
1© Christian Lessig, 2017

GPU Programming

CUDA Nitty Details

Christian Lessig

2© Christian Lessig, 2017

Atomics

 ◦ Analogous to atomics in C++

 ◦ For global and shared memory

 ◦ Specific versions for entire GPU and thread block

 ◦ atomicAdd(), atomicSub(), atomicExch(), atomicMin(),
atomicMax(), atomicInc(), atomicAnd(), ...

3© Christian Lessig, 2017

Data-types

 ◦ Default precision is IEEE 32-bit (float and int)

 › Device is designed for it

4© Christian Lessig, 2017

Data-types

 ◦ Default precision is IEEE 32-bit (float and int)

 › Device is designed for it

 ◦ Many applications require 64-bit precision

 › e.g. most simulations in scientific computing

5© Christian Lessig, 2017

Data-types

 ◦ Default precision is IEEE 32-bit (float and int)

 › Device is designed for it

 ◦ Many applications require 64-bit precision

 › e.g. most simulations in scientific computing

 ◦ Some applications require less precision

 › e.g. graphics, deep learning

6© Christian Lessig, 2017

Data-types

Data from https://devblogs.nvidia.com/parallelforall/mixed-precision-programming-cuda-8/

dp fp hp

5

10

15

20

Flops/s FMA performance

7© Christian Lessig, 2017

Data-types

int n2 = n/2;
half2 *x2 = (half2*)x, *y2 = (half2*)y;

for (int i = start; i < n2; i+= stride)
 y2[i] = __hfma2(__halves2half2(a, a), x2[i], y2[i]);

8© Christian Lessig, 2017

Warp shuffle functions

 ◦ Communicate values in a warp without using shared
memory

9© Christian Lessig, 2017

Warp shuffle functions

 ◦ Communicate values in a warp without using shared
memory

 ◦ E.g.:

__shfl_sync(unsigned mask, T var, int srcLane,
 int width=warpSize);

10© Christian Lessig, 2017

Warp shuffle functions

 ◦ Communicate values in a warp without using shared
memory

 ◦ E.g.:

__shfl_sync(unsigned mask, T var, int srcLane,
 int width=warpSize);

value = __shfl_sync(0xffffffff, value, 0);

11© Christian Lessig, 2017

Pinned host memory

 ◦ Data transfer from host to device copies from host
RAM to device RAM.

12© Christian Lessig, 2017

Pinned host memory

 ◦ Data transfer from host to device copies from host
RAM to device RAM.

 › malloc / new allocated memory is pageable, i.e. not
necessarily in RAM

13© Christian Lessig, 2017

Pinned host memory

 ◦ Data transfer from host to device copies from host
RAM to device RAM.

 › malloc / new allocated memory is pageable, i.e. not
necessarily in RAM

 › Allocate pinned (non-pageable) memory:

14© Christian Lessig, 2017

Pinned host memory

 ◦ Data transfer from host to device copies from host
RAM to device RAM.

 › malloc / new allocated memory is pageable, i.e. not
necessarily in RAM

 › Allocate pinned (non-pageable) memory:

// float* data = (float*) malloc(8*sizeof(float));
cudaMallocHost((void**)& data_pinned, 8*sizeof(float));

15© Christian Lessig, 2017

Driver API

 ◦ Driver API for more fine grained control

16© Christian Lessig, 2017

Driver API

 ◦ Driver API for more fine grained control

// cuMemcpyHtoD(d_B, h_B, size);
cudaMemcpy(d_B, d_h, size, cudaMemcpyHostToDevice)

// vecAdd<< blocks, threads>>(d_A, d_B, d_C)
void* args[] = { &d_A, &d_B, &d_C, &N };
cuLaunchKernel(vecAdd, blocksPerGrid, 1, 1,
 threadsPerBlock, 1, 1, 0,
 args, NULL);

17© Christian Lessig, 2017

NVRTC

 ◦ On-the-fly (runtime) compilation of code

compileFileToPTX(“vecAdd.cu”, 0, NULL, &ptx, &ptxSize);
CUmodule module = loadPTX(ptx, argc, argv);

CUfunction kernel_addr;
cuModuleGetFunction(&kernel_addr, module, “vecAdd”));

18© Christian Lessig, 2017

Asynchronous Execution

 ◦ Motivation:

 › Processing large data sets

 › Smaller tasks that do not utilize full device

 › Latency critical applications

 ◦ Executes multiple kernels (streams) concurrently

 › Typically combined with asynchronous data transfer

19© Christian Lessig, 2017

Asynchronous Execution

for (int i = 0; i < nStreams; ++i) {
 cudaStreamCreate(&stream[i]);
 cudaMemcpyAsync(&dd[i], &dh[i], i,
 cudaMemcpyHostToDevice,
 stream[i]);
 kernel<<<block, threads, 0, stream[i]>>>(dd);
 cudaMemcpyAsync(&dh[i], &dd[i], size,
 cudaMemcpyDeviceToHost, stream[i]);
}

20© Christian Lessig, 2017

Asynchronous Execution

for (int i = 0; i < nStreams; ++i) {
 cudaStreamCreate(&stream[i]);
 cudaMemcpyAsync(&dd[i], &dh[i], i,
 cudaMemcpyHostToDevice,
 stream[i]);
 kernel<<<block, threads, 0, stream[i]>>>(dd);
 cudaMemcpyAsync(&dh[i], &dd[i], size,
 cudaMemcpyDeviceToHost, stream[i]);
}

21© Christian Lessig, 2017

Unified memory

 ◦ Unified address space for data

 ◦ Memory management (host <-> device transfers) are
handled by the API / driver

22© Christian Lessig, 2017

Memory allocation on the device

 ◦ Memory can be allocated dynamically on the device
from a pre-defined “heap“ area (that, however, re-
sides in in global memory)

__global__ void kernel(int size) {
 char* ptr = (char*) malloc(size);
 memset(ptr, 0, size);
 free(ptr);
}

23© Christian Lessig, 2017

Dynamic parallelism

 ◦ Enables to generate new thread grid from within an
existing one

 ◦ Avoids significant overhead of host <-> device syn-
chronization when parallelism is data dependent

24© Christian Lessig, 2017

Warp matrix operations

 ◦ Core of the deep learning hardware on CUDA devices.

 ◦ Provides dedicated hardware to implement:

from https://devblogs.nvidia.com/programming-tensor-cores-cuda-9/

25© Christian Lessig, 2017

Warp matrix operations

 ◦ Core of the deep learning hardware on CUDA devices.

// Load the inputs
wmma::load_matrix_sync(a_frag, a, lda);
wmma::load_matrix_sync(b_frag, b, ldb);

// Perform the matrix multiplication
wmma::mma_sync(acc_frag, a_frag, b_frag, acc_frag);

26© Christian Lessig, 2017

GV100 CUDA Hardware and Software Architectural Advances

The World’s Most Advanced Data Center GPU WP-08608-001_v1.1 | 27

Volta SIMT Model
Volta transforms this picture by enabling equal concurrency between all threads, regardless of
warp. It does this by maintaining execution state per thread, including a program counter and call
stack, as shown in Figure 21.

Figure 21. Volta Warp with Per-Thread Program Counter and Call Stack

Volta’s independent thread scheduling allows the GPU to yield execution of any thread, either to
make better use of execution resources or to allow one thread to wait for data to be produced by
another. To maximize parallel efficiency, Volta includes a schedule optimizer which determines
how to group active threads from the same warp together into SIMT units. This retains the high
throughput of SIMT execution as in prior NVIDIA GPUs, but with much more flexibility: threads
can now diverge and reconverge at sub-warp granularity, while the convergence optimizer in
Volta will still group together threads which are executing the same code and run them in parallel
for maximum efficiency

Execution of the code example from Figure 20 looks somewhat different on Volta. Statements
from the if and else branches in the program can now be interleaved in time as shown in
Figure 22. Note that execution is still SIMT: at any given clock cycle, CUDA cores execute the
same instruction for all active threads in a warp just as before, retaining the execution efficiency
of previous architectures. Importantly, Volta’s ability to independently schedule threads within a
warp makes it possible to implement complex, fine-grained algorithms and data structures in a
more natural way. While the scheduler supports independent execution of threads, it optimizes
non-synchronizing code to maintain as much convergence as possible for maximum SIMT
efficiency.

Volta (bottom) independent thread scheduling architecture block diagram compared to Pascal and earlier
architectures (top). Volta maintains per-thread scheduling resources such as program counter (PC) and call
stack (S), while earlier architectures maintained these resources per warp.

Independent thread scheduling

from https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf

27© Christian Lessig, 2017

Graphics inter-op

 ◦ Enables to share data with OpenGL / DirectX

 ◦ Useful for example for global illumination or simula-
tion of fluids that are more efficiently computed in
Cuda but must be displayed using a graphics API.

28© Christian Lessig, 2017

Cooperative groups

 ◦ Extends the concept of a warp / thread block to user
specified groups of threads that can interact

 › Synchronization of sets of blocks or entire grid (with-
out host intervention)

 › Communication of values within a group of threads

29© Christian Lessig, 2017

Cuda libraries

 ◦ cuFFT

 ◦ cuSparse

 ◦ cuBLAS

 ◦ cuDNN

 ◦ CUTLASS

 ◦ thrust

 ◦ ...

30© Christian Lessig, 2017

nvprof / nvvp

 ◦ nvprof: command line profiler

31© Christian Lessig, 2017

nvprof / nvvp

 ◦ nvprof: command line profiler
bauhaus:build lessig$ /Developer/NVIDIA/CUDA-8.0/bin/nvprof ./main
==1714== NVPROF is profiling process 1714, command: ./main
Execution time: 381.35 ms.
==1714== Profiling application: ./main
==1714== Profiling result:
Time(%) Time Calls Avg Min Max Name
 88.93% 380.73ms 99 3.8458ms 3.7730ms 4.4032ms transposeMatrix3(float*,
float*, unsigned int)
 6.00% 25.692ms 1 25.692ms 25.692ms 25.692ms [CUDA memcpy HtoD]
 5.07% 21.701ms 1 21.701ms 21.701ms 21.701ms [CUDA memcpy DtoH]

==1714== API calls:
Time(%) Time Calls Avg Min Max Name
 66.50% 380.68ms 2 190.34ms 18.900us 380.67ms cudaDeviceSynchronize
 24.95% 142.84ms 2 71.419ms 194.69us 142.64ms cudaMalloc
 ...

32© Christian Lessig, 2017

nvprof / nvvp

 ◦ nvvp: visual profiler

33© Christian Lessig, 2017

nvprof / nvvp

 ◦ nvvp: visual profiler

34© Christian Lessig, 2017

nvprof / nvvp

 ◦ nvvp: visual profiler

