GPU Programming How fast can we get?

Quantitative performance measures

- Latency: time to completion of task
- Throughput: tasks processed per second
- ° Power consumption

Quantitative measures

```
speedup = execution time for serial execution execution time for parallel execution
```

Quantitative measures

Quantitative measures

cost = | time | x #processors

J. L. Hennessy and D. A. Patterson, Computer architecture: a quantitative approach, fourth edition, Morgan Kaufmann, 2007; p. 40.

$$S = \frac{1}{(1-p)-p \cdot a}$$

$$S = \frac{1}{(1-p)-p \cdot a} \text{acceleration:}$$
 Fraction of parallelizable code

Gustafson's law

$$S_W = (1 - p) + \frac{p}{a}$$

Gustafson's law

Can we do better?

Performance Analysis

DAG models program

Performance Analysis

serial parallel serial

 $I_{\min} = 4$

serial parallel serial

© Christian Lessig, 2018

 $T_{\min} = 4$

Serial execution time:

$$T_1 = \# \text{work}$$

Serial execution time:

$$T_1 = \# \text{work}$$

Minimal parallel execution time:

$$T_{\infty} = \mathrm{span}$$

Serial execution time:

$$T_1 = \# \text{work}$$

Minimal parallel execution time:

$$T_{\infty} = \mathrm{span}$$

Minimal execution time with P threads:

$$T_P = \# \operatorname{work}/P$$

Serial execution time:

$$T_1 = \# \text{work}$$

Minimal parallel execution time:

$$T_{\infty} = \text{span}$$

Minimal execution time with P threads:

$$T_P = \# \operatorname{work}/P$$

But we cannot be faster than T_{∞} !

Serial execution time:

$$T_1 = \# \text{work}$$

Minimal parallel execution time:

$$T_{\infty} = \mathrm{span}$$

Minimal execution time with P threads:

$$T_P = \max(\# \operatorname{work}/P, T_{\infty})$$

Serial execution time:

$$T_1 = \# \text{work}$$

Minimal parallel execution time:

$$T_{\infty} = \mathrm{span}$$

Minimal execution time with P threads:

$$T_P = \max(\# \operatorname{work}/P, T_{\infty})$$

Optimal speedup

$$S_{\infty} = \frac{T_1}{T_{\infty}}$$

Serial execution time:

$$T_1 = \# \text{work}$$

Minimal parallel execution time:

$$T_{\infty} = \mathrm{span}$$

Minimal execution time with P threads:

$$T_P = \max(\#\text{work}/P, T_{\infty})$$

speedup with P threads

$$S_P = \min(P, S_{\infty})$$

Optimal execution time with P threads:

$$T_P = \max(\# \operatorname{work}/P, T_{\infty})$$

Optimal execution time with P threads:

 $T_P = \max(\# \operatorname{work}/P, T_{\infty})$

Optimal execution time with P threads:

$$T_P = \max(\#\text{work}/P, T_{\infty})$$

At each of the T_{∞} steps we need time

$$T_i = W_i/P$$

Brent's theorem:

$$T_P \le T_\infty + \frac{T_1 - T_\infty}{P}$$

Brent's theorem:

$$T_P \le T_\infty + \frac{T_1 - T_\infty}{P}$$

Upper bound on execution time

Further reading

- D. Kirk and W. -m. Hwu, Programming massively parallel processors.
 Elsevier/Morgan Kaufmann, 2013, Ch. 1.
- M. D. McCool, J. Reinders, and A. Robison, Structured parallel programming: patterns for efficient computation. Elsevier/Morgan Kaufmann, 2012.
- T. Kielmann et al., Encyclopedia of Parallel Programming. Springer, 2011.