GPU Programming

How fast can we get?

Christian Lessig

Quantitative performance measures

o Latency: time to completion of task
o Throughput: tasks processed per second

° Power consumption

© Christian Lessig, 2018

Quantitative measures

execution time for serial execution

speedup =

execution time for parallel execution

© Christian Lessig, 2018

Quantitative measures

speedup

ffici =
SHEE #Processors

© Christian Lessig, 2018

Quantitative measures

cost =] time | x #processors

© Christian Lessig, 2018

Amdanl’s law

execution time for serial execution

speedup =

execution time for parallel execution
when possible

J. L. Hennessy and D. A. Patterson, Computer architecture: a quantitative approach, fourth edition, Morgan Kaufmann, 2007; p. 40.

© Christian Lessig, 2018

Amdanl’s law

© Christian Lessig, 2018

Amdanl’s law

1

(1 — p) — . @7 ?jnge)\eration:

Fraction of
parallelizable
code

© Christian Lessig, 2018

Amdanl’s law

Amdahl's Law

speedup

20
15 — p=0.5
p=0.9
10 - p=0.9
| — p=095

5

‘f

200 400 600 800 1000
Number of processors

© Christian Lessig, 2018

Gustafson’s law

© Christian Lessig, 2018

10

Gustafson’s law

Gustafsons's Law

speedu
1000 P
300
- p=0.5
600 5=0.9
- p=0.9
400 - p=095
200
200 400 600 800 1000

Number of processors

© Christian Lessig, 2018

© Christian Lessig, 2018

Can we do better?

12

Performance Analysis

/ WOrk task

-
DAG models
program
N
-

© Christian Lessig, 2018

Performance Analysis
. } serial

parallel

} serial

© Christian Lessig, 2018

Work-Span Analysis
. } serial

parallel

} serial

© Christian Lessig, 2018

Work-Span Analysis

. } serial

} serial
span of
DAG

parallel

© Christian Lessig, 2018

Work-Span Analysis

. } serial

} serial
span of
DAG

parallel

Tmin —

© Christian Lessig, 2018

Work-Span Analysis

. } serial

} serial
span of
DAG

parallel

© Christian Lessig, 2018

Work-Span Analysis

Serial execution time:
T1 — #W()rk

© Christian Lessig, 2018

19

Work-Span Analysis

Serial execution time:
T1 — #W()rk

Minimal parallel execution time:

1~ = span

© Christian Lessig, 2018

20

Work-Span Analysis

Serial execution time:
T1 — #W()rk

Minimal parallel execution time:
1~ = span

Minimal execution time with P threads:

Tp — #WOTk/P

© Christian Lessig, 2018

2

Work-Span Analysis

Serial execution time:
T1 — #W()I'k

Minimal parallel execution time:
1~ = span

Minimal execution time with P threads:

Tp — #WOTk/P

© Christian Lessig, 2018

But we cannot be
faster than 7.

22

Work-Span Analysis

Serial execution time:
T1 — #W()rk

Minimal parallel execution time:
1~ = span

Minimal execution time with P threads:
Tp = max (#work/ P, T.)

© Christian Lessig, 2018

23

Work-Span Analysis

Serial execution time:
T1 — #W()rk

Minimal parallel execution time:
1~ = span

Minimal execution time with P threads:
Tp = max (#work/ P, T.)

© Christian Lessig, 2018

Optimal
speedup

24

Work-Span Analysis

Serial execution time:
T1 — #W()rk

Minimal parallel execution time:
1~ = span

Minimal execution time with P threads:
Tp = max (#work/ P, T.)

© Christian Lessig, 2018

speedup with
P threads

Sp =
min (P, S)

25

Work-Span Analysis

Optimal execution time
with P threads:

Tp = max (#work/ P, T)

© Christian Lessig, 2018

26

Work-Span Analysis

Optimal execution time
with P threads:

Tp = max (#work/ P, T.)

© Christian Lessig, 2018

Work-Span Analysis

Optimal execution time
with P threads:

Tp = max (#work/ P, T.)

At each of the [
steps we need time

1T, =W,;/P

© Christian Lessig, 2018

23

Work-Span Analysis

Brent's theorem:

Tl T Toc

© Christian Lessig, 2018

Work-Span Analysis

Brent's theorem:

TP S Toc —+

Upper bounad on
execution time

© Christian Lessig, 2018

Tl T Toc

P

30

Work-Span Analysis

Speedup bounds

Amdanh|

T4T

M. D. McCool, J. Reinders, and A. Robison, Structured parallel

)

/

T(T{/P+T)

4 8 12 16
P (Number of workers)

© Christian Lessig, 2018

programming: patterns for efficient computation. Elsevier/Morgan

Kaufmann, 2012.

31

Further reading

o D. Kirk and W. -m. Hwu, Programming massively parallel processors.
Elsevier/Morgan Kaufmann, 2013, Ch. 1.

o M. D. McCool, J. Reinders, and A. Robison, Structured parallel pro-

gramming : patterns for efficient computation. Elsevier/Morgan
Kautmann, 2012.

o T. Kielmann et al., Encyclopedia of Parallel Programming. Springer,
2011.

© Christian Lessig, 2018

32

