued at 52% per year. (The fastest SPEC performance since 2007 has had automatic parallelization turned on
with increasing number of cores per chip each year, so uniprocessor speed is harder to gauge. These results are lim-
ited to single-socket systems to reduce the impact of automatic parallelization.) Figure 1.11 on page 24 shows the
improvement in clock rates for these same three eras. Since SPEC has changed over the years, performance of newer
machines is estimated by a scaling factor that relates the performance for two different versions of SPEC (e.g.,
SPEC89, SPEC92, SPEC95, SPEC2000, and SPEC2006).

1

5

9

13
18

24

51

80

117

183

280

481
649

993
1,267

1,779
3,016

4,195
6,043 6,681

7,108

11,865
14,387

19,484
21,871

24,129

1

10

100

1000

10,000

100,000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

P
er

fo
rm

an
ce

 (
vs

. V
A

X
-1

1/
78

0)

25%/year

52%/year

22%/year

 IBM POWERstation 100, 150 MHz

Digital Alphastation 4/266, 266 MHz

Digital Alphastation 5/300, 300 MHz

Digital Alphastation 5/500, 500 MHz
AlphaServer 4000 5/600, 600 MHz 21164

Digital AlphaServer 8400 6/575, 575 MHz 21264
Professional Workstation XP1000, 667 MHz 21264A
Intel VC820 motherboard, 1.0 GHz Pentium III processor

 IBM Power4, 1.3 GHz

 Intel Xeon EE 3.2 GHz
 AMD Athlon, 2.6 GHz

 Intel Core 2 Extreme 2 cores, 2.9 GHz
 Intel Core Duo Extreme 2 cores, 3.0 GHz

 Intel Core i7 Extreme 4 cores 3.2 GHz (boost to 3.5 GHz)
 Intel Xeon 4 cores, 3.3 GHz (boost to 3.6 GHz)

 Intel Xeon 6 cores, 3.3 GHz (boost to 3.6 GHz)

Intel D850EMVR motherboard (3.06 GHz, Pentium 4 processor with Hyper-Threading Technology)

1.5, VAX-11/785

 AMD Athlon 64, 2.8 GHz

Digital 3000 AXP/500, 150 MHz

HP 9000/750, 66 MHz

IBM RS6000/540, 30 MHz
MIPS M2000, 25 MHz

MIPS M/120, 16.7 MHz

Sun-4/260, 16.7 MHz

VAX 8700, 22 MHz

AX-11/780, 5 MHz

Why parallel?

8© Christian Lessig, 2019

Why parallel?

2,300

10,000

100,000

1,000,000

10,000,000

100,000,000

1,000,000,000

2,600,000,000

1971 1980 1990 2000 2011

Date of introduction

4004
8008

8080

RCA 1802

8085

8088

Z80

MOS 6502

6809

8086

80186

6800

68000

80286

80386

80486

Pentium
AMD K5

Pentium II
Pentium III

AMD K6

AMD K6-III
AMD K7

Pentium 4
Barton Atom

AMD K8

Itanium 2 Cell
Core 2 Duo

AMD K10
Itanium 2 with 9MB cache

POWER6

Core i7 (Quad)
Six-Core Opteron 2400

8-Core Xeon Nehalem-EX
Quad-Core Itanium Tukwila
Quad-core z196
8-core POWER7

10-Core Xeon Westmere-EX

16-Core SPARC T3

Six-Core Core i7
Six-Core Xeon 7400

Dual-Core Itanium 2
AMD K10

Microprocessor Transistor Counts 1971-2011 & Moore's Law

Tr
an

si
st

or
 c

ou
nt

https://upload.wikimedia.org/wikipedia/commons/0/00/Transistor_Count_and_Moore%27s_Law_-_2011.svg

9© Christian Lessig, 2019

Why parallel?

2,300

10,000

100,000

1,000,000

10,000,000

100,000,000

1,000,000,000

2,600,000,000

1971 1980 1990 2000 2011

Date of introduction

4004
8008

8080

RCA 1802

8085

8088

Z80

MOS 6502

6809

8086

80186

6800

68000

80286

80386

80486

Pentium
AMD K5

Pentium II
Pentium III

AMD K6

AMD K6-III
AMD K7

Pentium 4
Barton Atom

AMD K8

Itanium 2 Cell
Core 2 Duo

AMD K10
Itanium 2 with 9MB cache

POWER6

Core i7 (Quad)
Six-Core Opteron 2400

8-Core Xeon Nehalem-EX
Quad-Core Itanium Tukwila
Quad-core z196
8-core POWER7

10-Core Xeon Westmere-EX

16-Core SPARC T3

Six-Core Core i7
Six-Core Xeon 7400

Dual-Core Itanium 2
AMD K10

Microprocessor Transistor Counts 1971-2011 & Moore's Law

Tr
an

si
st

or
 c

ou
nt

https://upload.wikimedia.org/wikipedia/commons/0/00/Transistor_Count_and_Moore%27s_Law_-_2011.svg

10© Christian Lessig, 2019

Why parallel?

2,300

10,000

100,000

1,000,000

10,000,000

100,000,000

1,000,000,000

2,600,000,000

1971 1980 1990 2000 2011

Date of introduction

4004
8008

8080

RCA 1802

8085

8088

Z80

MOS 6502

6809

8086

80186

6800

68000

80286

80386

80486

Pentium
AMD K5

Pentium II
Pentium III

AMD K6

AMD K6-III
AMD K7

Pentium 4
Barton Atom

AMD K8

Itanium 2 Cell
Core 2 Duo

AMD K10
Itanium 2 with 9MB cache

POWER6

Core i7 (Quad)
Six-Core Opteron 2400

8-Core Xeon Nehalem-EX
Quad-Core Itanium Tukwila
Quad-core z196
8-core POWER7

10-Core Xeon Westmere-EX

16-Core SPARC T3

Six-Core Core i7
Six-Core Xeon 7400

Dual-Core Itanium 2
AMD K10

Microprocessor Transistor Counts 1971-2011 & Moore's Law

Tr
an

si
st

or
 c

ou
nt

https://upload.wikimedia.org/wikipedia/commons/0/00/Transistor_Count_and_Moore%27s_Law_-_2011.svg

2,300

10,000

100,000

1,000,000

10,000,000

100,000,000

1,000,000,000

2,600,000,000

1971 1980 1990 2000 2011

Date of introduction

4004
8008

8080

RCA 1802

8085

8088

Z80

MOS 6502

6809

8086

80186

6800

68000

80286

80386

80486

Pentium
AMD K5

Pentium II
Pentium III

AMD K6

AMD K6-III
AMD K7

Pentium 4
Barton Atom

AMD K8

Itanium 2 Cell
Core 2 Duo

AMD K10
Itanium 2 with 9MB cache

POWER6

Core i7 (Quad)
Six-Core Opteron 2400

8-Core Xeon Nehalem-EX
Quad-Core Itanium Tukwila
Quad-core z196
8-core POWER7

10-Core Xeon Westmere-EX

16-Core SPARC T3

Six-Core Core i7
Six-Core Xeon 7400

Dual-Core Itanium 2
AMD K10

Microprocessor Transistor Counts 1971-2011 & Moore's Law

Tr
an

si
st

or
 c

ou
nt

11© Christian Lessig, 2019

Number of parallel computers

1990 20160

2×108
4×108
6×108
8×108
1×109

12© Christian Lessig, 2019

Number of parallel computers

1990 20160

2×108
4×108
6×108
8×108
1×109

13© Christian Lessig, 2019

Number of parallel computers

1990 20160

2

4

6

8

Log[x]

14© Christian Lessig, 2019

1990 20160

2×108
4×108
6×108
8×108
1×109

Number of parallel computers

(almost)
all current

“computers“ are
parallel

15© Christian Lessig, 2019

What makes parallel
programming difficult?

16© Christian Lessig, 2019

What makes parallel programming difficult?

◦ ◦ Many algorithms do not lend themselves naturally to
a parallel implementation

◦ ◦ Parallel execution leads to indeterminism

17© Christian Lessig, 2019

Parallel programming?

“[Serial] algorithms have improved faster than
clock over the last 15 years. [Parallel] comput-
ers are unlikely to be able to take advantage of
these advances because they require new pro-
grams and new algorithms.”

Gordon Bell (1992)
G. Bell, “Massively parallel computers: why not parallel
computers for the masses?,” in The Fourth Symposium on
the Frontiers of Massively Parallel Computation, 1992, pp.
292–297.

18© Christian Lessig, 2019

Why parallel: the hardware side

19© Christian Lessig, 2019

Why parallel?

R. Gonzalez, B. M. Gordon, and M. A. Horowitz, “Supply and threshold voltage scaling for low power CMOS,” IEEE
J. Solid-State Circuits, vol. 32, no. 8, pp. 1210–1216, 1997.

P = C · V 2 · f

20© Christian Lessig, 2019

Why parallel?

P = C · V 2 · f

R. Gonzalez, B. M. Gordon, and M. A. Horowitz, “Supply and threshold voltage scaling for low power CMOS,” IEEE
J. Solid-State Circuits, vol. 32, no. 8, pp. 1210–1216, 1997.

capacitance frequency

voltagepower

21© Christian Lessig, 2019

Why parallel?

R. Gonzalez, B. M. Gordon, and M. A. Horowitz, “Supply and threshold voltage scaling for low power CMOS,” IEEE
J. Solid-State Circuits, vol. 32, no. 8, pp. 1210–1216, 1997.

not independent

P = C · V 2 · f

capacitance frequency

voltagepower

22© Christian Lessig, 2019

Why parallel?

https://forums.anandtech.com/threads/power-consumption-scaling-with-clockspeed-and-vcc-for-the-i7-
2600k.2195927/

23© Christian Lessig, 2019

Why parallel?

24 ■ Chapter One Fundamentals of Quantitative Design and Analysis

As we move from one process to the next, the increase in the number of
transistors switching and the frequency with which they switch dominate the
decrease in load capacitance and voltage, leading to an overall growth in power
consumption and energy. The first microprocessors consumed less than a watt
and the first 32-bit microprocessors (like the Intel 80386) used about 2 watts,
while a 3.3 GHz Intel Core i7 consumes 130 watts. Given that this heat must be
dissipated from a chip that is about 1.5 cm on a side, we have reached the limit
of what can be cooled by air.

Given the equation above, you would expect clock frequency growth to
slow down if we can’t reduce voltage or increase power per chip. Figure 1.11
shows that this has indeed been the case since 2003, even for the microproces-
sors in Figure 1.1 that were the highest performers each year. Note that this
period of flat clock rates corresponds to the period of slow performance
improvement range in Figure 1.1.

Figure 1.11 Growth in clock rate of microprocessors in Figure 1.1. Between 1978 and 1986, the clock rate improved
less than 15% per year while performance improved by 25% per year. During the “renaissance period” of 52% perfor-
mance improvement per year between 1986 and 2003, clock rates shot up almost 40% per year. Since then, the clock
rate has been nearly flat, growing at less than 1% per year, while single processor performance improved at less than
22% per year.

1

10

100

1000

10,000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

C
lo

ck
 ra

te
 (M

H
z)

Intel Pentium4 Xeon
3200 MHz in 2003

Intel Nehalem Xeon
3330 MHz in 2010

Intel Pentium III
1000 MHz in 2000

Digital Alpha 21164A
500 MHz in 1996

Digital Alpha 21064
150 MHz in 1992

MIPS M2000
25 MHz in 1989

Digital VAX-11/780
5 MHz in 1978

Sun-4 SPARC
16.7 MHz in 1986

15%/year

40%/year

1%/year

J.
 L

. H
en

ne
ss

y
an

d
D

. A
. P

at
te

rs
on

, C
om

pu
te

r a
rc

hi
te

ct
ur

e:
 a

qu

an
tit

at
iv

e
ap

pr
oa

ch
, F

ou
rt

h
ed

i.
M

or
ga

n
K

au
fm

an
n,

 2
00

7,
 p

. 2
4

24© Christian Lessig, 2019

Why parallel?

After: http://research.ac.upc.edu/HPCseminar/SEM9900/Pollack1.pdf

10

100

1

1000

W
at

ts
/c

m
2

nuclear reactor

hot plate

i486
i386

Intel Pentium
Intel Pentium Pro

Intel Pentium II
Intel Pentium III

1μ 0.5μ 0.25μ 0.125μ

25© Christian Lessig, 2019

Why parallel?

After: http://research.ac.upc.edu/HPCseminar/SEM9900/Pollack1.pdf

10

100

1

1000

W
at

ts
/c

m
2

nuclear reactor

hot plate

i486
i386

Intel Pentium
Intel Pentium Pro

Intel Pentium II
Intel Pentium III

1μ 0.5μ 0.25μ 0.125μ

1997 1999

26© Christian Lessig, 2019

Why parallel?

After: http://research.ac.upc.edu/HPCseminar/SEM9900/Pollack1.pdf

10

100

1

1000

W
at

ts
/c

m
2

nuclear reactor

hot plate

i486
i386

Intel Pentium
Intel Pentium Pro

Intel Pentium II
Intel Pentium III

1μ 0.5μ 0.25μ 0.125μ

processor
heat limit

27© Christian Lessig, 2019

Why parallel?

energy time

28© Christian Lessig, 2019

Why parallel?

Energy is critical:

◦ ◦ Handheld: major factor for customer satisfaction

◦ ◦ Warehouse scale computing: major cost factor

29© Christian Lessig, 2019

Why parallel?

Energy is critical:

◦ ◦ Handheld: major factor for customer satisfaction

◦ ◦ Warehouse scale computing: major cost factor

... and to keep our planet alive.

30© Christian Lessig, 2019

How to get around
heat limit?

31© Christian Lessig, 2019

How to get around
heat limit?

(or be as energy efficient as possible)

32© Christian Lessig, 2019

Why parallel?

processor heat limit

specialize parallelize

processor heat limit

specialize

33© Christian Lessig, 2019

Why parallel?

processor heat limit

specialize parallelize

processor heat limit

multi-core

instruction level

data-parallel

specialize

34© Christian Lessig, 2019

Why parallel?

processor heat limit

specialize parallelize

processor heat limit

multi-core

instruction level

data-parallel

specialize

neuromorphic
computing

graphics
processor

tensor
processing

unit

field programm.
gate array

35© Christian Lessig, 2019

Why parallel?

2,300

10,000

100,000

1,000,000

10,000,000

100,000,000

1,000,000,000

2,600,000,000

1971 1980 1990 2000 2011

Date of introduction

4004
8008

8080

RCA 1802

8085

8088

Z80

MOS 6502

6809

8086

80186

6800

68000

80286

80386

80486

Pentium
AMD K5

Pentium II
Pentium III

AMD K6

AMD K6-III
AMD K7

Pentium 4
Barton Atom

AMD K8

Itanium 2 Cell
Core 2 Duo

AMD K10
Itanium 2 with 9MB cache

POWER6

Core i7 (Quad)
Six-Core Opteron 2400

8-Core Xeon Nehalem-EX
Quad-Core Itanium Tukwila
Quad-core z196
8-core POWER7

10-Core Xeon Westmere-EX

16-Core SPARC T3

Six-Core Core i7
Six-Core Xeon 7400

Dual-Core Itanium 2
AMD K10

Microprocessor Transistor Counts 1971-2011 & Moore's Law

Tr
an

si
st

or
 c

ou
nt

https://upload.wikimedia.org/wikipedia/commons/0/00/Transistor_Count_and_Moore%27s_Law_-_2011.svg

Parallelism
to avoid heat

limit
(and increase

energy
efficiency)

36© Christian Lessig, 2019

https://wiki.rice.edu/confluence/download/attachments/4435861/comp322-s16-lec1-slides.pdf

Why parallel?

Clock frequency

Nvidia Fermi
(2010)

Nvidia Kepler
(2012)

Power

FP throughput

1.3 GHz 1.0 GHz

250 Watt 195 Watt

665 GFlops 1310 GFlops

37© Christian Lessig, 2019

Why parallel?

https://en.wikipedia.org/wiki/Von_Neumann_architecture

38© Christian Lessig, 2019

Why parallel?

https://en.wikipedia.org/wiki/Von_Neumann_architecture

Von Neumann
architecture

39© Christian Lessig, 2019

Why parallel?

https://en.wikipedia.org/wiki/Von_Neumann_architecture

von Neumann
bottleneck

Von Neumann
architecture

40© Christian Lessig, 2019

Why parallel?

https://en.wikipedia.org/wiki/Von_Neumann_architecture

von Neumann
bottleneck

1990: 6 and 8 cycles
2010: up to 180 cycles

Latency:

Von Neumann
architecture

41© Christian Lessig, 2019

Why parallel?

frequency latency bandwidth

2000

2003

2007

1 GHz

2 GHz

4.5 GHz

20 ns

15 ns

10 ns
Data: https://en.wikipedia.org/wiki/CAS_latency, http://www.intel.com/pressroom/kits/quickreffam.htm

100 MT/s

333 MT/s

800 MT/s

42© Christian Lessig, 2019

Why parallel?

frequency latency bandwidth

2000

2003

2007

1 GHz

2 GHz

4.5 GHz

20 ns

15 ns

10 ns
Data: https://en.wikipedia.org/wiki/CAS_latency, http://www.intel.com/pressroom/kits/quickreffam.htm

100 MT/s

333 MT/s

800 MT/s

43© Christian Lessig, 2019

Why parallel?

frequency latency bandwidth

2000

2003

2007

1 GHz

2 GHz

4.5 GHz

20 ns

15 ns

10 ns
Data: https://en.wikipedia.org/wiki/CAS_latency, http://www.intel.com/pressroom/kits/quickreffam.htm

100 MT/s

333 MT/s

800 MT/s

44© Christian Lessig, 2019

Why parallel?

2001 2002 2003 2004 2005 2006 2007

0.2

0.4

0.6

0.8

1.0
normalized performance

Frequency

Bandwidth

Latency

Data: https://en.wikipedia.org/wiki/CAS_latency, http://www.intel.com/pressroom/kits/quickreffam.htm

45© Christian Lessig, 2019

Why parallel?

How to get around von
Neumann bottleneck?

46© Christian Lessig, 2019

Why parallel?

von Neumann bottleneck

caching

47© Christian Lessig, 2019

Why parallel?

pipelining

von Neumann bottleneck

caching

48© Christian Lessig, 2019

Why parallel?

Caching:

CPU main memory

49© Christian Lessig, 2019

Why parallel?

Caching:

CPU main memorycache

50© Christian Lessig, 2019

pipelining

von Neumann bottleneck

caching

Why parallel?

51© Christian Lessig, 2019

Why parallel?

Pipelining:

compute memory

52© Christian Lessig, 2019

Why parallel?

Pipelining:

compute memory

53© Christian Lessig, 2019

Why parallel?

Pipelining:

compute memory

54© Christian Lessig, 2019

Why parallel?

Pipelining:

compute memory

55© Christian Lessig, 2019

Why parallel?

Pipelining:

compute memory

56© Christian Lessig, 2019

Why parallel?

Pipelining:

compute memory

57© Christian Lessig, 2019

Why parallel?

Pipelining:

compute memory

58© Christian Lessig, 2019

Why parallel?

Pipelining:

compute memory

59© Christian Lessig, 2019

Why parallel?

Pipelining:

compute memory

60© Christian Lessig, 2019

Why parallel?

Pipelining:

compute memory

61© Christian Lessig, 2019

Why parallel?

Pipelining:

compute memory

62© Christian Lessig, 2019

Why parallel?

Pipelining:

compute memory

63© Christian Lessig, 2019

Why parallel?

Pipelining:

compute memory

typically
realized by
compiler or
hardware

64© Christian Lessig, 2019

Why parallel?

Instruction level parallelism: exploit indepence at assem-
bler level

◦ ◦ Pipelining (memory access and computation)

◦ ◦ Different arithmetic units (diff. computations)

65© Christian Lessig, 2019

Why parallel?
C.5 Extending the MIPS Pipeline to Handle Multicycle Operations ■ C-53

zero stages for ALU operations and one stage for loads. The primary exception is
stores, which consume the value being stored 1 cycle later. Hence, the latency to
a store for the value being stored, but not for the base address register, will be
1 cycle less. Pipeline latency is essentially equal to 1 cycle less than the depth of
the execution pipeline, which is the number of stages from the EX stage to the
stage that produces the result. Thus, for the example pipeline just above, the
number of stages in an FP add is four, while the number of stages in an FP multi-
ply is seven. To achieve a higher clock rate, designers need to put fewer logic lev-
els in each pipe stage, which makes the number of pipe stages required for more
complex operations larger. The penalty for the faster clock rate is thus longer
latency for operations.

The example pipeline structure in Figure C.34 allows up to four outstanding
FP adds, seven outstanding FP/integer multiplies, and one FP divide. Figure C.35
shows how this pipeline can be drawn by extending Figure C.33. The repeat
interval is implemented in Figure C.35 by adding additional pipeline stages,
which will be separated by additional pipeline registers. Because the units are
independent, we name the stages differently. The pipeline stages that take multi-
ple clock cycles, such as the divide unit, are further subdivided to show the
latency of those stages. Because they are not complete stages, only one operation
may be active. The pipeline structure can also be shown using the familiar dia-
grams from earlier in the appendix, as Figure C.36 shows for a set of independent
FP operations and FP loads and stores. Naturally, the longer latency of the FP
operations increases the frequency of RAW hazards and resultant stalls, as we will
see later in this section.

The structure of the pipeline in Figure C.35 requires the introduction of the
additional pipeline registers (e.g., A1/A2, A2/A3, A3/A4) and the modification
of the connections to those registers. The ID/EX register must be expanded to
connect ID to EX, DIV, M1, and A1; we can refer to the portion of the register
associated with one of the next stages with the notation ID/EX, ID/DIV, ID/M1,
or ID/A1. The pipeline register between ID and all the other stages may be
thought of as logically separate registers and may, in fact, be implemented as sep-
arate registers. Because only one operation can be in a pipe stage at a time, the
control information can be associated with the register at the head of the stage.

Functional unit Latency Initiation interval

Integer ALU 0 1

Data memory (integer and FP loads) 1 1

FP add 3 1

FP multiply (also integer multiply) 6 1

FP divide (also integer divide) 24 25

Figure C.34 Latencies and initiation intervals for functional units.J. L. Hennessy and D. A. Patterson, Computer architecture: a quantitative approach, Seventh ed. Morgan Kaufmann, 2017, p. C-53

66© Christian Lessig, 2019

Why parallel?

cache

int fp

sfu

fp

+ *

/

core / CPU

67© Christian Lessig, 2019

Instruction level parallelism

Out-of-order execution:

18 CHAPTER 2 Device architectures

As a second problem, increasing the clock frequency on-chip requires either an
increase of off-chip memory bandwidth to provide data fast enough to not stall the
workload running through the processor or an increase of the amount of caching in
the system.

If we are unable to continue increasing the frequency with the goal of obtaining
higher performance, we require other solutions. The heart of any of these solutions
is to increase the number of operations performed in a given clock cycle.

2.2.2 SUPERSCALAR EXECUTION
Superscalar and, by extension, out-of-order execution is one solution that has been
included on CPUs for a long time; it has been included on x86 designs since the
beginning of the Pentium era. In these designs, the CPU maintains dependence
information between instructions in the instruction stream and schedules work onto
unused functional units when possible. An example of this is shown in Figure 2.1.

FIGURE 2.1

Out-of-order execution of an instruction stream of simple assembly-like instructions. Note
that in this syntax, the destination register is listed first. For example, add a,b,c is a = b+c.

D
. R

. K
ae

li,
 P

. M
is

tr
y,

 D
. S

ch
aa

, a
nd

 D
. P

. Z
ha

ng
, H

et
er

og
en

eo
us

 c
om

pu
tin

g
w

ith
 O

pe
nC

L
2.

0,
 C

h.
 2

.

68© Christian Lessig, 2019

Instruction level parallelism

Out-of-order execution:

18 CHAPTER 2 Device architectures

As a second problem, increasing the clock frequency on-chip requires either an
increase of off-chip memory bandwidth to provide data fast enough to not stall the
workload running through the processor or an increase of the amount of caching in
the system.

If we are unable to continue increasing the frequency with the goal of obtaining
higher performance, we require other solutions. The heart of any of these solutions
is to increase the number of operations performed in a given clock cycle.

2.2.2 SUPERSCALAR EXECUTION
Superscalar and, by extension, out-of-order execution is one solution that has been
included on CPUs for a long time; it has been included on x86 designs since the
beginning of the Pentium era. In these designs, the CPU maintains dependence
information between instructions in the instruction stream and schedules work onto
unused functional units when possible. An example of this is shown in Figure 2.1.

FIGURE 2.1

Out-of-order execution of an instruction stream of simple assembly-like instructions. Note
that in this syntax, the destination register is listed first. For example, add a,b,c is a = b+c.

D
. R

. K
ae

li,
 P

. M
is

tr
y,

 D
. S

ch
aa

, a
nd

 D
. P

. Z
ha

ng
, H

et
er

og
en

eo
us

 c
om

pu
tin

g
w

ith
 O

pe
nC

L
2.

0,
 C

h.
 2

.

69© Christian Lessig, 2019

Instruction level parallelism

Out-of-order execution:

18 CHAPTER 2 Device architectures

As a second problem, increasing the clock frequency on-chip requires either an
increase of off-chip memory bandwidth to provide data fast enough to not stall the
workload running through the processor or an increase of the amount of caching in
the system.

If we are unable to continue increasing the frequency with the goal of obtaining
higher performance, we require other solutions. The heart of any of these solutions
is to increase the number of operations performed in a given clock cycle.

2.2.2 SUPERSCALAR EXECUTION
Superscalar and, by extension, out-of-order execution is one solution that has been
included on CPUs for a long time; it has been included on x86 designs since the
beginning of the Pentium era. In these designs, the CPU maintains dependence
information between instructions in the instruction stream and schedules work onto
unused functional units when possible. An example of this is shown in Figure 2.1.

FIGURE 2.1

Out-of-order execution of an instruction stream of simple assembly-like instructions. Note
that in this syntax, the destination register is listed first. For example, add a,b,c is a = b+c.

D
. R

. K
ae

li,
 P

. M
is

tr
y,

 D
. S

ch
aa

, a
nd

 D
. P

. Z
ha

ng
, H

et
er

og
en

eo
us

 c
om

pu
tin

g
w

ith
 O

pe
nC

L
2.

0,
 C

h.
 2

.

70© Christian Lessig, 2019

Instruction level parallelism

Out-of-order execution:

processor extracts parallelim
from instruction stream

18 CHAPTER 2 Device architectures

As a second problem, increasing the clock frequency on-chip requires either an
increase of off-chip memory bandwidth to provide data fast enough to not stall the
workload running through the processor or an increase of the amount of caching in
the system.

If we are unable to continue increasing the frequency with the goal of obtaining
higher performance, we require other solutions. The heart of any of these solutions
is to increase the number of operations performed in a given clock cycle.

2.2.2 SUPERSCALAR EXECUTION
Superscalar and, by extension, out-of-order execution is one solution that has been
included on CPUs for a long time; it has been included on x86 designs since the
beginning of the Pentium era. In these designs, the CPU maintains dependence
information between instructions in the instruction stream and schedules work onto
unused functional units when possible. An example of this is shown in Figure 2.1.

FIGURE 2.1

Out-of-order execution of an instruction stream of simple assembly-like instructions. Note
that in this syntax, the destination register is listed first. For example, add a,b,c is a = b+c.

D
. R

. K
ae

li,
 P

. M
is

tr
y,

 D
. S

ch
aa

, a
nd

 D
. P

. Z
ha

ng
, H

et
er

og
en

eo
us

 c
om

pu
tin

g
w

ith
 O

pe
nC

L
2.

0,
 C

h.
 2

.

71© Christian Lessig, 2019

Instruction level parallelism

Very long instruction word
processors:

20 CHAPTER 2 Device architectures

FIGURE 2.2

VLIW execution based on the out-of-order diagram in Figure 2.1.

In the example in Figure 2.2, we see that the instruction schedule has gaps: the first
two VLIW packets are missing a third entry, and the third VLIW packet is missing its
first and second entries. Obviously, the example is very simple, with few instructions
to pack, but it is a common problem with VLIW architectures that efficiency can
be lost owing to the compiler’s inability to fully fill packets. This may be due to
limitations in the compiler or may be due simply to an inherent lack of parallelism in
the instruction stream. In the latter case, the situation will be no worse than for out-
of-order execution but will be more efficient as the scheduling hardware is reduced
in complexity. The former case would end up as a trade-off between efficiency losses
from unfilled execution slots and gains from reduced hardware control overhead.
In addition, there is an extra cost in compiler development to take into account
when performing a cost-benefit analysis for VLIW execution over hardware schedule
superscalar execution.

VLIW designs commonly appear in digital signal processor chips. High-end
consumer devices currently include the Intel Itanium line of CPUs (known as
explicitly parallel instruction computing, EPIC) and AMD’s HD6000 series GPUs.

D
. R

. K
ae

li,
 P

. M
is

tr
y,

 D
. S

ch
aa

, a
nd

 D
. P

. Z
ha

ng
, H

et
er

og
en

eo
us

 c
om

pu
tin

g
w

ith
 O

pe
nC

L
2.

0,
 C

h.
 2

.

72© Christian Lessig, 2019

Instruction level parallelism

Very long instruction word
processors:

compiler extracts parallelim
from program code

20 CHAPTER 2 Device architectures

FIGURE 2.2

VLIW execution based on the out-of-order diagram in Figure 2.1.

In the example in Figure 2.2, we see that the instruction schedule has gaps: the first
two VLIW packets are missing a third entry, and the third VLIW packet is missing its
first and second entries. Obviously, the example is very simple, with few instructions
to pack, but it is a common problem with VLIW architectures that efficiency can
be lost owing to the compiler’s inability to fully fill packets. This may be due to
limitations in the compiler or may be due simply to an inherent lack of parallelism in
the instruction stream. In the latter case, the situation will be no worse than for out-
of-order execution but will be more efficient as the scheduling hardware is reduced
in complexity. The former case would end up as a trade-off between efficiency losses
from unfilled execution slots and gains from reduced hardware control overhead.
In addition, there is an extra cost in compiler development to take into account
when performing a cost-benefit analysis for VLIW execution over hardware schedule
superscalar execution.

VLIW designs commonly appear in digital signal processor chips. High-end
consumer devices currently include the Intel Itanium line of CPUs (known as
explicitly parallel instruction computing, EPIC) and AMD’s HD6000 series GPUs.

D
. R

. K
ae

li,
 P

. M
is

tr
y,

 D
. S

ch
aa

, a
nd

 D
. P

. Z
ha

ng
, H

et
er

og
en

eo
us

 c
om

pu
tin

g
w

ith
 O

pe
nC

L
2.

0,
 C

h.
 2

.

73© Christian Lessig, 2019

Why parallel?

Instruction level parallelism: exploit indepence at assem-
bler level

◦ ◦ Pipelining

◦ ◦ Different arithmetic units

=> Exploited since 1980s and standard, but
 no longer significant improvements

74© Christian Lessig, 2019

Further reading

◦ ◦ J. L. Hennessy and D. A. Patterson, Computer architecture: a quantita-
tive approach, fourth edition. Morgan Kaufmann, 2007.

◦ ◦ http://cva.stanford.edu/classes/cs99s/

◦ ◦ http://research.ac.upc.edu/HPCseminar/SEM9900/Pollack1.pdf

◦ ◦ http://groups.csail.mit.edu/cag/raw/documents/Waingold-Comput-
er-1997.pdf

◦ ◦ http://cacm.acm.org/magazines/2009/5/24648-spending-moores-divi-
dend/fulltext

