Mathematical Tools for Computer Graphics 2017

Tutorial 9

In this tutorial we will investigate functions on the sphere. Our motivation is the shading equation

$$\bar{\ell}_x(\bar{\omega}) = \int_{H_x^2} \left(\ell_x(\omega) \cos \theta \right) \, \rho_x(\omega, \bar{\omega}) \, d\omega \tag{1}$$

that describes how light is reflected off a surface, where $\ell_x(\omega)$ is the incident light intensity at x from direction $\omega \in H_x^2$ in the hemisphere above x, $\bar{\ell}_x(\bar{\omega})$ is the outgoing one, and $\rho_x(\omega, \bar{\omega})$ is the shading kernel (or BRDF) that determines the fraction of incident light from ω that is scattered towards $\bar{\omega}$.

A common choice for representing the functions in the shading equation are spherical harmonics, which are the generalization of the Fourier series to the sphere S^2 and form an orthonormal basis for $L_2(S^2)$. The basis functions are given by

$$y_{lm} = C_{lm} P_l^m(\cos\theta) e^{im\phi} = \sqrt{\frac{2l+1}{4\pi} \frac{(l-m)!}{(l+m)!}} P_l^m(\cos\theta) e^{im\phi}$$
(2)

with $l = 0, 1, \cdots$ and $-l \leq m \leq l$ and where (θ, ϕ) are the standard coordinates on S^2 with $\theta \in [0, \pi]$ and $\phi \in [0, 2\pi]$. The P_l^m are associated Legendre polynomials, which coincide with regular Legendre polynomials when m = 0.

1.) Plot the associated Legendre polynomials $P_l^m(z)$ for $l \in \{0, 1, 2, 3, 4\}$ with one plot for each l. Use that

$$P_l^{-m}(z) = (-1)^m \frac{(l-m)!}{(l+m)!} P_l^m(z)$$
(3)

Taking the factor of $e^{im\phi}$ into account, how do the oscillations for fixed l change as |m| increases from 0 to l? What happens as l increases?

2.) Implement the function ylm() in the provided skeleton code. Then use plot_spherical_harmonics.py() to plot the spherical harmonics for l = 3 and m = 0, 1, 2, 3.

3.) The Phong BRDF is one of the most popular shading functions used in rendering. It is given by

$$\rho(\omega,\bar{\omega}) = (r(\omega)\cdot\bar{\omega})^p \tag{4}$$

where ω is the incident direction of light and $\bar{\omega}$ the outgoing one, and $r(\omega)$ is the direction of perfect specular reflection with respect to the local surface normal n. The exponent p > 0 controls the specularity that increases as pincreases. W.l.o.g, let $\omega = n$. Compute the spherical harmonics coefficients for the Phong BRDF for p = 16 and p = 32.