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Tutorial 10/11

In this tutorial we will consider solution strategies for the shading equation

¯̀
x(ω̄) =

∫
H2

x

(`x(ω) cos θ) ρx(ω, ω̄) dω (1)

where `x(ω) is the incident light intensity at x from direction ω ∈ H2
x in the

hemisphere above x, ¯̀
x(ω̄) is the outgoing one, and ρx(ω, ω̄) is the shading

kernel (or BRDF) that determines the fraction of incident light from ω that is
scattered towards ω̄.

1.) Precomputed radiance transfer1 is a popular technique to attain global
illumination effects in real-time that derives from the Galerkin projection
of the shading equation.

To obtain an approximate solution to the shading equation that can be
computed in real-time, one only computes the diffuse component of the
exitant light intensity and assumes the light sources to be (very) distant so
that they can be assumed to not dependent on the location x. The shading
equation then takes the form

¯̀(ω̄) = ρ

∫
H2

x

`x(ω) cos θ dω (2)

where the incoming light intensity depends on those on the light source
h(ω) as

`x(ω) = Vx(ω)h(−ω) (3)

with Vx(ω) ∈ {0, 1} being the visibility function.

1Sloan, Kautz, and Snyder, “Precomputed Radiance Transfer for Real-Time Rendering in
Dynamic, Low-Frequency Lighting Environments”; Kautz, Sloan, and Snyder, “Fast, Arbitrary
BRDF Shading for Low-Frequency Lighting using Spherical Harmonics”.
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i) Based on the Galerkin projection of the shading equation using spheri-
cal harmonics, derive an equation that determines the outgoing light
intensity in precomputed radiance transfer. What is the complexity of
the computations for each shading point?

Solution: To obtain an equation that can be resolved efficiently at
runtime, one should separate the factors that dependent on the shading
point x and those that do not,

¯̀(ω̄) = ρ

∫
H2

x

h(−ω)
(
Vx(ω) cos θ

)
dω. (4a)

Representing h(−ω) and the cosine-weighted visibility t(ω) ≡ Vx(ω) cos θ
in spherical harmonics yields

h(−ω) ≈
L∑
l=0

l∑
m=−l

hlm ylm(ω) (4b)

t(ω) ≈
L∑
l=0

l∑
m=−l

tlm ylm(ω). (4c)

Inserting we obtain

¯̀= ρ

∫
H2

x

(
L∑
l=0

l∑
m=−l

hlm ylm(ω)

) (
L∑
l′=0

l∑
m=−l′

tl′m′ yl′m′(ω)

)
dω

and using linearity yields

¯̀= ρ

L∑
l=0

l∑
m=−l

L∑
l′=0

l∑
m=−l′

hlm tl′m′

∫
H2

x

ylm(ω) yl′m′(ω)dω. (4d)

By the orthonormality of the spherical harmonics this equals

¯̀= ρ

L∑
l=0

l∑
m=−l

hlm tlm. (4e)

The last equation is the dot product of the coefficient vectors. For
every shading point one has thus L + 1 multiplications and L − 1
additions to compute the exitant light intensity.

i) Compute the projection of the “Uffizi” light probe, see Fig. 1, which
represent `(ω) using a (u, v) parametrization of S2 with

θ = π v , v ∈ [0, 1] (5a)



Figure 1: Uffizi light probe.

Figure 2: Uffizi light probe after projection into spherical harmonics with L = 5.

φ = 2π u , u ∈ [0, 1] (5b)

into spherical harmonics with L = 5 and reconstruct a suitable repre-
sentation to assess the quality of the approximation.2

Solution: See Fig. 2.

i) What visual effects are afforded by precomputed radiance transfer?

Solution: Precomputed radiance transfer yields an occlusion and ori-
entation dependent modulation of the light intensity.

2Original image from http://gl.ict.usc.edu/Data/HighResProbes/.

http://gl.ict.usc.edu/Data/HighResProbes/


i) How does the equation for precomputed radiance transfer change when
one considers a view dependent scattering function. How does this
affect the computations?

Solution: Instead of a dot product at every shading point one obtains
a matrix-vector product. Furthermore, the exitant light intensity into
direction ω̄ needs to be reconstructed from the basis representation.

i) Read the paper by Sloan, Kautz and Snyder3 that introduced precom-
puted radiance transfer.

2.) When one fixes the outgoing direction ω̄ then the shading equation is an
integral. Since the integrand is complex and typically not even an analytic
description is available one has to resort to numerical quadrature rules to
determine the integral.

A quadrature rule takes, by definition, the form∫
X

f(x) dx =

n∑
i=1

wi f(xi) (6)

with wi being suitable weights and the xi being quadrature nodes. where
the equality holds only under appropriate conditions on the integrand that
not necessarily satisfied in practice. Eq. 6 is very general since it only
requires one to know the integrand at pointwise values f(xi).

In this task we will develop a very general methodology to obtain quadrature
rules.

i) Assume the integrand f(x) is given in an orthonormal basis, i.e.

f(x) =

n∑
i=1

fi φi(x) =

n∑
i=1

〈f(y), φi(y)〉φi(x) (7)

Use the basis representation to obtain an expression for the integral
involving the basis function coefficients fi. How can this be interpreted
as a quadrature rule?

Solution: Inserting the basis representation for f(x) and using linearity
we immediately obtain∫

X

f(x) dx =

∫
X

(
n∑
i=1

fi φi(x)

)
dx (8a)

3Sloan, Kautz, and Snyder, “Precomputed Radiance Transfer for Real-Time Rendering in
Dynamic, Low-Frequency Lighting Environments”.



=

n∑
i=1

fi

∫
X

φi(x) dx︸ ︷︷ ︸
≡ wi

. (8b)

ii) Using an orthonormal basis we obtain an integration rule involving basis
function coefficients fi. Quadrature rules, however, use pointwise values.
We saw previously that point evaluation functionals δx̄ : H → R connect
functions and their pointwise values. Furthermore, under suitable
conditions these have a representation using reproducing kernels kx̄(x),

f(x̄) = δx̄(f) = 〈f(x), kx̄(x)〉 (9)

Recall the conditions for the existence of a reproducing kernel. Is it
possible to construct a basis whose basis functions are reproducing
kernels? If this is the case, how would the solution to the integration
problem look like?

Solution: When H is a Hilbert space where the point evaluation
functional is continuous then, by the Riez representation theorem, it
has a representation as a reproducing kernel.

The reproducing kernel kx̄(x) is a function in H and, moreover, different
locations x̄ yield different functions. We saw this when we constructed
reproducing kernels for the space of polynomials. Hence, with m ≥ n
different locations λk, and assuming corresponding functions are linearly
independent, these could provide a basis for H. Any function f ∈ H
would then have the representation

f(x) =

n∑
i=1

〈
f(y), kλi

(y)
〉
k̃i(x) (10a)

=

n∑
i=1

f(λi) k̃i(x) (10b)

where the k̃i(x) the dual basis functions and the second line follows by
the reproducing property of the kλi

(y).

Following the same ansatz as with an orthonormal basis we obtain∫
X

f(x) dx =

∫
X

(
n∑
i=1

f(λi) k̃i(x)

)
dx (11a)

=

n∑
i=1

f(λi)

∫
X

k̃i(x) dx (11b)

=

n∑
i=1

wi f(λi) (11c)



with the weights wi are given by the integrals of the dual basis functions.
Eq. 11c provides a quadrature rule in the sense of Eq. 6 and all classical
quadrature rules, such as Gauss-Legendre quadrature, can be obtained
as outlined by first constructing a quadrature rule for the space under
consideration and then using linearity of the integral.

iii) Let P4([−1, 1]) be the space of polynomials up to degree 4 with the
Legendre polynomials as orthonormal basis. Show experimentally that
for {λi}5i=1 being uniformly distributed points in [0, 1] the set

{kλi(x)}5i=1 (12)

spans P4([−1, 1]). Use that the reproducing kernel can be written as

kx̄(x) =

n∑
i=1

φi(x̄)φi(x) (13)

where φi(x) is an orthonormal basis for the space under consideration.
Begin by showing the last formula.4

Solution: We have

f(x) =

n∑
i=1

fi φi(x) (14a)

=

n∑
i=1

〈
f(y), φi(y)

〉
φi(x) (14b)

and by using linearity we obtain

f(x) =

〈
f(y) ,

n∑
i=1

φi(y)φi(x)

〉
(14c)

Comparing to the definition of a reproducing kernel in Eq. 9 we imme-
diately see that the basis representation of the reproducing kernel is
Eq. 13 where the φi(x̄) are the basis function coefficients.

That the kλi
(x) span the space can be verified by constructing the

basis matrix

K =


P0(λ1) · · · P4(λ1)

...
. . .

...

P0(λ5) · · · P4(λ5)

 (15)

and checking that it has a non-vanishing determinant.

4We already worked with reproducing kernels for P4([−1, 1]) in Tutorial 5.



iv) Derive a quadrature formula for P4([−1, 1]) of the form∫
X

f(x) dx =

n∑
i=1

wi f(λi) (16)

where the {λi}5i=1 are the locations from the last question.

Solution: Since the kλi
(x) span P4([−1, 1]) there exist dual kernel

functions k̃i(x) such that

f(x) =

n∑
i=1

〈
f(y), kλi

(y)
〉
k̃i(x) =

n∑
i=1

f(λi) k̃i(x) (17)

with the crucial aspect being that the inner product determining the
basis function coefficients is trivial and yields f(λi). As for any biorthog-
onal basis the dual kernel functions can be obtained by the inverse of
the kernel matrix in Eq. 15 whose columns are the coefficients of k̃i(x)
with respect to the Legendre polynomials.

Inserting the basis representation into the integral and using linearity
yields the desired quadrature formula with

wi =

∫ 1

−1

k̃i(x) dx, (18)

cf. Eq. 11.

v) Interpolation is the problem of determining a function f(x) from point-
wise values f(xi). The classical approach is via the Vandermonde
matrix

V =


1 x1 x2

1 · · · xn1
...

. . .
...

1 xn x2
n · · · xnn

 (19a)

that determines the coefficients ai of a polynomials f(x) =
∑n
i=1 ai x

i

interpolating the values f(xi) by

V a = f (20)

with a = (a1, · · · , an) and f = (f(x1), · · · , f(xn)).

A second classical approach uses Lagrange polynomials

`j(x) =
∏
m6=j

x− xm
xj − xm

(21a)



so that the polynomial f(x) interpolating the f(xi) is given by

f(x) =

n∑
i=1

f(xi) `i(x). (21b)

How are these interpolation techniques related to reproducing kernel
bases that yield a basis representation of the form

f(x) =

n∑
i=1

f(λi) k̃i(x) ? (22)

Solution: The Lagrange polynomials `j(x) are just a representation for
the reproducing kernel. The Vandermonde matrix is its basis represen-
tation with respect to monomials. Hence, these classical approaches to
interpolation are also special instances of interpolation.
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