
GPU Programming 2017/18

Projects

Matrix transpose

• Develop an efficient CUDA program that computes the transpose of a
matrix for arbitrary data types (with possibly different size).

• Your program should be efficient irrespective of the matrix size and the
data type used.

• Analyse if your implementation achieves the performance that is predicted
by the theoretical tools discussed in the lecture.

• Compare your performance to existing library implementations.

Matrix-matrix multiplication

• Develop an efficient CUDA program that computes the product of two,
not necessarily quadratic matrices.

• Your program should be efficient irrespective of the matrix size and the
data type used.

• Analyse if your implementation achieves the performance that is predicted
by the theoretical tools discussed in the lecture.

• Compare your performance to existing library implementations.

Merge sort

• Develop an efficient merge sort in Cuda.

• Explore if grid synchronization can be used to improve the performance.

• Analyse if your implementation achieves the performance that is predicted
by the theoretical tools discussed in the lecture.

• Compare your performance to existing library implementations.

1



Quick sort

• Develop an efficient merge sort in Cuda.

• Explore if dynamic parallelism can be used to improve performance.

• Analyse if your implementation achieves the performance that is predicted
by the theoretical tools discussed in the lecture.

• Compare your performance to existing library implementations.

Placement-new for CUDA memory management

• Implement a memory arena and placement-new that enables to easily
transfer a set of instance from the host to the device (e.g. for a raycaster
where one has various geometric primitives compromising the scene). The
data transfer to the device and the data access there should be as simple
and transparent as possible.

• Compare the performance of your approach to Cuda’s unified memory
model.

• The classic book by Alexandrescu [Ale01, Ch. 4] is a good reference on
placement new with pointers to other literature.

Octree construction

• Implement an octree that provides a hierarchical data structure for a
geometric data set (in the simplest case a set of randomly generated points
with closest point queries as objective).

• Explore the use of dynamic memory allocation on the device during
construction (and potentially dynamic parallelism).

• A good reference on acceleration structures is the book by Pharr and
Humphreys [PH10].

Fast Fourier Transform

• Implement an efficient Fast Fourier Transform in CUDA.

• Employ your Fast Fourier Transform to implement audio or image pro-
cessing, e.g. denoising.

• Explore the use of lower precision data types (e.g. fp16, int8) to speed up
computations.

• Compare the performance of your implementation to those of the cuFFT
library.



Tone Mapping using histograms

• Implement an efficient histogram computation in CUDA.

• Use the histogram to implement tone mapping.1

• Explore the use of lower precision data types (e.g. fp16, int8) to speed
up computations and the direct visualization of the result using the
CUDA-OpenGL interoperability.

N-Body simulation

• Implement an efficient N-Body simulation in CUDA.

• Explore the use of different potentials to describe the interaction between
particles / bodies, e.g. a graviational Newton potential or van der Waals
forces.

• Visualize the result using the CUDA-OpenGL interoperability.

Image segmentation using clustering

• Implement an efficient k-nearest neighbors algorithm in CUDA.

• Use your k-nearest neighbors implementation to determine image segmen-
tations.2

Convolution

• Implement an efficient 2D convolution in CUDA.

• Test your convolution for image denoising; in particular, explore alterna-
tives for the filter.

• Explore if the computations can be speeded up by using lower precision
data types (e.g. fp16, int8) in CUDA.

Wavelet-based image compression

• Implement a fast wavelet transform for images for non-standard separable
wavelet bases. A popular choice for the filter coefficients is the family of
Daubechies wavelets. Begin by implementing a 1D wavelet transform.

• Use your implementation of the fast wavelet transform for image compres-
sion.

1See for example http://resources.mpi-inf.mpg.de/departments/d4/teaching/

ws200708/cg/slides/CG13-ToneMapping.pdf.
2See e.g. https://de.mathworks.com/help/images/examples/

color-based-segmentation-using-k-means-clustering.html?requestedDomain=www.

mathworks.com.

http://resources.mpi-inf.mpg.de/departments/d4/teaching/ws200708/cg/slides/CG13-ToneMapping.pdf
http://resources.mpi-inf.mpg.de/departments/d4/teaching/ws200708/cg/slides/CG13-ToneMapping.pdf
https://de.mathworks.com/help/images/examples/color-based-segmentation-using-k-means-clustering.html?requestedDomain=www.mathworks.com
https://de.mathworks.com/help/images/examples/color-based-segmentation-using-k-means-clustering.html?requestedDomain=www.mathworks.com
https://de.mathworks.com/help/images/examples/color-based-segmentation-using-k-means-clustering.html?requestedDomain=www.mathworks.com


• Explore the use of dynamic parallelism to speed up computations.

• An accessible book on wavelets is [SDS96] as well as the related course
notes [SDS95b]; [SDS95a]. More details can, for example be found in
Mallat’s book [Mal09] and Daubechies’ classic text [Dau92].



References

[Ale01] A. Alexandrescu. Modern C++ Design. Addison Wesley, 2001.

[Dau92] I. Daubechies. Ten Lectures on Wavelets. Philadelphia, PA, USA:
Society for Industrial and Applied Mathematics, 1992.

[Mal09] S. G. Mallat. A Wavelet Tour of Signal Processing: The Sparse Way.
third ed. Academic Press, 2009.

[PH10] M. Pharr and G. Humphreys. Physically Based Rendering: From
Theory to Implementation. second. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2010.

[SDS95a] E. J. Stollnitz, T. D. DeRose, and D. H. Salesin. “Wavelets for Com-
puter Graphics: A Primer, Part 2”. In: IEEE Computer Graphics
and Applications 15.4 (1995), pp. 75–85.

[SDS95b] E. J. Stollnitz, T. DeRose, and D. H. Salesin. “Wavelets for Computer
Graphics: A Primer, Part 1”. In: IEEE Computer Graphics and
Applications 15.3 (1995), pp. 76–84.

[SDS96] E. J. Stollnitz, T. DeRose, and D. H. Salesin. Wavelets for Computer
Graphics: Theory and Applications. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1996.


	References

