
GPU Programming 2017/18

Optimization of Reduction

• Code is written for arrays of size 2k (for sufficiently large k; one multi-
processor has to be completly filled which is 2 × blockSize starting in
reduction4.cu and 4 × blockSize starting in reduction6.cu).

• Inspired by Mark Harris’ optimization of reduction.1

Versions

reduction cpu.cpp

• Simple C/C++ implementation.

reduction0.cu

• Naive2 implementation with one thread.

reduction1.cu

• Naive implementation based on programming model with global memory
used directly.

• No synchronization between blocks → race condition.

reduction2.cu

• Global synchronization between each tree levels on CPU (very high over-
head).

• Coalescing in global memory access reduces with each tree level.

reduction3.cu

• Shared memory to reduce global memory access and avoid penalty of
non-coalesced access.

• Final reduction beyond blocks on CPU.

1http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

1

http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf 


h v2 v3 v4 v5 v6 v7 v8 v9
version

5

10

20

30

38.3465

ms
Reduction for 223

reduction4.cu

• Double amount of work per block.

• Avoid divergent branches by using index instead of threadIx.x to index
data.

reduction5.cu

• Avoid bank conflicts by reversing loop from large to small stride. Shared
memory access is now by threadIdx and threadIdx + const.

reduction6.cu

• The reduction at the finest level can be performed in the load step.

reduction7.cu

• Loop unrolling for last levels.

reduction8.cu

• All loops fully unrolled. Templated to remain flexible with respect to
thread block size.

reduction9.cu

• Process multiple elements per thread (motivated by theoretical analysis).



h v2 v3 v4 v5 v6 v7 v8 v9
version

0.2

0.5

5

10

20

38.3465

ms
Reduction time for 2^23 elements (log plot).


