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Atomics

  ◦ Analogous to atomics in C++

  ◦ For global and shared memory

  ◦ Specific versions for entire GPU and thread block

  ◦ atomicAdd(), atomicSub(), atomicExch(), atomicMin(), 
atomicMax(), atomicInc(), atomicAnd(), ...
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Data-types

  ◦ Default precision is IEEE 32-bit (float and int)

  › Device is designed for it
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Data-types

  ◦ Default precision is IEEE 32-bit (float and int)

  › Device is designed for it

  ◦ Many applications require 64-bit precision 

  › e.g. most simulations in scientific computing

  ◦ Some applications require less precision

  › e.g. graphics, deep learning



6© Christian Lessig, 2017

Data-types

Data from https://devblogs.nvidia.com/parallelforall/mixed-precision-programming-cuda-8/
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Data-types

int n2 = n/2;
half2 *x2 = (half2*)x, *y2 = (half2*)y;

for (int i = start; i < n2; i+= stride) 
  y2[i] = __hfma2(__halves2half2(a, a), x2[i], y2[i]);
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Warp shuffle functions

  ◦ Communicate values in a warp without using shared 
memory
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Warp shuffle functions

  ◦ Communicate values in a warp without using shared 
memory

  ◦ E.g.:

__shfl_sync( unsigned mask, T var, int srcLane, 
                int width=warpSize);

value = __shfl_sync(0xffffffff, value, 0);
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Pinned host memory

  ◦ Data transfer from host to device copies from host 
RAM to device RAM. 
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Pinned host memory

  ◦ Data transfer from host to device copies from host 
RAM to device RAM. 

  › malloc / new allocated memory is pageable, i.e. not 
necessarily in RAM

  › Allocate pinned (non-pageable) memory:

// float* data = (float*) malloc(8*sizeof(float));
cudaMallocHost((void**)& data_pinned, 8*sizeof(float));



15© Christian Lessig, 2017

Driver API 

  ◦ Driver API for more fine grained control



16© Christian Lessig, 2017

Driver API 

  ◦ Driver API for more fine grained control

// cuMemcpyHtoD(d_B, h_B, size);
cudaMemcpy( d_B, d_h, size, cudaMemcpyHostToDevice)

// vecAdd<< blocks, threads>>( d_A, d_B, d_C)
void* args[] = { &d_A, &d_B, &d_C, &N };
cuLaunchKernel( vecAdd,  blocksPerGrid, 1, 1,
                threadsPerBlock, 1, 1, 0,
                args, NULL);
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NVRTC

  ◦ On-the-fly (runtime) compilation of code

compileFileToPTX(“vecAdd.cu”, 0, NULL, &ptx, &ptxSize);
CUmodule module = loadPTX(ptx, argc, argv);

CUfunction kernel_addr;
cuModuleGetFunction(&kernel_addr, module, “vecAdd”));
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Asynchronous Execution

  ◦ Motivation:

  › Processing large data sets

  › Smaller tasks that do not utilize full device

  › Latency critical applications

  ◦ Executes multiple kernels (streams) concurrently

  › Typically combined with asynchronous data transfer
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Asynchronous Execution

for (int i = 0; i < nStreams; ++i) {
  cudaStreamCreate( &stream[i]);
  cudaMemcpyAsync( &dd[i], &dh[i], i, 
                         cudaMemcpyHostToDevice, 
                         stream[i]);
  kernel<<<block, threads, 0, stream[i]>>>(dd);
  cudaMemcpyAsync( &dh[i], &dd[i], size, 
                         cudaMemcpyDeviceToHost, stream[i]);
}
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Asynchronous Execution

for (int i = 0; i < nStreams; ++i) {
  cudaStreamCreate( &stream[i]);
  cudaMemcpyAsync( &dd[i], &dh[i], i, 
                         cudaMemcpyHostToDevice, 
                         stream[i]);
  kernel<<<block, threads, 0, stream[i]>>>(dd);
  cudaMemcpyAsync( &dh[i], &dd[i], size, 
                         cudaMemcpyDeviceToHost, stream[i]);
}
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Unified memory

  ◦ Unified address space for data

  ◦ Memory management (host <-> device transfers) are 
handled by the API / driver
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Memory allocation on the device

  ◦ Memory can be allocated dynamically on the device 
from a pre-defined “heap“ area (that, however, re-
sides in in global memory)

__global__ void kernel( int size) {
    char* ptr = (char*) malloc(size);
    memset(ptr, 0, size);
    free(ptr);
}
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Dynamic parallelism

  ◦ Enables to generate new thread grid from within an 
existing one

  ◦ Avoids significant overhead of host <-> device syn-
chronization when parallelism is data dependent
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Warp matrix operations

  ◦ Core of the deep learning hardware on CUDA devices.

  ◦ Provides dedicated hardware to implement:

from https://devblogs.nvidia.com/programming-tensor-cores-cuda-9/
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Warp matrix operations

  ◦ Core of the deep learning hardware on CUDA devices.

// Load the inputs
wmma::load_matrix_sync(a_frag, a, lda);
wmma::load_matrix_sync(b_frag, b, ldb);

// Perform the matrix multiplication
wmma::mma_sync(acc_frag, a_frag, b_frag, acc_frag);
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Volta SIMT Model 
Volta transforms this picture by enabling equal concurrency between all threads, regardless of 
warp. It does this by maintaining execution state per thread, including a program counter and call 
stack, as shown in Figure 21. 

 

 

Figure 21. Volta Warp with Per-Thread Program Counter and Call Stack  

Volta’s independent thread scheduling allows the GPU to yield execution of any thread, either to 
make better use of execution resources or to allow one thread to wait for data to be produced by 
another. To maximize parallel efficiency, Volta includes a schedule optimizer which determines 
how to group active threads from the same warp together into SIMT units. This retains the high 
throughput of SIMT execution as in prior NVIDIA GPUs, but with much more flexibility: threads 
can now diverge and reconverge at sub-warp granularity, while the convergence optimizer in 
Volta will still group together threads which are executing the same code and run them in parallel 
for maximum efficiency 

Execution of the code example from Figure 20 looks somewhat different on Volta. Statements 
from the if and else branches in the program can now be interleaved in time as shown in  
Figure 22. Note that execution is still SIMT: at any given clock cycle, CUDA cores execute the 
same instruction for all active threads in a warp just as before, retaining the execution efficiency 
of previous architectures. Importantly, Volta’s ability to independently schedule threads within a 
warp makes it possible to implement complex, fine-grained algorithms and data structures in a 
more natural way. While the scheduler supports independent execution of threads, it optimizes 
non-synchronizing code to maintain as much convergence as possible for maximum SIMT 
efficiency. 

Volta (bottom) independent thread scheduling architecture block diagram compared to Pascal and earlier 
architectures (top). Volta maintains per-thread scheduling resources such as program counter (PC) and call  
stack (S), while earlier architectures maintained these resources per warp. 

Independent thread scheduling

from https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
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Graphics inter-op

  ◦ Enables to share data with OpenGL / DirectX

  ◦ Useful for example for global illumination or simula-
tion of fluids that are more efficiently computed in 
Cuda but must be displayed using a graphics API.
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Cooperative groups

  ◦ Extends the concept of a warp / thread block to user 
specified groups of threads that can interact

  › Synchronization of sets of blocks or entire grid (with-
out host intervention)

  › Communication of values within a group of threads
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Cuda libraries

  ◦ cuFFT 

  ◦ cuSparse

  ◦ cuBLAS

  ◦ cuDNN 

  ◦ CUTLASS

  ◦ thrust

  ◦ ...
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nvprof / nvvp

  ◦ nvprof: command line profiler
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nvprof / nvvp

  ◦ nvprof: command line profiler
bauhaus:build lessig$ /Developer/NVIDIA/CUDA-8.0/bin/nvprof ./main  
==1714== NVPROF is profiling process 1714, command: ./main 
Execution time: 381.35 ms. 
==1714== Profiling application: ./main 
==1714== Profiling result: 
Time(%)      Time     Calls       Avg       Min       Max  Name 
 88.93%  380.73ms        99  3.8458ms  3.7730ms  4.4032ms  transposeMatrix3(float*, 
float*, unsigned int) 
  6.00%  25.692ms         1  25.692ms  25.692ms  25.692ms  [CUDA memcpy HtoD] 
  5.07%  21.701ms         1  21.701ms  21.701ms  21.701ms  [CUDA memcpy DtoH] 
 
==1714== API calls: 
Time(%)      Time     Calls       Avg       Min       Max  Name 
 66.50%  380.68ms         2  190.34ms  18.900us  380.67ms  cudaDeviceSynchronize 
 24.95%  142.84ms         2  71.419ms  194.69us  142.64ms  cudaMalloc 
 ...
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nvprof / nvvp

  ◦ nvvp: visual profiler
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nvprof / nvvp

  ◦ nvvp: visual profiler


