GPU Programming 2017/18

Projects

Matrix transpose

Develop an efficient CUDA program that computes the transpose of a
matrix for arbitrary data types (with possibly different size).

Your program should be efficient irrespective of the matrix size and the
data type used.

Analyse if your implementation achieves the performance that is predicted
by the theoretical tools discussed in the lecture.

Compare your performance to existing library implementations.

Matrix-matrix multiplication

Develop an efficient CUDA program that computes the product of two,
not necessarily quadratic matrices.

Your program should be efficient irrespective of the matrix size and the
data type used.

Analyse if your implementation achieves the performance that is predicted
by the theoretical tools discussed in the lecture.

Compare your performance to existing library implementations.

Merge sort

Develop an efficient merge sort in Cuda.
Explore if grid synchronization can be used to improve the performance.

Analyse if your implementation achieves the performance that is predicted
by the theoretical tools discussed in the lecture.

Compare your performance to existing library implementations.



Quick sort

Develop an efficient merge sort in Cuda.
Explore if dynamic parallelism can be used to improve performance.

Analyse if your implementation achieves the performance that is predicted
by the theoretical tools discussed in the lecture.

Compare your performance to existing library implementations.

Placement-new for CUDA memory management

Implement a memory arena and placement-new that enables to easily
transfer a set of instance from the host to the device (e.g. for a raycaster
where one has various geometric primitives compromising the scene). The
data transfer to the device and the data access there should be as simple
and transparent as possible.

Compare the performance of your approach to Cuda’s unified memory
model.

The classic book by Alexandrescu [Ale01, Ch. 4] is a good reference on
placement new with pointers to other literature.

Octree construction

Fast

Implement an octree that provides a hierarchical data structure for a
geometric data set (in the simplest case a set of randomly generated points
with closest point queries as objective).

Explore the use of dynamic memory allocation on the device during
construction (and potentially dynamic parallelism).

A good reference on acceleration structures is the book by Pharr and
Humphreys [PH10].

Fourier Transform

Implement an efficient Fast Fourier Transform in CUDA.

Employ your Fast Fourier Transform to implement audio or image pro-
cessing, e.g. denoising.

Explore the use of lower precision data types (e.g. fp16, int8) to speed up
computations.

Compare the performance of your implementation to those of the cuFFT
library.



Tone Mapping using histograms
e Implement an efficient histogram computation in CUDA.
o Use the histogram to implement tone mapping.'

e Explore the use of lower precision data types (e.g. fp16, int8) to speed
up computations and the direct visualization of the result using the
CUDA-OpenGL interoperability.

N-Body simulation
e Implement an efficient N-Body simulation in CUDA.

e Explore the use of different potentials to describe the interaction between
particles / bodies, e.g. a graviational Newton potential or van der Waals
forces.

e Visualize the result using the CUDA-OpenGL interoperability.

Image segmentation using clustering
e Implement an efficient k-nearest neighbors algorithm in CUDA.

e Use your k-nearest neighbors implementation to determine image segmen-
tations.?

Convolution
e Implement an efficient 2D convolution in CUDA.

e Test your convolution for image denoising; in particular, explore alterna-
tives for the filter.

e Explore if the computations can be speeded up by using lower precision
data types (e.g. fp16, int8) in CUDA.
Wavelet-based image compression

e Implement a fast wavelet transform for images for non-standard separable
wavelet bases. A popular choice for the filter coefficients is the family of
Daubechies wavelets. Begin by implementing a 1D wavelet transform.

e Use your implementation of the fast wavelet transform for image compres-
sion.

1See for example http://resources.mpi-inf.mpg.de/departments/d4/teaching/
ws200708/cg/slides/CG13-ToneMapping.pdf.

2See e.g. https://de.mathworks.com/help/images/examples/
color-based-segmentation-using-k-means-clustering.html?requestedDomain=www.
mathworks.com.


http://resources.mpi-inf.mpg.de/departments/d4/teaching/ws200708/cg/slides/CG13-ToneMapping.pdf
http://resources.mpi-inf.mpg.de/departments/d4/teaching/ws200708/cg/slides/CG13-ToneMapping.pdf
https://de.mathworks.com/help/images/examples/color-based-segmentation-using-k-means-clustering.html?requestedDomain=www.mathworks.com
https://de.mathworks.com/help/images/examples/color-based-segmentation-using-k-means-clustering.html?requestedDomain=www.mathworks.com
https://de.mathworks.com/help/images/examples/color-based-segmentation-using-k-means-clustering.html?requestedDomain=www.mathworks.com

e Explore the use of dynamic parallelism to speed up computations.

e An accessible book on wavelets is [SDS96] as well as the related course
notes [SDS95b]; [SDS95a]. More details can, for example be found in
Mallat’s book [Mal09] and Daubechies’ classic text [Dau92].



References

[Ale01]
[Dau92]

[Mal09]

[PH10]

[SDS95a]

[SDS95b)]

[SDS6]

A. Alexandrescu. Modern C++ Design. Addison Wesley, 2001.

I. Daubechies. Ten Lectures on Wavelets. Philadelphia, PA, USA:
Society for Industrial and Applied Mathematics, 1992.

S. G. Mallat. A Wawelet Tour of Signal Processing: The Sparse Way.
third ed. Academic Press, 2009.

M. Pharr and G. Humphreys. Physically Based Rendering: From
Theory to Implementation. second. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2010.

E. J. Stollnitz, T. D. DeRose, and D. H. Salesin. “Wavelets for Com-
puter Graphics: A Primer, Part 2”. In: IEEE Computer Graphics
and Applications 15.4 (1995), pp. 75-85.

E. J. Stollnitz, T. DeRose, and D. H. Salesin. “Wavelets for Computer
Graphics: A Primer, Part 17. In: IEEE Computer Graphics and
Applications 15.3 (1995), pp. 76-84.

E. J. Stollnitz, T. DeRose, and D. H. Salesin. Wawvelets for Computer
Graphics: Theory and Applications. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1996.



	References

