
CS448: Topics in Computer Graphics Lecture #1Mathematical Models for Computer GraphicsStanford University Thursday, 2 October 1997Introduction to WaveletsLecture #1: Tuesday, 30 September 1997Lecturer: Denis ZorinScribe: John Owens1 Why are wavelets useful?Wavelets have a few interesting applications, some of which are mentioned below. How-ever, the applications of wavelets by themselves are limited. The ideas behind wavelets,which we will be covering in this lecture and future lectures, are more important.The most common use of wavelets is in signal processing applications. For example:� Compression applications. If we can create a suitable representation of a signal, wecan discard the \least signi�cant" pieces of that representation and thus keep theoriginal signal largely intact. This requires a transformation which separates the\important" parts of the signal from less important parts.In the simplest case, we can decompose a signal into two parts: a low frequencypart, which is some sort of average of the original signal, and a high frequencypart, which is what remains after the low frequency part is subtracted from theoriginal signal. If we are interested in the low frequency part and hence discardthe high frequency part, what remains is a smoother representation of the originalsignal with its low frequency components intact. Alternatively, if we are mostinterested in the high frequency part, we may be able to discard the low frequencypart instead.This approach, that of decomposing a signal into two parts, is common for allwavelets. Also fundamental to wavelet analysis is a heirarchical decomposition, inwhich we may apply further transforms to an already decomposed signal.� Edge detection. With this application it is most important to identify the areas inwhich the input image changes quickly. We can discard the smooth (low frequency)parts. The simplest wavelet basis, the Haar basis (to be discussed later) is suitablefor this application.Along this vein, the book by Strang and Nguyen describes a widely used applicationof wavelets, �ngerprint compression, in which edge detection �gures prominently.� Graphics. Two prominent uses of wavelets in graphics include



2 CS448: Lecture #11. Curve and surface representations; and2. Wavelet radiosity.These two reect two quite di�erent uses of wavelets.� Numerical analysis. Wavelets are used in the solution of partial di�erential equa-tions and integral equations.2 History of WaveletsThe �rst use of wavelets was by Haar in 1909. He was interested in �nding a basis on afunctional space similar to Fourier's basis in frequency space. In physics, wavelets wereused in the characterization of Brownian motion. This work led to some of the ideas usedto construct wavelet bases. Wavelets were also used for analysis of coherent states of aparticular quantum system. Finally, in the signal processing �eld, S. Mallat discoveredthat �lter banks have important connections with wavelet basis functions.3 Filters and Filter Banks3.1 Linearity and Time InvarianceConsider a discrete input signal x(n), a �lter H, and an output y(n). We express theoperation of H on the input signal x as y = Hx.We call the �lterH \linear" if scaling the input scales the output, and we callH \timeinvariant" if shifting the input (in time) correspondingly shifts the output. In these notesall �lters will be assumed to be linear and time invariant.3.2 Filter operationIf H is linear and time invariant, the we can express its operation as follows:y(n) =Xk h(k)x(n� k):This operation is called a convolution. The individual coe�cients h(i) are the \im-pulse responses" of the system.The equation y = Hx can also be written as an in�nite matrix, with y and x columnvectors and H in the following form:26664 � � � � � � � � � � � � � � � � � �� � � h(1) h(0) h(�1) � � � � � �� � � � � � h(1) h(0) h(�1) � � �� � � � � � � � � � � � � � � � � � 37775



CS448: Lecture #1 3Note that the entries of the �lter are in reverse indexed order. If the input stream is�nite with n elements, H is a �nite n � n matrix.3.3 What is a basis?For a given space of functions, a frame is a collection of functions such that any functionin the space is a weighted sum of the functions in the frame. In other words, if thefunctions in the frame are f0 : : : fn : : :, then any function g can be written as g = Pi aifi.A basis is also a collection of functions. Any basis is a frame, but a basis also has theproperty of linear independence. With a basis, the coe�cients ai of the expansion of thefunction g (written as a weighted sum of the basis functions g = Pn aifi) are uniquelydetermined. Another way to state this property is that no function fi in the basis canbe written as a weighted sum of the other functions of the basis.For a function space we can de�ne an inner product. One example of an inner productis a dot product, used in a vector space. In a function space we de�ne the inner product< f; g > of two functions f and g as R f(t)g(t)dt.One desirable property of a basis is orthogonality. With an orthogonal basis, theinner product of two basis functions fi and fj is equal to zero if i 6= j:A second desirable property is orthonormality, which implies that taking the innerproduct of a basis function fi with itself equals 1. For our functional basis we see thatR f2(t)dt = 1.In summary, an orthogonal, orthonormal basis implies that< fi; fj >= ( 1 i = j0 i 6= jSo why is orthonormality a desired property? Let us de�ne a function x as theweighted sum of the basis functions, x = P aifi. We would like to �nd the coe�cientsai, and orthonormality makes this simple. We only need to take the inner product of thefunction x with ai's associated basis function to �nd the associated coe�cient ai.< x; fj > = Xi ai < fi; fj >= aj < fj; fj >= aj3.4 Filters and wavelets, Haar �ltersEach wavelet basis has two �lters associated with it. In general those �lters are expressedin the form y(n) = Ph(n)x(n).The Haar basis is particularly simple. The two �lters are H0 and H1 and are de�nedas follows: H0 : y(n) = 12x(n) + 12x(n� 1)



4 CS448: Lecture #1H1 : y(n) = 12x(n)� 12x(n� 1)For H0, all h coe�cients are zero except for h0(0) = 1=2 and h0(1) = 1=2. Similarly, inH1, h1(0) = 1=2 and h1(1) = �1=2.H0 computes a moving average of its input, resulting in a sequence which is smootherthan the initial sequence. Hence it is a low pass �lter. H1 computes a moving di�erenceand serves as a high pass �lter.3.5 Scaling functions and the dilation equationWe de�ne a function � as a \scaling function". Scaling functions obey the dilationequation, �(t) = 2X h0(k)�(2t� k): (1)Note that the �lter coe�cients used (the h0's) are from the �rst of the pair of �lters. Wewill use the second �lter later.If this equation has an appropriate solution �(t), then we can construct a frame usingany integral values of j or k in the following generating relation:�(2jt� k): (2)Next we introduce the wavelet equation (3), which uses the coe�cients from thesecond pair of �lters: w(t) = 2X h1(k)�(2t� k): (3)We generate a wavelet basis with a similar generating relationw(2jt� k):Note that scaling functions don't form a basis; wavelets do. But wavelets are con-structed from scaling functions, so we have to �nd a scaling function �rst.As can be seen from the wavelet equation, wavelets are de�ned as linear combinationsbetween scaling functions one level below, where a \level" is de�ned as the set of all scalingfunctions generated with a given j.For instance, the Haar scaling function satis�es the dilation equation with the solution�(t) = �(2t) + �(2t� 1):And the Haar wavelet satis�es the wavelet equation with the solutionw(t) = �(2t)� �(2t� 1):The Haar basis spans the space of all functions with integrable square.Haar wavelets are orthogonal.



CS448: Lecture #1 54 Filters and Filter Banks4.1 De�nition of several operatorsHere we will de�ne four operators and describe their operation (Figure 1).
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 2H0

H1Figure 1: Our 4 operatorsThe �rst operator, H = H0, is the Haar moving average �lter. It outputs the averageof its current input and its previous input.The second operator, H1, is the Haar moving di�erence �lter. It outputs half thedi�erence between its current input and its previous input.The third operator, " 2, is an upsampling operator. It outputs each input twice,outputting at double the rate of its input.The fourth operator, # 2, is a downsampling operator. It outputs every other inputit receives, outputting at half the rate of the input.4.2 OverviewWe will look at two �lter banks, an analysis bank and a synthesis bank. The analysisbank will use the Haar �lter pair, consisting of a low pass and a high pass �lter. We wouldlike to pick a synthesis �lter bank such that the output of the analysis and synthesis �lterconnected in series is the same as the input into the analysis �lter, with perhaps a timedelay.First we will look at the analysis bank, then the synthesis bank, then we will putthem together and show that the aforementioned property holds.4.3 Haar analysis bankFigure 2 shows the analysis bank.The input comes in on the left side, and the output of the �lter bank leaves throughthe two paths on the right side. It is desirable (but not necessary) that the bandwidthand storage requirements in the system be equal to those of the input stream. Hence,the downsampling operators cut the bandwidths in half (compared to that of the input
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 2

 2

H0

H1Figure 2: The Haar analysis bankstream) on each of the two output streams, and the overall bandwidth requirement en-tering the analysis bank is equal to that leaving the bank. In this case the �lter bankcan be viewed as a linear transform: if the input signal had �nite length n, the outputwill also have length n, consisting of two halves, each having length n=2.4.4 Synthesis bankGiven the above analysis bank, what synthesis bank should we use to reproduce the inputon the output? The basic analysis �lter structure is shown in Figure 3. The output ofeach of the upsampling �lters has the same bandwidth as the initial input stream, butnote the outputs of �lters F and G are summed to create an output stream with thesame bandwidth as the original input stream.
+

G

F 2

 2Figure 3: The basic synthesis bankConveniently enough, it turns out that we can use the Haar moving average �lter H0as the �lter F in Figure 3 and similarly, replace G with �H1. This structure is shown inFigure 4.The complete �ltering system is shown in Figure 5.
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 2Figure 4: The Haar synthesis bank
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 2Figure 5: The complete system5 Transforms used for analysis and construction of�ltersTwo related transforms are the Fourier transform and the z transform. To see morebackground on Fourier transforms, please consult the handout on \Antialiased Shiftingand Resizing" distributed in class. Both transforms are described in detail in most signalprocessing books.5.1 The Fourier TransformThe Fourier transform is de�ned on both a discrete signal x(k) asX(!) =Xk x(k)e�jk! (4)and a continuous signal x(t) as X(!) = Z x(t)e�jk!dt:Following the signal processing tradition, we use j to denote p�1.5.2 The z TransformThe z transform is similar but does not use powers of e�j!. instead choosing powers ofz: X(z) =Xk x(k)z�k:



8 CS448: Lecture #15.3 Frequency responseThe frequency response of a �lter H is written as H(!) (or H(ej!)). In Fourier space, thefrequency response is useful for analyzing linear time invariant �lters. Why? Convolution(i.e. the operation we use to describe �lter operation) is simply multiplication. In otherwords, the operation y(n) =Xk h(k)x(n� k)in Fourier space is equivalent to Y (!) = H(!)X(!):We can see, then, that H(!), used as a �lter, serves to emphasize or deemphasize fre-quencies in the input signal. Each frequency component of the input X(!) correspondingto a frequency ! is scaled by H(!). For example, a low-pass �lter passes through com-ponents with small ! (H(!) is close to 1 when ! is small) and suppresses high-frequencycomponents (H(!) is close to 0 if ! is close to �).5.4 Frequency response of the Haar basisFirst we will look at the frequency response of H0, the moving average function. Recallthat the frequency response of an input stream is de�ned in (4). InH0 the only coe�cientsthat are non-zero are h(0) = h(1) = 1=2.Thus we can calculate the input response using (4):H0(!) = (1 + e�jk!)=2= e�jk!=2(ejk!=2 + e�jk!=2)=2= e�jk!=2 cos(!=2)and jH0(!)j = cos(!=2).With a similar derivation we can show that jH1(!)j = j sin(!=2)j.



CS448: Topics in Computer Graphics Lecture #2Mathematical Models for Computer GraphicsStanford University Tuesday, 7 October 1997Introduction to Wavelets IILecture #2: Thursday, 2 October 1997Lecturer: Denis ZorinScribe: Scott CohenReviewer: John Owens1 Filter Banks as TransformationsA �lter bank H transforms an input x into an output y = H(x). Figure 1 shows thefamiliar example of a analysis �lter bank that separates the low and high frequencies ofa discrete input signal. If the �lter bank is linear, then the corresponding transformationH0H1 # 2# 2H(n)0 xH(n)1 x y0 = D(n)H(n)0 xFilter Bank H
y1 = D(n)H(n)1 x y = 264 y0�y1 375 2 Rnx 2 Rn Figure 1: A analysis �lter bank.can be represented as a matrix H, and applying H to x is achieved by computing thematrix product y = Hx.As an example, we shall now compute the matrix H for the Haar analysis �lter bank,assuming an input x consisting of n samples (x 2 Rn). Recall that the Haar low pass�lter H0 simply averages adjacent entries of its input. This operation can be represented



2 CS448: Lecture #2by the matrix1 H(n)0 = 12 26666666664 1 11 11 1 . . . 1 11 37777777775 2 Rn�n:The Haar high pass �lter H1 computes half the di�erence between successive input sam-ples, and can be represented2 asH(n)1 = 12 26666666664 1 �11 �11 �1 . . . 1 �11 37777777775 2 Rn�n:The downsampling operation is represented as the matrix3D(n) = 266666664 1 0 0 0 0 � � � 0 00 0 1 0 0 � � � 0 00 0 0 0 1 � � � 0 0... ... ... ... ... ... ...0 0 0 0 0 � � � 1 0 377777775 2 Rn2�nwhich picks out the �rst, third, etc. entries of x. The combined action of low pass �lteringand then downsampling is represented by the matrixL(n) = D(n)H(n)0 = 12 26666664 1 1 1 1 � � � 1 1 1 1 37777775 2 Rn2�n:Similarly, the combined action of high pass �ltering and then downsampling is represented1Note that H(n)0 averages the �nal entry of x with zero since there is no next element. This is a mootpoint since the downsampling step that follows throws away the last entry of H(n)0 x.2The �lter matrix H(n)1 di�erences the �nal entry of x with zero since there is no next element. Thisboundary anomaly is, once again, a moot point since the downsampling step that follows throws awaythe last entry of H(n)1 x.3Here we have tacitly assumed that n is even. Since the downsampling operation picks out the �rst,third, etc. components of its input, the last component will be discarded.



CS448: Lecture #2 3
x 2 Rn B(n)xB(n=2)L(n)xB(n=4)L(n=2)L(n)xL(n=4)L(n=2)L(n)xFilter Bank Hsys22 2H 2HH 1010 2H 2HH 10output y = 26664 L(n=4)L(n=2)L(n)B(n=4)L(n=2)L(n)B(n=2)L(n)B(n) 37775x = Hsysx 2 RnFigure 2: Hierarchical decomposition of a signal.as B(n) = D(n)H(n)1 = 12 26666664 1 �1 1 �1 � � � 1 �1 1 �1 37777775 2 Rn2�n:The top and bottom branches of the �lter bank produce (see Figure 1)y0 = L(n)x 2 Rn2 and y1 = B(n)x 2 Rn2 ;respectively. The output of the �lter bank isy = 264 y0�y1 375 = 264 L(n)x�B(n)x 375 = H(n)x 2 Rn; where H(n) = 264 L(n)�B(n) 375 2 Rn�n:Thus, we have expressed the operation of the Haar �lter bank on an input of length n asthe matrix H(n) shown above.The output of the top branch of the �lter bank is a coarse version of the input signal.We can build a hierarchical representation of a signal by recursively �ltering the low passoutput of the �lter bank. This process is illustrated in Figure 2. In each step of therecursion, the signal rate decreases by a factor of two. If the signal is discrete and �nite(and a power of two in length), then we eventually reach a signal with one sample. In the



4 CS448: Lecture #2case of the Haar analysis �lter bank, this sample will be the average of the elements ofthe original signal. The sum of the sizes of all the outputs from the high pass steps andthe output of the �nal low pass step is equal to the size of the original input. The �nal,hierarchical representation of an input signal is a collection of signal details at variousresolution levels (scales) and a coarse version of the original signal (which is the output ofthe �nal low pass �lter). The entire process can be represented as a single transformationmatrix Hsys which one can think of as rewriting the input x in terms of another basisto produce the output y = Hsysx. Figure 2 shows the Hsys matrix that results when theHaar �lter bank is applied three times.When the input to the system is an image (a 2D signal), the �rst �lter bank applicationproduces a blurred version of the image (the low pass output) and the details of theoriginal image (sharp edges) which are not contained in the blurred version (the outputof the high pass �lter). The second low pass �lter application takes the blurred versionfrom step one and blurs it even further. The di�erences between the second blurredimage and the �rst blurred image are captured in the output of the second high pass�lter. This recursive process transforms an image into a collection of images that captureimage details at di�erent scales and one �nal coarse image.2 The Haar Wavelet BasisIf a hierarchical decomposition via �lter banks writes a discrete signal in terms of newbasis. Can we �nd a similar decomposition for continuous signals? Answering thisquestion is where the dilation equation�(t) = 2Xk h0(k)�(2t� k) (1)and the wavelet equation w(t) = 2Xk h1(k)�(2t� k) (2)come into the picture. The function �(t) is called the scaling function, and the functionw(t) is called the wavelet function. The dilation equation and wavelet equation musthold for all t. Replacing t by 2j�1t gives�(2j�1t) = 2Xk h0(k)�(2jt� k) (3)w(2j�1t) = 2Xk h1(k)�(2jt� k) (4)This last set of equations is more convenient for describing the construction of the waveletbasis corresponding to a �lter bank.We now illustrate the wavelet basis construction from the dilation equations using theHaar �lter bank. Recall that the low pass Haar �lterH0 is de�ned by h0(0) = h0(1) = 1=2



CS448: Lecture #2 50 11 �(t) = 10 12 1�(2t) + �(2t� 1)10 12 1Figure 3: The Haar scaling functions �(t), �(2t), and �(2t� 1).0 11 w(t) = 10 12 1�(2t) � �(2t� 1)10 12 1�1 12Figure 4: The Haar wavelet function w(t).(all other coe�cients are zero). Substituting the Haar low pass �lter into equation (1),we get �(t) = �(2t) + �(2t� 1):The solution to this recurrence is the Haar scaling function�(t) = ( 1 if t 2 [0; 1)0 otherwise : (5)The functions �(t), �(2t), and �(2t� 1) are shown in Figure 3. The high pass Haar �lterH1 is de�ned by h1(0) = 1=2 and h1(1) = �1=2. Substituting into (2) yieldsw(t) = �(2t)� �(2t� 1):It follows easily from (5) that the Haar wavelet function isw(t) = 8><>: 1 if t 2 [0; 1=2)�1 if t 2 [1=2; 1)0 otherwise :The wavelet function w(t) is shown in Figure 4. The scaling function �(t) is the contin-uous analog of the discrete low pass �lter H0. Applying �(t) to f(t) yields<�; f > = Z 1�1 �(t)f(t) dt = Z 10 f(t) dt;



6 CS448: Lecture #2the average value of f over the interval [0; 1). The wavelet function w(t) is the continuousanalog of the discrete high pass �lter H1. Applying w(t) to f(t) yields<w; f > = Z 1�1 w(t)f(t) dt = Z 120 f(t) dt� Z 112 f(t) dt:The �lter � is an averaging operator, and the �lter w is a di�erencing operator.Now consider functions de�ned on the interval [0; 1). Let V j denote the set of functionsthat are constant on the 2j subintervals [l=2j; (l+1)=2j), l = 0; 1; : : : ; 2j�1. Any functionin V j can be represented exactly by a linear combination of the 2j functions�jk(t) = �(2jt� k); k = 0; : : : ; 2j � 1:This should be clear (at least for the case j = 3) from the upper left hand corner inFigure 5 which shows the 2j = 8 functions �3k = �(23t� k), k = 0; : : : ; 7. Similarly, thewavelet functions are denoted bywjk(t) = w(2jt� k); k = 0; : : : ; 2j � 1:We collect the scaling and wavelet functions at �xed resolution level j in the sets�j = f �jk(t) : k = 0; : : : ; 2j � 1 g and 
j = f wjk(t) : k = 0; : : : ; 2j � 1 g;respectively.As previously mentioned, �j is a basis for V j. Applying equations (3) and (4) withj = 3 to the functions �3k(t) = �(23t � k), k = 0; : : : ; 7 yields the functions �2k(t) =�(22t� k), k = 0; : : : ; 3 and w2k(t) = w(22t� k), k = 0; : : : ; 3. In detail,266666666666664 �20�21�22�23w20w21w22w23 377777777777775 = 2H(8) 266666666666664 �30�31�32�33�34�35�36�37 377777777777775 :The results of this step are shown in the middle and last columns of the �rst row. The�nal column in the �rst row shows the separation of the low pass output functions �2from the high pass output functions 
2. Note that �2[
2 is also a basis for V 3. The lowpass output functions are further re�ned by once again applying equations (3) and (4),this time with j = 2. In matrix notation,26664 �10�11w10w11 37775 = 2H(4) 26664 �20�21�22�23 37775 :



CS448: Lecture #2 7
"box" basis

wavelet basis

�3 �2
2�1
1
2�0
0
1
2H0;H1
H0;H1H0;H1
H0;H1H0;H1H0;H1H0;H1

Figure 5: The Haar wavelet basis.This de�nes the four new functions �1k(t) = �(2t� k), k = 0; 1, and w1k(t) = w(2t� k),k = 0; 1 shown in the second row of Figure 5. The last column of this row shows theseparation of the low pass outputs �1 and high pass outputs 
1. The set �1 [ 
1 [ 
2is, again, a basis for V 3. Finally, the third row shows the result of applying the dilation



8 CS448: Lecture #2and wavelet equations with j = 1 to �1k(t) = �(2t � k), k = 0; 1 to produce the scalingfunction �0k(t) = �(t � k), k = 0 and the wavelet function w0k(t) = w(t � k), k = 0.More precisely, " �00w00 # = 2H(2) " �10�11 # :The eight functions �00, w00, w10, w11, w20, w21, w22, w23 in �0 [ 
0 [ 
1 [ 
2 form thethe Haar wavelet basis for V 3. In general, the Haar wavelet basis for V j contains the 2jfunctions in �0 [ 
0 [ 
1 [ � � � [ 
j�1.3 Some ExamplesSuppose we have a function4 x(t) de�ned on [0; 1) byx(t) = 8>>><>>>: 9 if t 2 [0; 1=4)7 if t 2 [1=4; 1=2)3 if t 2 [1=2; 3=4)5 if t 2 [3=4; 1) :The function x(t) is in the space V 2. In terms of the basis �2, x(t) has representationx = 26664 9735 37775 :A graphical representation of x(t) in terms of the basis �2 isx(t) = 9 �+ 7 �+ 3 �+ 5 � �20�21�22�23 .Applying the Haar sythesis �lter bank H(4) to x givesz = H(4)x = 26664 841�1 37775 = 26664 (9 + 7)=2(3 + 5)=2(9 � 7)=2(3 � 5)=2 37775 :4This example is taken directly from the paper \Wavelets for Computer Graphics: APrimer (Part 1)" by Eric J. Stollnitz, Tony D. DeRose, and David Salesin in IEEE Com-puter Graphics and Applications, 15(3):76-84, May 1995. It is also available online athttp://www.cs.washington.edu/research/graphics/projects/wavelets/article/.



CS448: Lecture #2 9The elements of z are the coe�cients of the representation of x(t) in terms of the basis�1 [ 
1. x(t) = 8 �+ 4 �+ 1 �+ � 1 � �10�11w10w11 .Applying the Haar analysis �lter bank H(2) to the �rst two elements in z and leaving thehigh pass outputs in place givesy = 26664 H(2) " z1z2 #z3z4 37775 = 26664 621�1 37775 = 26664 (8 + 4)=2(8� 4)=21�1 37775 :The elements in y are the coe�cients of the representation of x(t) in terms of the Haarwavelet basis �0 [ 
0 [ 
1.x(t) = 6 �+ 2 �+ 1 �+ � 1 �
�00w00w10w11 .The Haar wavelet transform of the signal x = [ 9 7 2 5 ] is y = [ 6 2 1 � 1 ].We can also compute the wavelet transform of x by multiplying the system �lter bankmatrixHsys by x. Figure 2 shows Hsys when the Haar analysis �lter bank is applied threetimes. In the example in this section, we only need two applications and the input vectorhas length n = 4. This results in the matrixHsys = 264 L(2)L(4)B(2)L(4)B(4) 375 = 26664 14 14 14 1414 14 �14 �1412 �12 0 00 0 12 �12 37775 :



10 CS448: Lecture #2The system output is y = Hsysx = 26664 621�1 37775 ;just as we derived previously using the hierarchical construction.In general, computing the representation of an n-dimensional vector in a di�erentbasis via an n � n matrix{vector multiplication requires O(n2) arithmetic operations.For computing the Haar wavelet transform, however, we can do better. The hierarchicalconstruction given at the beginning of this section requires only O(n) arithmetic opera-tions. In fact, if applying the analysis �lter bank to an n-sample signal requires at mostkn operations for some constant k (as it does for the Haar �lter bank), then the totalnumber of operations to compute the wavelet transform is at mostkn+ kn2 + kn4 + � � �+ k n2log2 n � kn(1 + 12 + 14 + � � �) � 2kn = O(n):Essentially, the hierarchical construction implements a fast matrix-vector multiply bytaking advantage of the structure of Hsys.Another informative example to consider is the Haar transform of a constant signal,say x = [ c c c c c c c c ]. Computing the Haar transform of x is equivalent todecomposing the function x(t) � c, t 2 [0; 1) in terms of the basis �0 [ 
0 [ 
1 [ 
2 forV 3. Applying the Haar analysis �lter bank three times givesx = 266666666666664 cccccccc 377777777777775! H(8)x = 266666666666664 cccc0000 377777777777775! 266666666666664 H(4) 26664 cccc 377750000 377777777777775 = 266666666666664 cc000000 377777777777775! 266666666666664 H(2) " cc #000000 377777777777775 = 266666666666664 c0000000 377777777777775 = y:The output y contains only one nonzero coe�cient, namely the coe�cient for �00(t) =�(t). This transform result is obvious from the functional point of view since x(t) = c�(t).Discarding the zero coe�cients in the output leaves a very compact representation of thesignal x (one which is eight times smaller than the original representation). In general,the Haar basis provides a compact representation for parts of a signal with little variation.



CS448: Lecture #2 11For the �nal example of this section, consider the Haar transform of the delta signal
x = 2666666666666666666666666666666664

0000000100000000
3777777777777777777777777777777775 �! Hsysx = 2666666666666666666666666666666664

116� 116�1800�1400000�120000
3777777777777777777777777777777775 = y:

Note that 11 of the 16 output coe�cients are zero. This is not the case for the Fouriertransform of x which contains energy at all frequencies. The coe�cients of the Haarbasis functions whose support interval (i.e. the interval over which the basis function isnonzero) does not overlap with the support of the represented function are all zero. TheHaar basis allows one to make spacially localized (at some scale) changes to a functionby simply adjusting the coe�cient(s) for the basis function(s) of the appropriate scale (j)and location (k). This is very di�erent from the Fourier representation in which a changeto a single basis function coe�cient causes spacially global changes to the representedfunction.4 Orthogonal Filter Banks and Wavelet BasesIn Section 1, we showed how to view a �lter bank as a transformation represented by asquare matrix H (assuming the input and output are the same size). We say that a �lterbank is orthogonal if its corresponding matrix is orthogonal. A matrix H is orthogonalif its inverse is equal to its transpose: HTH = HHT = I. The set of column vectorsand the set of row vectors of an orthogonal matrix are both orthonormal sets of vectors(it would make more sense to call such matrices orthonormal, but the historical term forsuch matrices is orthogonal). With a suitable scaling of the input before low pass andhigh pass �ltering, the Haar �lter bank is indeed orthogonal. For example, for n = 4 we



12 CS448: Lecture #2have H(n) = H(4) = 264 L(4)�B(4) 375 = 12 26664 1 1 1 11 �1 1 �1 37775 ;and (H(n))TH(n) = H(n)(H(n))T = 12I:Therefore, the matrix p2H(n) is orthogonal. A modi�ed Haar �lter bank which includesa scaling by p2 before the low pass and high pass operations is orthogonal.A basis of functions f0; f1; : : : (for some class of functions on the real line) is anorthonormal basis i�<fi; fj> = Z 1t=�1 fi(t)fj(t) dt = ( 1 if i = j0 if i 6= j :It is very easy to write a function f in terms of an orthonormal basis. Taking the innerproduct with fj with both sides of f =X aifigives <f; fj> = <Xi aifi; fj>= Xi ai <fi; fj><f; fj> = aj:Therefore, the coe�cient aj in the decomposition of f is simply the inner product <f; fj>of f with the jth basis function fj. In Section 2 we saw how a �lter bank gives rise toa wavelet basis via the dilation and wavelet equations (at least in the case of the Haar�lter bank). What conditions on the �lters will guarantee an orthonormal wavelet basis?It turns out that orthogonality of a �lter bank implies orthonormality of the basisgenerated by the �lter bank though the dilation and wavelet equations. The proof of thisfact will be given in the next lecture. Since the normalized Haar �lter bank is orthogonal,this fact implies that the corresponding normalized Haar wavelet basis is orthonormal.The wavelet basis given in Section 2 is not normalized, but its orthogonality can beveri�ed directly from the equations for its scaling function �(t) and wavelet functionw(t).



CS448: Topics in Computer Graphics Lecture #3Mathematical Models for Computer GraphicsStanford University Tuesday, 14 October 1997Construction of Orthogonal WaveletsLecture #3: Tuesday, 7 October 1997Lecturer: Denis ZorinScribe: Liwei HeReviewer: Scott CohenIn this lecture we will discuss the the criteria used in the design of wavelet �lterbanks. We will show the design process using the the Daubechies wavelet as an example(Figure 1).
D4

W4Figure 1: The scaling function of the Daubechies wavelet (for a �lter of length 4) is onthe top and its wavelet function is at the bottom. Note that the shape of this waveletand the Haar wavelet resembles waves, hence the name.1 Properties of Wavelet Bases and Filter BanksThe �rst step in the design process is to formulate a set of requirements for the �lterbank and the associated basis. The following �ve properties are particularly important:



2 CS448: Lecture #31. Finite �lters. Also known as �lters with Finite Impulse Response (FIR). The basisfunctions derived from such �lters have compact support. For e�ciency, we wouldlike to make our �lters as short as possible.2. Orthogonality. For orthogonal �lter banks one �lter essentially de�nes the wholebank; choosing a synthesis �lter with good numerical properties (for example, sta-bility) guarantees that the corresponding analysis �lter also has the same properties.For orthonormal bases in functional spaces it is easy to compute the coe�cients:we just need to take the dot product of the input function with each basis function.Orthogonal �lter banks allow implementations with minimal quantization error.3. Good approximation. We want to have a set of basis functions that yields a goodapproximation to functions with as few coe�cients as possible. Clearly, this cannotbe achieved for arbitrary function; however, we may require that all su�cientlysmooth functions are approximated with few coe�cients.4. Symmetry. Nonsymmetric low-pass �lters are particularly undesirable for image-processing applications: such �lters lead to \smeared" images after low-pass �lter-ing.5. Regularity. Sometimes it is desirable to have a smooth approximation even aftermany terms in the approximation are truncated. Suppose we express f as a linearcombination of a wavelet basis functions fi:f = 1Xi=0 aifi where ai ! 0 as i!1:The function g =Pki=0 aifi is an approximation of the function f after we truncatethe coe�cients after some number k. If the basis is not regular, it is likely that g willnot be smooth because the only way to build a smooth function from non-smoothbasis functions is to have non-smooth features of basis functions cancel each other.Unfortunately, the constraints imposed by the requirements of orthogonality and sym-metry are too restrictive: the only �lter bank that satis�es both requirements is the Haar�lter bank. Further, good approximation and high regularity can be achieved only at theexpense of increasing the length of the �lter. A trade-o� has to be made depending on aparticular application. For example, the Daubechies wavelet basis has compact support,is orthogonal, and has maximal approximation order among all bases generated by �ltersof given size.A set of coe�cients h(k) can be computed according to the requirements that we set.We will show how the coe�cients of the Daubechies wavelet are constructed in Section 5.With these coe�cients, we can solve for the scaling function � of the wavelet basisusing the dilation equation.



CS448: Lecture #3 32 The Cascade AlgorithmFor the Haar wavelet we could guess the solution of the dilation equation. In general,solutions of dilations equations cannot be expressed using elementary functions. Ratherthen providing formulas for solutions, we describe an algorithm that for a large class ofdilation equations yields a solution when one exists. This algorithm is called the cascadealgorithm.Recall that the dilation equation is�(t) = p2Xk c(k)�(2t� k): (1)Note that we use normalized �lter coe�cients, so the coe�cient in front of the sumin the right-hand side is p2 not 2. Given a set of coe�cients c(k), the cascade algorithmsolves the dilation equation iteratively. The iteration begins, for example, with the Haarscaling function, �0(t) = ( 1 if t 2 [0; 1)0 otherwise :In the ith step, we plug �i�1 into the right hand side of the dilation equation to obtain�i: �i(t) = p2Xk c(k)�i�1(2t� k): (2)Each iteration hopefully takes us closer to the scaling function we are looking for.The cascade algorithm converges when �i = �i�1. In the case of the Haar �lter bank(c(0) = p22 , c(1) = p22 ), convergence is achieved in the �rst iteration.
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1 2Figure 2: Cascade algorithm uses Haar scaling function as starting point and solves thescaling function iteratively. Shown here are �0, �1, �2, �3, and �1.A more interesting example is to use a set of coe�cients where c(0) = 1=4, c(1) = 1=2,c(2) = 1=4. �1(t) = p2(14�0(2t) + 12�0(2t� 1) + 14�0(2t� 2)) (3)



4 CS448: Lecture #3In the limit, the scaling function we get, with this particular set of coe�cients, is a \hat"function (see Figure 2). Remarkably, this is a linear spline basis function. All other splinebasis functions can be found as solutions of dilation equations for a particular choice ofcoe�cients.Using the cascade algorithm, we can derive some properties of the basis functionsgenerated by a �lter bank directly from the properties of the �lters, without havingexplicit expressions for the basis functions themselves.3 Orthogonality of Wavelet BasesTo illustrate the idea of deriving the properties of the wavelet basis from the propertiesof a �lter, let us prove that if a wavelet �lter bank matrix is orthogonal, then the set ofwavelet basis functions is orthonormal.The coe�cients to the dilation equation are found in the �lter bank matrix F :F = 264 L�B 375 = 2666666664 c(0) c(�1) c(�2) � � �c(2) c(1) c(0) � � �� � � � � � � � � � � �d(0) d(�1) d(�2) � � �d(2) d(1) d(0) � � �� � � � � � � � � � � � 3777777775If F is orthogonal, the following relations among the coe�cients must hold:Xn c(n)c(n� 2k) = �(k) (4)Xn d(n)c(n � 2k) = 0Xn d(n)d(n � 2k) = �(k)Note that �(k) is 1 when k = 0 and is 0 elsewhere.A wavelet basis is composed of the top level scaling functions �(t�k) and the waveletfunctions w(2it� k) at all scales. In order to show that a wavelet basis orthonormal, wemust prove that the inner products of between di�erent function are 0, while the innerproduct of a basis function with itself is 1.<�(t� k1); �(t� k2)> = �(k1 � k2) (5)<�(t� k1); w(2it� k2)> = 0 (6)<w(2it� k1); w(2jt� k2)> = �(i� j)�(k1 � k2) (7)We use proof by induction in the context of the cascade algorithm to show Equation (5)�rst. Note that it is su�cient to prove Equation (5) for k1 = 0, because we can reducethe general case to the the case t1 = 0 by replacing t with t+ k1.



CS448: Lecture #3 5We start from the base case �0(t � k), which are the Haar scaling functions. Theyare known to be orthonormal: <�0(t); �0(t� k)> = �(k)then we will prove that<�i(t); �i(t� k)> = �(k) =) <�i+1(t); �i+1(t� k)> = �(k)From the dilation equation,<�i+1(t); �i+1(t� k)> = Z [p2Xk1 c(k1)�i(2t� k1)][p2Xk2 c(k2)�i(2t� k2)]= 2 Xk1k2 c(k1)c(k2) Z �i(2t� k1)�i(2(t� k)� k2)dtLet T = 2t� k1, then t = (T + k1)=2, dt = dT=2, and<�i+1(t); �i+1(t� k)> = Xk1k2 c(k1)c(k2) Z �i(T )�i(T + k1 � k2 � 2k)dTBy the induction hypothesis <�i(t); �i(t� k)> = �(k),<�i+1(t); �i+1(t� k)> = Xk1k2 c(k1)c(k2)�(k1 � k2 � 2k)By the de�nition of �, the only non-zero terms in the summation are those when k2 =k1 � 2k, <�i+1(t); �i+1(t� k)> =Xk1 c(k1)c(k1 � 2k)Now let n = k1, <�i+1(t); �i+1(t� k)> =Xn c(n)c(n� 2k)This is �(k) given by Equation (5). Thus Equation (5) is true. Equation (6) and Equa-tion (7) can be proven by similar arguments.4 ApproximationA good approximating basis will have only a few large coe�cients for a smooth functionand leave the rest relatively small. If we truncate the summation, the reconstructedfunction is still very close to the original f .The quality of approximation for a basis is related to the number of the vanishingmoments of the basis functions. We say that a function has P vanishing moments ifZ fitkdt = 0 where k 2 [0::P � 1]



6 CS448: Lecture #3If f(t) is smooth around some point t0, it can be represented by a Taylor's series expansionwith remainder R(t), f(t) = P�1Xj=0 f (j)(t0)(t� t0)jj! + (t� t0)PR(t)and the coe�cient ai for the basis function fi can be computed by taking the dotproduct of f(t) and each component function of the basis, since the basis is orthonormal1ai = < f; fi >= Z f(t)fi(t)dt= Z [P�1Xj=0 f (j)(t� t0)jj! + (t� t0)PR(t)]fi(t)dt= P�1Xj=0 Z f (j)(t� t0)jj! fi(t)dt+ Z (t� t0)PR(t)fi(t)dtIf the basis function fi has P vanishing moments, all the terms in the summation willvanish since they are all linear combinations of monomials tk where k < P .ai = Z (t� t0)PR(t)fi(t)dtSuppose the original wavelet function w(t) has support I0 and fi(t) = w(2jt � k), withk2j � t0. Then fi(t) has support I with jIj = jI0j2j , andai � C ZI jt� t0jP dt � D2�jP C;D are some constants not depending on PThis formula indicates that the magnitude of coe�cients rapidly decreases as P grows.The following condition on �lters ensures that the wavelets have P vanishing moments:Xn (�1)nnkh0(k) = 0 where k 2 [0::P � 1] (8)We state this condition without a proof.5 Computing the Daubechies Filter Bank Coe�cientsNow we are ready to compute the coe�cients of the Daubechies �lter bank. Usingthe cascade algorithm we can �nd the scaling function and the wavelet with arbitraryprecision.1All integrals without speci�ed range are taken over (�1 : : :+1).



CS448: Lecture #3 7The Daubechies �lter bank is orthogonal and FIR, and has the best approximationfor a given �lter length. We compute the coe�cients for the case when the �lter lengthis assumed to be 4. Our �lter bank matrix will look something like this,264 c0 c1 c2 c3 0 0 0 � � �0 0 c0 c1 c2 c3 0 � � �� � � � � � � � � � � � � � � � � � � � � � � � 375If the coe�cients satisfy c20 + c21 + c22 + c23 = 1 (9)c0c2 + c1c3 = 0; (10)then the �lter bank matrix will be orthogonal. As we have proved in Section 3, this guar-antees that the wavelet basis is orthonormal. Since we have four coe�cients, we still havetwo degrees of freedom left to maximize the approximation order. Using Equation (8),we get the two remaining constraints, that ensure that the wavelet has two vanishingmoments: c0 � c1 + c2 � c3 = 0 when k = 0 (11)�c1 + 2c2 � 3c3 = 0 when k = 1 (12)By solving the system of equations together with Equation (9) and (10), we getc0 = 1 +p34p2 ; c1 = 3 +p34p2 ; c2 = 3�p34p2 ; c3 = 1�p34p2For longer �lters, we can obtain bases with more vanishing moments. The equationsfor coe�cients can be solved explicitly only for small �lter lengths; for longer �lters thevalues for coe�cients can be computed numerically.



CS448: Topics in Computer Graphics Lecture #4Mathematical Models for Computer GraphicsStanford University Friday, 17 October 1997Biorthogonal WaveletsLecture #4: Thursday, 9 October 1997Lecturer: Denis ZorinScribe: Pierre LouveauxIn the previous lecture we dropped symmetry in favor of orthogonality, and thusarrived at the Daubechies wavelets. This time around we relinquish orthogonality andsettle for the next best thing, biorthogonality. Without orthogonality, the constructionof our �lters becomes subject to far fewer constraints; as a result, the process of meetingthe other desired criteria is more involved.1 Giving Up on OrthogonalityRecall the set of properties we identi�ed as desirable for a wavelet �lter:1. Finite Impulse Response.2. Orthogonality.3. Good approximation.4. Symmetry.5. Regularity (smoothness).Unfortunately, enforcing FIR, orthogonality, and symmetry together yields nothing betterthan the Haar case. To see this, consider a symmetric signal of length, say, 6:c(0) c(1) c(2) c(3) c(4) c(5)= c(0) c(1) c(2) c(2) c(1) c(0)Now consider various even shifts of this signal:c(0) c(1) c(2) c(2) c(1) c(0)0 0 c(0) c(1) c(2) c(2) c(1) c(0)0 0 0 0 c(0) c(1) c(2) c(2) c(1) � � �By hypothesis, c(0) 6= 0 (since the signal has length 6). Because of the orthogonalitycondition Xn c(n)c(n� 2k) = �(k)we must have c(2)c(0) = 0 hence c(2) = 0, and c(1)c(0) = 0 hence c(1) = 0. Everycoe�cient except c(0) must be 0, so all �nite, symmetric, orthogonal �lters have theform c(0) 0 0 � � � 0 0 c(0) :Of those, the only reasonable low-pass �lter is the one with length 2, i.e., the Haar �lter.



2 CS448: Lecture #42 Perfect Reconstruction from General Filter BanksIn Lecture #1 we saw that if we use the Haar �lter pair in our analysis bank, all we needfor perfect reconstruction of the input signal is another copy of the Haar �lter pair, withthe sign of H1 ipped, in our synthesis bank. But what are the conditions for perfectreconstruction in the general case?Here is the general structure we will consider:H1H0 F0# 2# 2 synthesis bankanalysis bank " 2" 2 F1The analysis bank can be represented as a single matrix " LB #, where L correspondsto H0 followed by downsampling and B corresponds to H1 followed by downsampling.In the case of an orthogonal �lter bank, " LB # is orthogonal. It is also possible to use anon-orthogonal " LB #, but for perfect signal reconstruction the synthesis bank must beof the form h ~L ~B i such thath ~L ~B i � " LB # = ~L � L + ~B �B = Ias well as " LB # � h ~L ~B i = " L � ~L L � ~BB � ~L B � ~B # = " I 00 I # (1)(where each I represents an identity matrix and each 0 a zero matrix). Equation (1)gives us constraints in terms of coe�cients:L � ~L = I () Xn h0(k)f0(k � 2n) = �(n)L � ~B = 0 () Xn h0(k)f1(k � 2n) = 0 (2)B � ~L = 0 () Xn h1(k)f0(k � 2n) = 0 (3)B � ~B = I () Xn h1(k)f1(k � 2n) = �(n)



CS448: Lecture #4 33 Alternating FlipConditions (2) and (3) above denote the biorthogonal nature of the system: L is orthog-onal to ~B and B is orthogonal to ~L. We can ensure that some of the biorthogonalityconditions are satis�ed requiring that the coe�cients of the mutually orthogonal �ltersbe the same but in reverse order and with every other sign ipped:f0(k) = (�1)kh1(N � k)f1(k) = �(�1)kh0(N � k)(N is the order of the �lters.)It also turns out that, if we use alternating ip, L � ~L = I is equivalent to B � ~B = I;so we are now left with only one condition to worry about: how to choose f0 and h0.We no longer have a single dilation equation as in the orthogonal case, but rather apair of dilation equations: �(t) = 2Xk h0(k)�(2t� k)~�(t) = 2Xk f0(k)~�(2t� k)What does this mean in the continuous domain? There is a nice interpretation in termsof bases; but �rst we should introduce the concept of multiresolution analysis.4 Multiresolution AnalysisAll wavelets exhibit a multiresolution structure in the following sense: they are made upof nested sets of increasingly re�ned and powerful bases. Given a scaling function � andits associated wavelet function w, we can form the spaceV0 = spanh�(t� k)i = spanh�(20t� k)ispanned by the translates of �, and the spaceW0 = spanhw(t � k)i = spanhw(20t� k)ispanned by the translates of w. By scaling � we can also buildV1 = spanhw(2t� k)i = spanhw(21t� k)i;which (provided that w is the wavelet derived from � ) will be exactly the sum of V0 andW0: V1 = V0 +W0



4 CS448: Lecture #4What this means is that any function in V1 can be represented as the sum of a functionin V0 and a function in W0. Further scaling of � and w by powers of 2 allows us to de�nean in�nite sequence of spaces Vj and Wj:Vj = spanh�(2jt� k)iWj = spanhw(2j t� k)iAt every level we have Vj = Vj�1 +Wj�1, which implies the in�nite nesting of the bases:V0 � V1 � V2 � : : :Note: All of the above applies in both orthogonal and biorthogonal cases; but if theVj 's and Wj's are mutually orthogonal, i.e.,Vj ? Wj for all jor (by de�nition)hfVj � fWj i = 0 for all functions fVj 2 Vj and fWj 2 Wj ,then we have orthogonal multiresolution and we write Vj = Vj�1 � Wj�1 instead ofVj = Vj�1 +Wj�1.In summary, here are the de�ning properties of a multiresolution set fVjg of functionalspaces:1. Vj � Vj+1 and Sj Vj = L22. f(t) 2 Vj () f(2t) 2 Vj+13. f(t) 2 Vj () f(t� k) 2 Vj5 Dual BasesWe start with �nite-dimensional spaces. Let y be a vector such that y = P aiyi for someset of coe�cients ai. If the yi's form an orthonormal basis, �nding the coe�cients ai isparticularly straightforward: each ai is equal to the inner product hyi; yi.If the fyig basis is not orthogonal, however, we lose the luxury of such a simplecomputation. But it turns out that it is possbile to �nd a set of vectors f~yig such thatai = h~yi; yi: (4)Since y = P aiyi, we have h~yi; yi = hy; ~yii =Xj aihyi; ~yji



CS448: Lecture #4 5and the ~yi vectors are therefore determined by the set of conditionshyi; ~yji = �(i� j) (5)or, in matrix notation, Y � ~Y = I:This property makes fyig and f~yig dual bases. Two bases are said to be duals ofeach other if there exists a one-to-one correspondence between them such that the innerproduct of corresponding basis elements is 1 while the inner product of non-correspondingelements is 0.The same concept applies to functional spaces. If a �lter bank provides perfect re-construction of the input signal, the bases generated by the synthesis functions ~� and ~ware duals of the bases generated by the analysis functions � and w. Given fVig and fWigas de�ned in Section 4, this duality can be seen in the relationsVi ? ~Wiand ~Vi ? Wi:Since the dual wavelets at level i are orthogonal to the primal scaling functions at thesame level, i.e., h ~w(2it� k); �(2it� k)i = 0; 1~� and ~w give us a way to compute the coe�cients of � and w much in the same waythat property (5) allows us to compute the ai's in (4). To see this, consider the followinganalysis of an input signal f :f =Xk ak�(t� k) +Xi; k bikw(2it� k)We can obtain the ak's and bik's as follows:ak = hf; ~�(t� k)ibik = hf; ~w(2it� k)i6 Where to Enforce Which ConditionsThe desirable conditions we started out with were formulated for single wavelet bases,whereas we are now dealing with two wavelet bases | a primary and a dual. How doesthat change the way we enforce the conditions?Symmetry is not a problem: an immediate consequence of the alternating ip is thateach �lter in the primary bank is symmetric with respect to the corresponding �lter inthe dual bank.1In fact h ~w(2it� k); �(2jt� k)i = 0 for any j � i.



6 CS448: Lecture #4Good approximation, in the case of a single wavelet, required a large number ofvanishing moments. Now that we have two distinct wavelets w and ~w, which one shouldhave many vanishing moments? The same argument applies as in the single-basis case ofLecture #3; there it was shown that a coe�cient ai would be small if the basis functionfi had many vanishing moments. The derivation hinged on the conditionai = hf; fiiin order to arrive at the expressionai = Z (t� t0)PR(t)fi(t)dtand, ultimately, at a bound on the magnitude of ai. With our dual wavelets, a similarderivation would start out with bik = hf; ~w(2it� k)i:Immediately we see that the dual wavelet ~w (as opposed to the primal w) is the one thatshould have many vanishing moments.As for smoothness, recall that when a function gets projected onto a basis and someof the projected elements are discarded, the truncated projection takes on the localproperties of the basis | in particular, smoothness or jaggedness. For instance, if afunction f = 1Xi=0 aifiis approximated by ~f = JXi=0 aifi;~f takes on the smoothness properties of the fi's. In compression applications, truncationis applied after the analysis stage, which means that the truncated terms come from theprimary basis. Therefore we should strive for a smooth analysis �lter. In other words,the smoothness condition should be enforced on the primal w.7 Spline WaveletsWe conclude with a simple example of a biorthogonal wavelet basis. As we have seenin the beginning, orthogonality prevents us from constructing �nitely supported scalingfunctions; in particular, we cannot use spline basis functions as scaling functions. Recallour discussion of the cascade algorithm: a linear spline satis�es the scaling equation withcoe�cients 1=4, 1=2 and 1=4. In addition to symmetry, splines have one more very nicefeature: out of all scaling functions with given support, they have maximal smoothness.



CS448: Lecture #4 7This is exactly one of our requirements for the scaling functions/wavelets of the synthesis�lter bank.In the simplest spline �lter bank, F0 is the linear spline �lter 1=4, 1=2, 1=4. Recall thatwe can get the analysis �lter H1 by alternating ip. This leaves us one �lter to choose,say, H0. The simplest �lter satisfying Equation (2) has just one coe�cient h(0) = 1. Thiscompletely determines the �lter. However, it is clear that the analysis �lters are quitebad: the low-pass part of the signal is just subsampled version of the �lter. Note thatthe high-pass �lter of the synthesis �lter has one vanishing moment. By increasing thesupport of the analysis �lters, we can improve them, ensuring existence of correspondingwavelet basis and greater number of vanishing moments. For example, if the support sizeis increased to 4, we obtain coe�cients �1=8, 1=4, 3=4, 1=4, �1=8 for the analysis �lterH0. This is so-called 5=3 spline �lter bank (the numbers refer to the number coe�cientsin the analysis and synthesis low-pass �lters.)This �lter bank is shown below. # 2# 2 synthesis bank" 214 ; �12; 14�18 ; 14 ; 34; 14 ; �18 18 ; 14; �34; 14 ; 18analysis bank " 2 14; 12 ; 14



CS448: Topics in Computer Graphics Lecture #5Mathematical Models for Computer GraphicsStanford University Thursday, Oct 23 1997Application of Wavelets in GraphicsLecture #5: Tuesday, Oct 14 1997Lecturer: Eric VeachScribe: Li-Yi WeiReviewer: Li-Wei HeIn this lecture we will talk about various applications of wavelets in graphics, withconcentration on wavelet radiosity. Typical applications of wavelets in graphics and imageprocessing include:1. Image editing, compression, and retrieval [3, 4].2. Curve and surface editing, compression, and variational modeling [2, 6].3. Global illumination problems (e.g. radiosity) [7, 8, 9].The bookWavelets for Computer Graphics: Theory and Applications by Stollnitz, DeRose,and Salesin [1] gives an overview of these applications.1 Image Compression using WaveletsOne successful application of wavelets in image compression is �nger print �le compression[5]. The FBI has about 30 million �nger print images, each with size about 10M bytes.Wavelet compression outperforms JPEG in compressing those �nger print �les. The mainproblem with JPEG is that it introduces blocking artifacts at high compression ratios,which can obscure the �ngerprint \minutiae" (e.g. ridge endings).Generally, image compression consists of the following steps:1. Choose a basis. First we may want to divide the image into �xed sized blocks(e.g. as in JPEG). Then we choose a set of basis functions that has the desiredproperties, such as smoothness, vanishing moments, symmetry.2. Transformation of the image, by projecting it into the chosen basis.3. Quantization of the coe�cients.4. Coding. After quantization we could further compress the coe�cients using lossyor lossless compression techniques.The main reason for dividing the image into �xed sized blocks is to make the basisfunctions local. With wavelets this is not necessary since the basis functions already havelocal support.Given a set of 1D scaling functions f�i;j(x)g and wavelets f i;j(x)g, there are twoways to construct a 2D basis: standard basis and non-standard basis.



2 CS448: Lecture #51.1 Standard BasisIn this case, we �rst apply a wavelet transform to all the rows of the original image, thenwe apply a wavelet transform to all the columns of the resulting coe�cients. LetVi = Spanf�i;j(x)g; Wi = Spanf i;j(x)g;V 0i = Spanf�i;j(y)g; W 0i = Spanf i;j(y)gfrom previous lectures we knowVn = V0 �W0 �W1 � � � �Wn�1V 0n = V 00 �W 00 �W 01 � � � �W 0n�1Assume that the initial image I 2 Vn � V 0n, we can expand Vn � V 0n to beVn � V 0n = V0 � V 00 � n�1Xj=0 V0 �W 0j � n�1Xj=0Wj � V 00 � n�1Xi=0 n�1Xj=0Wi �W 0jIn other words, we project the original image I 2 Vn � V 0n into the following set of basisfunctions: �00(x)�00(y) �00(x) j0k0(y)�jk(x) 00(y)  jk(x) j0k0(y)where j = 0 : : : n� 1, k = 0 : : : 2j � 1, and similarly for j0; k0.The disadvantage of the above set of basis functions is that they have bad supportshape. For example, for those �00(x) j0k0(y), they could be wide in the x dimension andnarrow in the y dimension(they look like horizontal strips). Those basis functions won'trepresent the original image locally, so they are a bad set of basis functions.1.2 Non-standard BasisIn contrast with standard basis function, non-standard basis transforms the originalimage In 2 Vn � V 0n in an interleaved fashion. First we use one pass of wavelet transformto all the rows, then we do the same thing for all the columns. After one pass the imagewill look like this: 0@ � Vn�1 � V 0n�1 � � Vn�1 �W 0n�1 �� Wn�1 � V 0n�1 � � Wn�1 �W 0n�1 � 1AWe can repeat the above process to the upper-left subimage In�1 2 Vn�1 � V 0n�1 andconitue in similar fashion until we have I0 2 V0 � V 00 . The above operations could bewritten algebraically as:Vn � V 0n = V0 � V 00 � nXi=1(Vi � V 0i � Vi�1 � V 0i�1)= V0 � V 00 � nXi=1(Vi�1 �W 0i�1 � V 0i�1 �Wi�1 � Wi�1 �W 0i�1)



CS448: Lecture #5 3In other words, we project the original image I 2 Vn � V 0n into the following set of basisfunctions: �00(x)�00(y) �jk(x) jk0(y)�jk(x) jk0(y)  jk(x) jk0(y)where j = 0 : : : n� 1 and k; k0 = 0 : : : 2j � 1.For non-standard basis, the �lter supports are more localized than standard basissince all the products only involve scaling functions and wavelet functions of the samelevel. As you might expect the non-standard basis usually gives more compression ratiothan the standard basis.2 Wavelet RadiosityThe �nal section will talk about wavelet radiosity. For more information, please consult[8], [9] and [10].The radiosity equation could be written as:B(x) = E(x) + Z K(x; y)B(y) dy (1)where x and y are points on 2D scene surfaces.Since the above equation is an integral equation, we have to project it into a �nite basisto solve it. In traditional radiosity method, we �rst divide the environment into N surfacepatches, associate N basis functions with those patches, project the above equation intoa matrix form, and use numerical algorithms like Jacobian iteration to solve the linearsystem. The problem is that it's very expensive to project the kernel K(x; y) into aN � N matrix. In [7] they use hierarchical algorithm to reduce the computation timefrom O(N2) to O(k2 + N) using box basis functions, where k is the number of initialpatches and N is the number of subdivided elements. [8] and [9] further extends theideas by using wavelet basis functions. The merit is that by doing so we can get a betterdiscretization of the kernel K(x; y), thus throwing away those smaller coe�cients doesnot hurt too much.Let V = SpanfBi(x); i = 1 : : : Ng to be the function space spanned by basis fBi(x)g.The approximate solution B̂(x) is represented as a linear combination of these basisfunctions: B̂(x) = NXi=1 biBi(x) :Assume that fBi(x)g is orthonormal, and de�ne operator Pv to be the projection of afunction f to V , i.e. Pv(f) =Xi hf;BiiBi



4 CS448: Lecture #5Another way to think about this is that Pv transforms a function f into a column vectorVf which is of dimension N and contains the coe�cients of the projection.We now solve the approximate equationB̂(x) = (PvE)(x) + (PvKPvB̂)(x)where K̂ = PvKPv is the approximate transport operator. Because of the leftmost Pv,B̂(x) lies in the subspace V and can be represented by its coe�cients bi.Mathematically, letÊ(x) = NXi=1hE(x); Bi(x)iBi(x) = NXi=1 eiBi(x)K̂(x; y) = NXi=1 NXj=1hhK(x; y); Bi(x)i; Bj(y)iBi(x)Bj(y)= NXi=1 NXj=1 kijBi(x)Bj(y)Then Z K̂(x; y)B̂(y) dy = Z ( NXi=1 NXj=1 kijBi(x)Bj(y))( NXk=1 bkBk(y)) dy= NXi=1 NXj=1 NXk=1 kijbkBi(x) Z Bj(y)Bk(y) dy= NXi=1 NXj=1 kijbjBi(x)since fBig is orthonormal.If we put the above result into equation (1) we havebi = ei + NXj=1 kijbjor in matrix form B̂ = Ê + K̂B̂; whereB̂ = 0BBBB@ b1b2...bN 1CCCCA Ê = 0BBBB@ e1e2...eN 1CCCCA K̂ = 0BBBB@ k11 k12 � � � k1Nk21 k22 � � � k2N... ... . . . ...kN1 kN2 � � � kNN 1CCCCAThe above linear system is the discretized version of equation (1). We could solve it usingother numerical algorithms and get an approximate solution for the projected radiosityfunction B̂.



CS448: Lecture #5 5For wavelet radiosity, wavelets are used for the basis functions Bi(x). Note that for3D scene, the variables x and y are actually 2D surface points, so the kernel K(x; y) is a4D function. Thus we need to project the kernel onto basis functions that are a productof four 1D basis functions. This can be done in either the standard or non-standard waysas described above.If we compare image compression using wavelets and wavelet radiosity we can �ndmany similarities between them. The digital image is a discretized version of somecontinous image. In otherwords, we can think we project the original continous imageinto a set of basis functions and use the coe�cients to represent the original image. Inboth image compression and wavelet radiosity, we try to �nd a good basis so that we canthrow away many coe�cients with sacri�cing the quality.The following compares the results of wavelet radiosity in atland using di�erentbases:

Figure 1: The left column shows the matrix of the atland kernel for two parallel linesegments in the �nest level basis, the standard Haar basis and the standard F2 basis(top tobottom). The right column shows the matrix of the atland kernel for two line segmentsmeeting at right angles in the same three bases.



6 CS448: Lecture #5
Figure 2: The kernel for two parallel linesrealized in the non-standard Haar basis. Figure 3: The kernel for two parallel linesrealized in the non-standard F2 basis.
Figure 4: The kernel for two perpendicu-lar lines realized in the non-standard Haarbasis. Figure 5: The kernel for two perpendicularlines realized in the non-standard F2 basis.Figure 1 compares Haar basis with F2 basis for standard case. We can see F2 givesbetter result since the resulting matrix contains more small elements. Figure 2, 3, 4, 5show that for non-standard case, F2 basis gives better result than Haar basis. Figure 6, 7compares more di�erent bases in wavelet radiosity.
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CS448: Topics in Computer Graphics Lecture #6Mathematical Models for Computer GraphicsStanford University Thursday, 30 October 1997Introduction to Monte Carlo IntegrationLecture #6: Thursday, 16 October 1997Lecturer: Eric VeachScribe: Lucas PereiraReviewer: Li-Yi Wei
1 The Development of Monte Carlo MethodsMonte Carlo integration methods were �rst used on a computer, the ENIAC, just afterWorld War II. The ENIAC, completed in 1946, was the �rst electronic (as opposed toelectromechanical) computer in the United States, following the Colossus completed inEngland in 1943. It was huge (24 meters long, 18,000 vacuum tubes), and could run ata (then) phenomenal rate of 5000 operations per second.At that time, scientists at the Los Alamos National Laboratory were working onbuilding an H-bomb, and were considering how the ENIAC could help them. StanislawUlam suggested that random sampling could be used to simulate the ight paths ofneutrons. John Von Neumann expanded on the idea, and came up with a detailedproposal in 1947. He estimated that, following 100 neutrons, they could compute oneround of collisions in 3 minutes. This was fast enough so that a simulation of 100 collisionscould be completed in under 5 hours. Nick Metropolis named the new method \MonteCarlo", after the city in Monaco famous for its casinos.In 1949, Metropolis and Ulam published a paper on Monte Carlo methods, whichsparked a lot of work on the methods in the 50's. Unfortunately, the computers at thattime were only capable of handling trivial examples of many applications. Also, someresearchers tried to apply Monte Carlo methods to every problem in sight, even those thatwere already well solved using previous techniques. These mis-applications gave MonteCarlo methods a bad reputation for a while. However, things gradually improved overthe 60's as people discovered more e�cient Monte Carlo techniques, and they learnedwhich problems were and were not appropriate for the methods. Monte Carlo methodsare now an important tool for solving many numerical problems.2 A Brief History of Random SamplingIn isolated instances, random sampling had been used much earlier to solve numericalproblems. For example, in 1777 the Comte de Bu�on computed that, given parallel
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d

L Needle

Lines drawn on paper
(Touching a line)Figure 1: Using a needle to estimate �.ruled lines separated by a distance d, and a needle of length L (where L < d) droppedrandomly, the probability of the needle touching a line would be:Ptouch = 2L�d :He veri�ed this experimentally. Laplace, 100 years later, noticed that you could actuallyuse this method to estimate �. In the latter part of the 19th century, this became quitea popular experiment (or party game).Similarly, in 1900 Lord Kelvin was researching the kinetic theory of gasses, and usedrandom sampling to help with his calculations. His random number generator consistedof writing numbers on slips of paper, putting them in a jar, and pulling them out oneat a time. He was quite concerned that they weren't getting mixed well enough, due tosuch e�ects as static electricity.As a �nal example, Student (an alias for W.S. Gosset) used random sampling in 1908as an aid to deriving his famous t-distribution. He did not know the exact distribution,so he did some experiments to help him guess the analytic form.3 Numerical QuadratureSuppose we want to calculate some integral,I = Z ba f(x) dx :(We will do this example in 1-D, to keep things simple.)The best way to calculate this integral would be to solve it analytically, and get:I = Z ba f(x) dx = F (b)� F (a) :However, there are many functions we would like to integrate that we cannot do an-alytically. So people have developed methods for approximating the integral throughquadrature rules of the form: Î = nXi=1wif(xi) ;



CS448: Lecture #6 3which is essentially a weighted sum of samples of the function at various points. Thereare many di�erent quadrature rules, each with their own sampling patterns and weights.A few common ones include:3.1 Midpoint Rule:
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Figure 2: The midpoint rule.We divide up the interval into some �xed number n of intervals, each of size h = (b�a)=n.We then choose one sample point at the midpoint of each interval:Î = h nXi=1 f(a+ (i� 12)h)= h "f(a+ h2) + f(a+ 3h2 ) + � � �+ f(b� h2)# :3.2 Trapezoid Rule:
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Figure 3: The trapezoid rule.This is similar to the midpoint rule, except we sample the function at the ends of eachinterval, and compute the area of a trapezoid for each interval.Î = nXi=1 h2 [f(a+ (i� 1)h) + f(a+ ih)]= h �12f(a) + f(a+ h) + f(a+ 2h) + � � �+ f(b� h) + 12f(b)� :3.3 Simpson's Rule:This is similar to the trapezoid rule, except we compute the area under a quadraticpolynomial approximation (instead of a linear approximation for the trapezoid). The



4 CS448: Lecture #6equation is:Î = h �13f(a) + 43f(a+ h) + 23f(a+ 2h) + 43f(a+ 3h) + 23f(a+ 4h)+� � �+ 43f(b� h) + 13f(b)� :3.4 Convergence:The Midpoint Rule is exact for constant or linear functions (f � 1; x). Its error is givenby Î � I = � (b� a)324n2 f 00(�) = O(n�2)where a � � � b, provided that f has at least two continuous derivatives on [a; b]. Forthe trapezoid rule, the error isÎ � I = (b� a)312n2 f 00(��) = O(n�2) :So, the midpoint and trapezoid rules have the same convergence rate, and their errorshave opposite signs if f 00 > 0 (i.e. the true answer is bounded between them).Simpson's Rule is exact for polynomial functions up to cubics (f � 1; x; x2; x3). Theerror can be bounded by the fourth derivative:jÎ � Ij = (b� a)5180(2n)4 f (4)(�) = O(n�4) :This converges very quickly, assuming that f has a continuous fourth derivative. Thereare higher-order rules called Newton-Cotes rules that can achieve even faster convergence,but require the function to be even smoother. Another popular family of integration rulesare the Gauss-Legendre rules, which optimize the sample locations as well as the weightsto get better convergence.3.5 Multi-Dimensional Integration:Multi-dimensional integration is more complex. A common way to extend a one-dimensionalquadrature rule is to use a tensor product rule. These have the formÎ = nXi1=1 nXi2=1 � � � nXis=1wi1wi2 � � �wisf(xi1 ; xi2 ; : : : ; xis) ;where s is the dimension, and the wi and xi are the weights and sample locations for agiven one-dimensional quadrature rule. For example, if we needed to evaluate the 5-Dintegral I = Z 10 Z 10 Z 10 Z 10 Z 10 f(x1; x2; x3; x4; x5) dx1 dx2 dx3 dx4 dx5 ;



CS448: Lecture #6 5we would compute a sum of the formI = nXi1=1 nXi2=1 nXi3=1 nXi4=1 nXi5=1wi1wi2wi3wi4wi5f(xi1 ; xi2 ; xi3 ; xi4 ; xi5) :The 2-D version of Simpson's rule looks like this:
h2 � 19 �
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3777777777775However, this does not work very well in high dimensions. If we start with an n-pointquadrature rule in 1-D, we need N = ns sample points for an s-dimensional integral.Thus we can see that when the dimensionality is large (say s = 20), the number ofrequired samples grows astronomically:120 = 1220 = 1048576320 = 3486784401420 = 1099511627776� � �Furthermore, suppose that the 1-D rule has a convergence rate of O(n�r). The s-dimensional rule doesn't work any better than the one-dimensional rule along each axis,so it converges at O(n�r) as well. However, the total number of sample points used ismuch larger (N = ns), so that in terms of the total number of samples the convergenceis only O(N�r=s). For example, the rate of convergence for Simpson's method is:s = 1 : O(n4)s = 2 : O(n2)s = 4 : O(n1)s = 8 : O(n1=2)� � �So even with Simpson's assumption of 4 continuous derivatives, the convergence is alreadylooking bad for high dimensions.If we throw in a discontinuity in f , things get even worse. Consider the functionf(x) = ( 1 if x < X�0 if x > X� :
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h
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x i+1

x iFigure 4: A discontinuous f .and suppose that the quadrature points xi are evenly spaced.We see that the value computed the quadrature rule does not change when X� isanywhere between xi and xi+1. Thus the error of any �xed quadrature rule is directlyproportional to h = 1=n. So if f has a discontinuity, the convergence rate is O(n�1)even in one dimension. Larger dimensions only compound this problem, leading to aconvergence rate of O(N�1=s).3.6 Bakhvalov's Theorem:There is an important result which limits the convergence rate for any deterministicquadrature rule, called Bakhvalov's theorem. Essentially, it says that given any s-dimensional quadrature rule, there is function f with r continuous, bounded derivatives,for which the convergence rate of the chosen quadrature rule is only O(N�r=s).Speci�cally, let CrM denote the set of function on [0; 1]s with r continuous, boundedderivatives. That is, we require ����� @r@xa11 � � �@xass f ����� � Mfor all a1; : : : ; as such that P ai = r.Now consider any N -point quadrature rule, and letÎ(f) = NXi=1wif(xi)be the approximation to the true integralI(f) = Z[0;1]s f(x1; : : : ; xs) dx1 � � � dxs :Then there exists a function f 2 CrM such that the error is���Î(f)� I(f)��� > k �N�r=s ;where k > 0 depends only on M and r.



CS448: Lecture #6 74 Monte Carlo IntegrationThe basic Monte Carlo method (in 1-dimension, for simplicity) is:Z ba f(x) dx � b� aN NXi=1 f(Xi) (1)where the points Xi are chosen independently and uniformly at random on the interval[a; b]. As we will see, this method has a convergence rate of O(N�1=2) in any dimension,regardless of the smoothness of the function f . This is particularly useful in graphics,where we often need to calculate multi-dimensional integrals of discontinuous functions,where Simpson's rule and Gaussian quadrature don't do well.4.1 A Bit of Probability TheoryFirst we review some terms from that probability course you took a long time ago.A random variable X is simply a quantity that is chosen by some random process.(This is good enough for our purposes; to de�ne it more precisely involves a lot of math.)Given a random variable X, its cumulative distribution function P (x) is de�nedby P (x) = PrfXi � xgi.e. P (x) is the probability that the random variable is not greater than a given value x.So, for example, the cumulative distribution function U [0; 1] is:
0 1

1
P(x)

Figure 5: The cumulative distribution of U [0; 1].Next, we de�ne the probability density function p(x):p(x) = dP (x)dx ;which is often just called a density function or pdf. From these de�nitions, we get theimportant relationshipPrf� � X � �g = Z �� p(x) dx = P (�)� P (�) :Let Y = f(X) (note that Y is also a random variable). The expectation of Y isde�ned as E[Y ] = Z f(x)p(x) dx ;



8 CS448: Lecture #6where p(x) is the density function for X. The variance of Y is de�ned asV [Y ] = E[(Y � E[Y ])2] ;which is to say, the variance of Y is the expected squared value of the di�erence betweenY and its mean.From these de�nitions, it is easy to see thatE[aY ] = aE[Y ] and V [aY ] = a2 V [Y ]for any constant a. Another important rule that always holds isE "Xi Yi# =Xi E[Yi] :For example, we can use these rules to derive a simpler expression for the variance:V [Y ] = E[(Y � E[Y ])2]= E[Y 2 � 2Y E[Y ] + E[Y ]2]= E[Y 2]� E[Y ]2noting that the inner E[Y ]'s are just constants.The following rule, however, holds only when the Yi are independent:V "Xi Yi# =Xi V [Yi]Two variables Y1 and Y2 are de�ned to be independent if:PrfY1 � x1 and Y2 � x2g = PrfY1 � x1g � PrfY2 � x2gfor all values of x1 and x2.4.1.1 Basic Monte CarloLet's return now to the basic Monte Carlo estimate (1), namelyFN = b� aN NXi=1 f(Xi) : (2)Our �rst task is to show that this gives the correct answer on average, i.e.E[FN ] = Z ba f(x) dx = I :We have used the notation FN (rather than Î) to emphasize that the result is a randomvariable, and that its properties depend on how many sample points are chosen.



CS448: Lecture #6 9Recall that th Xi are independent samples from U [a; b] (the uniform distribution on[a; b]). The density function for each Xi isp(x) = ( 1=(b� a) when a � x � b ;0 otherwise :We can now compute the expected value of FN :E[FN ] = E "b� aN NXi=1 f(Xi)#= b� aN NXi=1E[f(Xi)]= b� aN NXi=1 Z 1�1 f(x)p(x) dx= 1N NXi=1 Z ba f(x) dx= I ;which is what we wanted.It is actually not necessary to choose the samples uniformly to make this work. Sup-pose that rather than choosing the Xi uniformly, we choose them according to somearbitrary density function p(x) on the interval [a; b]. (We will discuss how to do this inthe next lecture.) Now consider the estimateF 0N = 1N NXi=1 f(Xi)p(Xi) ; (3)i.e. we compute f=p at each sample point and average all of these values together. Theexpected value of F 0N is E[F 0N ] = 1N NXi=1 Z 1�1 f(x)p(x) p(x) dx= 1N NXi=1 Z ba f(x) dx= I :This is an important generalization that is often used in practice. The only conditionwe require on the density p(x) is that p(x) > 0 whenever f(x) 6= 0. The easiest way toachieve this is to have p(x) > 0 on the whole interval [a; b]. (If p(x) = 0 for some intervalwhere f(x) 6= 0, then we will miss sampling some of the integral.)



10 CS448: Lecture #64.2 Convergence of Monte Carlo Methods:From the previous discussion, we know that FN gives the right answer on average. How-ever, we would also like to know how large an error we can expect, and what the rate ofconvergence is.To simplify the notation, let Yi = f(Xi)=p(Xi), so that the estimate FN becomesFN = 1N NXi=1 Yi :We also let Y be a synonym for Y1. The value that we are trying to approximate isE[Y ] = I.First, we have the strong law of large numbers, which says that given enoughsamples, the mean will converge to the expected value with probability 1:Pr( limN!1 1N NXi=1 Yi = E[Y ]) = 1assuming that the Yi are i.i.d. (independent and identically distributed). This says thatif we take enough samples, FN is guaranteed to converge to the correct answer.To determine the rate of convergence, we need Chebychev's inequality:Pr8<:jF � E[F ]j �  V [F ]� !1=29=; � � ;where F is any random variable such that V [F ] < 1. We will apply this inequality toFN to get a bound on the error.First, we compute the variance of FN is terms of the variance of Y (a single sample):V [FN ] = V " 1N NXi=1 Yi#= 1N2 V " NXi=1 Yi#= 1N2 NXi=1 V [Yi]= 1N V [Y ]where we have used V [aY ] = a2V [Y ] and the fact that the Yi are independent samples.Thus, the variance decreases linearly with N .Plugging this into Chebychev's inequality, we getPr8<:jFN � Ij � N�1=2  V [Y ]� !1=29=; � � :



CS448: Lecture #6 11Thus for any �xed threshold �, we see that the error decreases at the rate N�1=2.It is possible to get much tighter bounds on the error using the Central LimitTheorem, which states that FN converges to a normal distribution as N ! 1. It ismost conveniently stated in terms of the standard deviation �FN of FN , which is simplythe square root of the variance:�FN = (V [FN ])1=2 = N�1=2�Y :The standard deviation itself is a common measurement of error (it is sometimes calledRMS error), and notice that it also converges at the O(N�1=2) rate.The central limit theorem then states thatlimN!1Pr( 1N NXi=1 Yi � E[Y ] � t �YpN ) = 1p2� Z t�1 e�x2=2 dx ;where the expression on the right is the normal distribution (the integral of the familiar\bell curve" or Gaussian).This equation can be rearranged to givePr fjFN � Ij � t�FNg = s 2� Z 1t e�x2=2 dx :The integral on the right decreases very quickly with t; for example when t = 3 theright-hand side is approximately 0.003. Thus, there is only about a 0.3% chance thatFN will di�er from its mean by more than three standard deviations, provided that N islarge enough for the central limit theorem to hold. Recall that the standard deviation is�FN = O(N�1=2), so this also veri�es the O(N�1=2) convergence.4.3 Properties of Estimators:The purpose of a Monte Carlo estimator is to approximate the value of some quantity ofinterest Q. Normally Q will be the value of an integral, although more general situationsare possible (e.g. Q could be the ratio of two integrals).An estimator is now a function of the formFN = FN(X1; : : : ; XN) ; (4)where the Xi are random variables. A particular numerical value of FN is called anestimate. So far, we have only considered estimators where the Xi are independent andidentically distributed (i.i.d.). However, in general the Xi can depend on each other, andthey can have di�erent distributions.An estimator FN is called unbiased ifE[FN ] = Q for all values of N :



12 CS448: Lecture #6The estimators (2) and (3) we have already discussed are unbiased.Otherwise, the bias of the estimator is de�ned as�[FN ] = E[FN ]�Q :If the bias goes to zero as N increases, then the estimator is called consistent :limN!1�[FN ] = 0 ;or equivalently limN!1E[FN ] = Q :Such an estimator will ultimately converge to the right answer, but it may take manysamples.4.3.1 Example: a biased, consistent estimatorSuppose we are attempting to do antialiased sampling on a (1-D) pixel. To determinethe pixel value, we need to evaluate an integralI = Z 10 w(x)f(x) dx (5)where f is the image function, and w is the �lter function, which is assumed to integrateto one: Z 10 w(x) dx = 1 :For example, w could be a tent �lter:
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1−D pixel

tent−shaped filter

Figure 6: Antialiasing samples in a 1-D pixel with a tent �lter.In graphics, a common way to evaluate this integral isFN = PNi=1w(Xi)f(Xi)PNi=1w(Xi)where the Xi are uniformly distributed on [0; 1]. This is an example of a biased estimator,since when N = 1 we getE[F1] = E "w(X1)f(X1)w(X1) # = E[f(X1)] = Z 10 f(x) dx :



CS448: Lecture #6 13This is not the same as the desired answer I given by (5), so the estimator is biased.Similarly, when N = 2 we getE[F2] = Z 10 Z 10 w(x1)f(x1) + w(x2)f(x2)w(x1) + w(x2) dx1 dx2 ;which is di�cult to evaluate but is certainly not equal to I. In general, this estimator isbiased for every value of N .However, as N !1 the bias goes to zero. To see this, we rewrite FN asFN = (1=N)PNi=1w(Xi)f(Xi)(1=N)PNi=1w(Xi)and then evaluate limN!1E[FN ] = limN!1(1=N)PNi=1w(Xi)f(Xi)limN!1(1=N)PNi=1w(Xi)= R 10 w(x)f(x) dxR 10 w(x) dx= Z 10 w(x)f(x) dx= I :Next time, we will look at some other important properties of estimators, includingthe mean squared error and e�ciency of an estimator.



CS448: Topics in Computer Graphics Lecture #7Mathematical Models for Computer GraphicsStanford University Tuesday, 4 November 1997Sampling Random VariablesLecture #7: Tuesday, 21 October 1997Lecturer: Eric VeachScribe: Menelaos KaravelasReviewer: Lucas Pereira1 Properties of Monte Carlo estimatorsRecall from the previous lecture that the purpose of a Monte Carlo estimator is toapproximate the value of some quantity of interest Q. Most commonly Q will be anintegral of the form Q = Z
 f(x) dx (1)where 
 is some arbitrary domain. An estimator is then de�ned to be a function of theform FN = FN (X1; : : : ; XN)(where the Xi are random variables), such that the mean of FN is a usable approximationof the quantity we want to estimate.The estimator FN is said to be unbiased ifE[FN ] = Q for all N:For example, suppose that Q is given by (1), and let X be a random variable on 
 withdensity p(x). Furthermore, suppose that p(x) > 0 whenever f(x) 6= 0. ThenF = f(X)p(X)is an unbiased estimator of Q, sinceE[F ] = Z
 f(x)p(x) p(x) dx = I:Otherwise, the quantity �[FN ] = E[FN ]�Qis called the bias. If the bias goes to zero as the number of samples N is increased, thenthe estimator is called consistent:Pr � limN!1FN = Q� = 1;i.e., FN converges in probability to Q.



2 CS448: Lecture #71.1 Example: a biased, consistent estimatorRecall the example of antialiased sampling of a 1D pixel from the previous lecture. Thequantity to be estimated is the pixel value I, which is de�ned by an integralI = Z 10 w(x)f(x) dx: (2)Here f is the image function on the domain [0; 1], and w is the �lter function, whichsatis�es Z 10 w(x) dx = 1:A common way to evaluate the integral (2) is to use the estimator:FN = PNi=1w(Xi)f(Xi)PNi=1w(Xi) ; (3)where the Xi are independent uniformly distributed samples on [0; 1].We �rst show that this estimator is in general biased. Suppose that just one sampleis taken (N = 1). Then F1 = w(X1)f(X1)w(X1) = f(X1);and E[F1] = Z 10 f(x)p(x) dx = Z 10 f(x) dx;noting that p(x) = 1 is the density function for X1 on the domain [0; 1]. Since thisexpected value is in general di�erent from I (see (2)), the estimator F1 is biased.However, the estimator FN is consistent since by the law of large numberslimN!1 1N Xi w(Xi)f(Xi) = Z 10 w(x)f(x) dx;limN!1 1N Xi w(Xi) = Z
w(x) dx = 1:Thus we have limN!1E[FN ] = Z 10 w(x)f(x) dx;i.e. we obtain the right answer as N becomes large.A numerical example. To further understand how this estimator behaves, supposethat we have an image composed of identical pixels, where the left half of each pixel iswhite and the right half of is black. This corresponds to the image functionf(x) = ( 1; x 2 [0; 12)0; x 2 [12 ; 1] ;



CS448: Lecture #7 3where 1 represents white and 0 represents black. Suppose now that we use a �lter w(x)that puts a lot of weight on the right half of the each pixel, speci�cally:w(x) = ( 2� 2�; x 2 [0; 12)2�; x 2 [12 ; 1] ; (4)where � is a small number in the range 0 < � < 1. Notice that this weighting functionintegrates to one, as required.Then it is easy to see that the correct value for the �ltered pixel is:I = Z 10 f(x)w(x) dx = 12(1)(2�) + 12(0)(2� 2�) = �;and this is exactly the value that we want our Monte Carlo method to estimate (i.e.Q = I). However, if we use the biased estimator described above to evaluate the integralI at each pixel, then using just one sample X1 per pixel leads toF1 = ( 1; X1 2 [0; 12)0; X1 2 [12 ; 1] :This produces an image with a checkerboard appearance, where approximately half thepixels are black and half are white (see Figure 1). The resulting image has a mean valueof 1=2, as opposed to the correct �ltered image which has a mean value of � (a uniformimage of low gray-level).
(c)(b)(a)Figure 1: (a) A 4 � 8-pixel image, each pixel of which is half white and half black. (b)The �ltered image using the �lter w in (4), which has a mean value of �. (c) The �lteredimage using the Monte Carlo estimator (3) with N = 1, which has a mean value of 1=2.1.2 Mean squared errorThe main reason for preferring unbiased estimators is that it is easier to estimate theerror. Typically our goal is to minimize the mean squared error (MSE), de�ned byMSE[F ] = E[(F �Q)2] (5)(where we have dropped the subscript N). We would like to �nd an estimator such thatthe mean squared error is small, relative to Q2:MSE[FN ]� Q2:



4 CS448: Lecture #7In general, the mean squared error can be rewritten asMSE[F ] = E[(F �Q)2]= E[(F � E[F ] + E[F ]�Q)2]= E[(F � E[F ])2] + 2E[F � E[F ]](E[F ]�Q) + (E[F ]�Q)2= V [F ] + �[F ]2(since E[F � E[F ]] = 0). Thus, to estimate the error we must have an upper bound onthe possible bias. In general, this requires additional knowledge about the estimand Q,and it is often di�cult to �nd a suitable bound.On the other hand, for unbiased estimators we have E[F ] = Q, so that the meansquared error is identical to the variance:MSE[F ] = V [F ] = E[(F � E[F ])2] :This makes it far easier to obtain error estimates, by simply taking several independentsamples. Letting Y1; : : : ; YN be independent samples of an unbiased estimator Y , andletting FN = 1N NXi=1 Yias before (which is also an unbiased estimator), then the quantityV̂ [FN ] = 1N � 1 8<: 1N NXi=1 Y 2i ! �  1N NXi=1 Yi!29=;is an unbiased estimator of the variance V [FN ] (see Kalos and Whitlock). Thus, errorestimates are easy to obtain for unbiased estimators.2 Sampling random variablesThere are a variety of techniques for sampling random variables, including:� the method of transformation of variables (also known as the inversion method),� the rejection method, and� the Metropolis method (which will be discussed in another lecture).There are also a variety of tricks that are useful for sampling particular distributions,such as the normal distribution. We give some simple examples of such tricks below.With all of these methods, it is assumed that a supply of random variables U1; U2; : : :is available, where Ui is independent and uniformly distributed on [0; 1] (Ui � U [0; 1]).



CS448: Lecture #7 52.1 Transformation of variablesOur goal is to generate a random variable Y that is distributed according to a givendensity function p(y). Let P (y) be the cumulative distribution of Y , that is,P (y) = PrfY � yg:The inversion method consists of �rst choosing a random variable U that is uniformlydistributed on [0; 1], and then �nding a value of Y such that P (Y ) = U . Equivalently,we can write Y = P�1(U);where P�1 denotes the inverse function of P . This procedure is shown graphically inFigure 2.
PYU

Y
1
0 Figure 2: The inversion method.It is easy to check that Y has the desired distribution, sincePrfY � yg = PrfP (Y ) � P (y)g= PrfU � P (y)g= P (y);where the �rst equality holds because P is a non-decreasing function, and the last equalityholds because U is uniform on [0; 1].An example. To see how the method works, suppose we want to evaluate the integralI = Z 10 e�cxg(x) dx:



6 CS448: Lecture #7Integrals of this type arise in volume rendering: x represents the distance along a ray,g(x) represents the amount of light sent toward the viewer at the distance x, and e�cxrepresents the attentuation of this light as it travels through a medium of constant opacity.To evaluate this integral, we would like to sample a random distance X according tothe density p(x) = ce�cx(the factor of c is required so that p integrates to one). The cumulative distribution ofX is P (x0) = Z x00 p(x) dx = Z x00 ce�cx dx = �cc e�cx����x00 = 1� e�cx0:Thus using the inversion method, we have1� e�cX = U ) �cX = ln(1� U)) X = �(1=c) ln(1� U):Equivalently, we could have started by setting P (X) = 1 � U , since if U is uniformlydistributed on [0; 1] then so is 1� U . This yields the slightly simpler resultX = �(1=c) lnU:Note that using this strategy, there is a high probability of sampling small values of X(due to the logarithm calculation). This corresponds to the fact that attenuation factore�cx goes to zero rapidly with increasing values of x.If we sample N di�erent distances Xi in this way, i.e.Xi = �(1=c) lnUifor independent values of Ui � U [0; 1], then corresponding Monte Carlo estimator for theintegral I is FN = 1N NXi=1 e�cXig(Xi)ce�cXi= 1cN NXi=1 g(Xi):So, the whole technique is very easy to apply.Note that the inversion technique can easily be extended to several dimensions, bycomputing marginal and conditional distributions and inverting each dimension sepa-rately. (Examples will be given in the next lecture.)



CS448: Lecture #7 7Transformation of variables. There is a generalization of the inversion method calledtransformation of variables. Suppose that we start with a random variable X, with aknown density function pX(x). (The inversion method was a special case of this withX = U .) Now let Y = y(X), where y is some known function. Then it is natural to ask,what is the density function of Y , in terms of the density function of X? (Note that Yis also a random variable.)Let PY be the cumulative distribution of Y , that is,PY (y) = PrfY � yg:We will assume that y(x) is a continuous, non-decreasing function of x (which impliesthat y0(x) � 0). Then clearly we havePrfY � y(x)g = PrfX � xg;which implies that PY (y) = PX(x)where y = y(x). Di�erentiating with respect to x, we obtain the following expressionthat relates the density function of X with that of Y :pY (y) (dy=dx) = pX(x)which implies that pY (y) = jdy=dxj�1 pX(x); (6)where the absolute value signs allow for possibility that y is non-increasing rather thannon-decreasing. This relationship is often written asjpY (y) dyj = jpX(x) dxj;where as always, x and y are implicitly related by y = y(x).To illustrate how this identity is used, suppose that X is distributed according to thedensity pX(x) = 2x over the domain [0; 1], and let Y = sin(X). What is the densityfunction for Y ? We have pY (y) = jd sin(x)=dxj�1pX(x)= j cos(x)j�12x= 2 arcsin(y). cos(arcsin(y))= 2 arcsin(y).(1� y2)1=2;where we have used the facts that (a) cos(x) > 0 on [0; 1], (b) y = sin(x) impliesx = arcsin(y), and (c) cos(x) = (1� sin2(x))1=2 on [0; 1].



8 CS448: Lecture #7Deriving a transformation. Equation (6) suggests that given a random variable X,we can sample from an arbitrary density pY by �nding an appropriate transformationY = y(X). In one dimension, there is a straightforward procedure for deriving such atransformation: we simply �nd a value of Y such thatPY (Y ) = PX(X);or in other words we let y be the functiony(x) = P�1Y (PX(x)):(This assumes that we can �nd analytic expressions for the cumulative distributions PXand PY .) The reason this works is that if X is any random variable, then the randomvariable Z = PX(X) has the uniform distribution:PrfZ � xg = PrfPX(X) � xg = PrfX � P�1X (x)g = PX(P�1X (x)) = x;for any x 2 [0; 1]. Thus, setting PY (Y ) = PX(X) is equivalent to setting PY (Y ) = U .In one dimension, the main bene�t of the transformation method over the simplerinversion method is that we can start with non-uniform samples. So for example, ifwe already know to generate a sample X with a normal distribution, then we can applytransformations to obtain various other distributions pY . In higher dimensions, the trans-formation method can be used to map random points from one domain to another (e.g.from a disc to a hemisphere). In this case, the factor jdy=dxj in equation (6) becomesthe Jacobian determinant, as we will see in the next lecture.The main advantage of the inversion/transformation technique compared to the meth-ods below is that it allows samples to be strati�ed easily (see the next lecture). This isdone by stratifying the canonical parameter space [0; 1]s, and then mapping these sam-ples into the given domain 
 with the desired density pY . Another advantage is thatthe technique has a �xed cost per sample, which can easily be estimated. The main dis-advantage is that the density p(x) must be integrated analytically, which is not alwayspossible. It is also preferable for the cumulative distribution to have an analytic inverse,since numerical inversion is typically slow.2.2 The rejection methodThe idea behind the rejection method is to propose a trial value for the random variablethat we want to sample. The value is then subjected to a test, and it may be eitheraccepted or rejected. If rejection takes place, another trial value is chosen and tested,and this procedure goes on until an acceptable value is chosen.Speci�cally, let p(x) be the desired density function. Suppose that we can �nd anotherdensity q(x) that we know how to sample, and such thatp(x) �Mq(x)for some constant M . Then the rejection method consists of the following algorithm:



CS448: Lecture #7 9
accept

rejectp(x) Mq(x)
Figure 3: The rejection method.Algorithm Reject;for i = 1 to 1 do begindraw Xi � q;draw Ui � U [0; 1];if Ui � p(Xi)M q(Xi) then return Xi;end;end.This is illustrated graphically in Figure 3. A pair of random variables (Xi; Ui) issampled, and if the point (Xi; Ui �Mq(Xi)) lies under the curve p(x), then it is accepted(by returning Xi). Otherwise, we choose a new pair (Xi; Ui) and try again.Here is why the method works: on each iteration, the density of generating a sampleat Xi is q(Xi). This sample is returned ifUi � p(Xi)Mq(Xi) ;which happens with probability p(Xi)=(Mq(Xi)). So, the probability density of returninga sample at x on a particular iteration isq(x) p(x)Mq(x) = p(x)M ;which integrates to 1=M . Thus, when a sample is returned (with probability 1=M), thenXi is distributed according to p(x).On the other hand, there is a 1� 1=M probability that the sample will be rejected.Thus the average number of samples required until acceptance is the sum of a geometricseries, 1Xi=0 �1� 1M �i =M;



10 CS448: Lecture #7where the term (1� 1=M)i is the probability that at least i+1 samples will be required.The main advantage of rejection sampling is that it can be used with any densityfunction, even those that cannot be integrated analytically. However, if it is appliednaively then it can be very ine�cient, since we may iterate a lot of times until we �ndan acceptable value. Clearly, the e�ciency depends on the size of the constant M , i.e.how tightly Mq(x) bounds p(x). The goal is to �nd a density q(x) that we know how tosample from, and that is also a reasonably good match for p(x). Another disadvantageof the rejection method is that it is di�cult to apply with strati�cation.An important special case. Let p(x) be de�ned on the domain [0; 1], and supposethat p(x) � M for all x. In this case we can let q(x) = 1 (that is, Xi is drawn from theuniform distribution U [0; 1]). The acceptance probability for Xi then becomesp(Xi)Mq(Xi) = p(Xi)M :Graphically, the acceptance probability is simply the ratio of the heights of the curvesp(x) and Mq(x) = M at the given point Xi (see Figure 4). It is clear that the acceptedsamples have a density proportional to p(x).
p(x)Xi

Mq(x)M
0rejectacceptFigure 4: Each sample is accepted with probability p(Xi)=M , and rejected otherwise.A geometric example. The rejection method can also be applied in geometric settingsthat do not correspond exactly to the general framework above. For example, supposethat we want to sample uniformly from a unit disc centered at the origin (see Figure 5).Letting U1 and U2 be independent samples from U [0; 1], the rejection method consistsof the following:Algorithm Reject-Circle;do foreverX = 2U1 � 1;Y = 2U2 � 1;if X2 + Y 2 � 1 then return (X; Y );end;end.



CS448: Lecture #7 11y x1 10Figure 5: Sampling from a unit disc.This can be considered a method for sampling the two-dimensional density functionp(x; y) = ( 1=� if x2 + y2 � 1,0 otherwise,by drawing samples from the uniform density q(x) on [�1; 1]� [�1; 1]. We do not need anextra random variable U3 to decide whether to accept the samples, since the acceptanceprobability is always 0 or 1.2.3 TricksThere are a variety of tricks for sampling from speci�c distributions, usually by mappingseveral uniform random variables into a single output variable Y .For example, let U1; : : : ; Uk be independent samples from U [0; 1], and letY = maxfU1; U2; : : : ; Ukg:Then the cumulative distribution of Y is:PY (x) = PrfY � xg = kYi=1PrfUi � xg = xk;and thus the density function of Y ispY (x) = P 0Y (x) = kxk�1:Therefore if we want to sample from a density proportional to xk, we can do this bychoosing k+1 random variables uniformly distributed on [0; 1] and taking their maximum.As another example, consider the random variable Y = U1 + U2. We can �nd thecumulative distribution of Y graphically, by thinking of U1 and U2 as the x and y coor-dinates of a unit square (see Figure 6). Speci�cally, we havePY (z) = PrfY � zg = PrfU1 + U2 � zg;which is simply the area below the line U1 +U2 = z. Using this fact we can easily derivethe density function of Y , which isp(x) = ( x; x 2 [0; 1)2� x; x 2 [1; 2] :



12 CS448: Lecture #7
0 U1U1 + U2 � x
1

1U2
Figure 6: The density of a sum of two uniform random variables.3 Sampling uniformly over a hemisphereIn graphics we often want to sample functions f(!) which depend on a direction !. Wewill represent ! as a unit vector (x; y; z), so that the set of all possible directions is theunit sphere S2 = f(x; y; z) j x2 + y2 + z2 = 1g:Normally we are only interested in directions on one side of a given surface, which forma unit hemisphere centered around the surface normal N. Such a hemisphere will bedenoted 
.As a simple example, suppose that we want to sample a direction ! uniformly withrespect to solid angle. Recall that the solid angle of a set of directions is simply the areaof the corresponding set of points on the unit sphere. For example, the solid angle of ahemisphere is 2�.For convenience, suppose that the hemisphere 
 is centered around the normal N =(0; 0; 1). A direction ! = (x; y; z) can then be parameterized by its spherical coordinates(�; �), where x = sin � cos �:y = sin � sin �;z = cos �:With these coordinates, an element of area (solid angle) on the hemisphere isd! = sin � d� d�:A cap of the hemisphere is de�ned as the set of directions where 0 � � � �0, for somegiven value of �0. The area A(�0) of this cap is:A(�0) = Z 2�0 Z �00 sin(�) d� d�= �Z 2�0 d��  Z �00 sin(�) d�!= 2� (� cos �)�����00 = 2�(1� cos �0):



CS448: Lecture #7 13z
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Figure 7: Sampling a cap of the hemisphere.Recall that our goal is to sample a direction ! uniformly with respect to solid angle (i.e.area). Thus, we want the probability of sampling an angle � to obeyPrf� � �0g / A(�0):Thus we can obtain the desired cumulative distribution for � by normalizing A(�):P (�) = A(�)A(�=2) = 2�(1� cos �)2� = 1� z;recalling that z = cos(�). This result implies that area on the hemisphere is uniformlydistributed with respect to z, i.e. if we look at any two horizontal slices with verticalthickness dz, then both slices have the same surface area.Using the inversion method, we can now sample uniformly on the hemisphere bysetting P (�) = U1, or equivalently z = U1 (since 1 � U1 is also uniform). If we thenchoose � uniformly, we get Z = U1X = R cos(2�U2);Y = R sin(2�U2)where U1 and U2 are uniform, and R = q1� U21 . This will generate a uniform distribu-tion of points on the hemisphere with respect to solid angle.We can also use this technique to sample uniformly on a cap of the hemisphere (i.e. theset of directions lying with some in�nite cone). Let �max be the cap angle (see Figure 7),so that � 2 [0; �max] and � 2 [0; 2�]. To sample this cap uniformly, we only need tochange the way that z is evaluated:Z = 1� U1(1� cos �max)X = R cos(2�U2);Y = R sin(2�U2)where as before R = q1� U21 . This technique can also be used to generate a randompoint on the entire sphere, by letting �max = �.



CS448: Topics in Computer Graphics Lecture #8Mathematical Models for Computer GraphicsStanford University Thursday, 6 November 1997Variance Reduction ILecture #8: Thursday, 23 October 1997Lecturer: Eric VeachScribe: James Davis
1 Transformation of variables in several dimensionsLast lecture we talked about methods to sample random variables according to a givendensity function. One such method is transformation of variables. We discussed thismethod in a single dimension previously. Now let us generalize to the multidimensionalcase.First, we examine how density functions are a�ected by transformations. Suppose wehave a random variable X = (X1; : : : ; Xn) on some domain 
X � IRn, and let pX(x) bethe density function of X (where x = (x1; : : : ; xn) denotes an n-dimensional point). Nowlet Y = T (X) be another random variable, where T is a bijective, di�erentiable functionfrom 
X to some other domain 
Y. Then we can ask, what is the density function ofY?Similar to the single variable case, we know thatPrfY 2 T (D)g = PrfX 2 Dg(since T is a bijection). We can write this in terms of the density function pX and pY asZT (D) pY(y) dy = ZD pX(x) dx : (1)Now we apply the change of variables y = T (x) to the left hand side, which yieldsZD pY(T (x)) jJT (x)j dx = ZD pX(x) dx ; (2)where JT (x) is the Jacobian of the transformation y = T (x),JT = 2664 @y1=@x1 � � � @y1=@xn... . . . ...@yn=@x1 � � � @yn=@xn 3775and j � j denotes the determinant of a matrix.



2 CS448: Lecture #8Finally, since equation (2) holds for any region D, the quantities being integratedmust be the same: pY(T (x)) � jJT (x)j = pX(x) :This tells us how the density functions of X and Y are related. We can rewrite this aspY(y) = 1jJT (x)j pX(x) (3)where x = T�1(y). This identity is useful for �guring out what happens to densitieswhen points are mapped from one coordinate representation to another.1.1 Example: polar coordinatesOften it is convenient to choose points on the plane using polar coordinates (for exam-ple, when the density function we want to sample from is radially symmetric). Polarcoordinates are de�ned by the mapping(x; y) = T (r; �)xwhere = r cos �y = r sin � :So, suppose that we choose points according to some density p(r; �). What is thecorresponding density p(x; y)?The Jacobian of the transformation (x; y) = (r cos �; r sin �) isJT (r; �) = " @x=@r @x=@�@y=@r @y=@� # = " cos � �r sin �sin � r cos � #and the corresponding determinant isjJT (r; �)j = r cos2 � + r sin2 � = r :So according to (3), the densities are related byp(x; y) = 1r p(r; �) :Most often we apply this the other way around: we are given a density function p(x; y)that is measured with respect to surface area (dA = dx dy), and we want to convert itinto polar coordinates to make the sampling easier. In this case we getp(r; �) = r p(x; y) ; (4)in other words we need to add a factor of r to the given density p(x; y). A special caseof this is sampling uniformly with respect to area: to do this in polar coordinates, wesample according to a density that is proportional to r.



CS448: Lecture #8 3An easy way to handle this kind of manipulation is with di�erentials. We start withthe fundamental identity pY(y) dy = pX(x) dx(which corresponds to equation (1)), and write the relationship between the di�erentialvolumes dy and dx as dy = jJT (x)j dx :So for polar coordinates we havep(x; y) dx dy = p(r; �) dr d�and dA = dx dy = r dr d�(where dA is an element of area). These equations can be manipulated to give the sameresult (4) between the densities.1.2 Example: spherical coordinatesSimilarly, for sampling in three dimensions we often use spherical coordinates:x = r sin � cos �y = r sin � sin �z = r cos � :The transformation (x; y; z) = T (r; �; �) has a Jacobian determinant ofjJT j = r2 sin � ;which is often written as the relationshipdV = dx dy dz = r2 sin � dr d� d�where dV is an element of volume.We can also use spherical coordinates to represent points on the surface of a unitsphere, by setting r = 1: x = sin � cos�y = sin � sin�z = cos � :The reason that this is important in graphics is that a direction ! can be representedas a unit vector (x; y; z). The solid angle of a set of directions is given by the area of the



4 CS448: Lecture #8corresponding set of points on the unit sphere. In spherical coordinates, solid angle ismeasured by1 d! = sin � d� d� :So, if we are given a density function p(!) that is measured with respect to solid angle,which simply means that ZD p(!) d!is the probability of selecting a direction ! 2 D, then the corresponding density withrespect to (�; �) satis�es p(�; �) d� d� = p(!) d!p(�; �)) = sin(�) p(!) :In other words, we need to add an extra factor of sin � in order to sample a density p(!)that is given with respect to solid angle.2 Sampling by transformation in two dimensionsWe now give several examples of sampling two-dimensional densities: uniform points ona hemisphere, uniform points in a disc, and cosine-weighted points on a hemisphere. The�rst two examples use the inversion method (recall that this is a special case of trans-formation, where we start with uniform random variables Ui), while the third exampleuses a more general transformation (it starts with uniformly distributed points in a unitdisc).2.1 Marginal and conditional densitiesSuppose that we have some joint density function p(x; y). To draw a sample (X; Y )from this density using the inversion method, we need to introduce the idea some newconcepts. The marginal density function p(x) is de�ned byp(x) = Z p(x; y) dy ;which is simply the density function for X alone, while the conditional density functionp(y j x) is de�ned by p(y j x) = p(x; y)p(x) ;which gives the density function for Y once we have �xed a particular value of x.1Note that this identity cannot be derived using a Jacobian determinant, since we have a mappingfrom IR2 to a surface in IR3. It can be derived from a similar formula for integration on a surface withrespect to a particular parameterization.



CS448: Lecture #8 5These are the tools we need to sample from a joint probability distribution, sincewe can use the marginal density to isolate a single variable's distribution. Then we candetermine the value of the other variable according to the conditional density. Exampleswill be given below.Another useful concept which we will need later is conditional expectation of a randomvariable F = f(X; Y ), which is de�ned byEY [F ] = Z f(x; y) p(y j x) dy :This is just the usual expression for the expected value, except that x is treated as aparameter (i.e. the result is a function of x).It is easy to see that the expected value obeysE[F ] = EX [EY [F ]]where E[F ] is the ordinary expected valueE[F ] = Z f(x; y) p(x; y) dx dy ;and EX denotes the expected value with respect to X (using the marginal density p(x)).2.2 Example: uniform sampling of a hemisphereRecall the example from last time of sampling a hemisphere uniformly with respect tosolid angle. We show how to derive this using marginal and conditional densities (whichis really what we did last time, except that we didn't say so explicitly).To sample uniformly with respect to solid angle, the density function isp(!) = 1=(2�)for ! in the unit hemisphere centered around around the positive z-axis. (Recall that thishemisphere has a solid angle (area) of 2�.) The corresponding joint probability densityfunction with respect to (�; �) isp(�; �) = 12� sin � 0 � � � �2 ; 0 � � � 2� :To sample according to this density we �rst �nd the marginal density p(�):p(�) = Z 2�0 p(�; �) d� = sin �Supposing that we know how to sample a random variable � from this density, we thenneed to sample � from the conditional densityp(� j �) = p(�; �)p(�) = 12�



6 CS448: Lecture #8Since we now have density functions for each variable individually, we can use thesingle variable methods introduced last lecture to �nd samples. To use the inversionmethod, we �rst must �nd the cumulative distributions P (�0) and P (� j �):P (�0) = Z �00 p(�) d� = Z �00 sin � d� = 1� cos �0P (�0 j �) = Z �00 12� d� = �02�Now, applying inversion to �, we set P (�) = 1�U1 (recalling that U1 and 1�U1 havethe same distribution). This gives1� cos � = 1� U1cos � = U1� = cos�1 U1Now applying inversion to �, we haveP (� j �) = U2�2� = U2� = 2�U2So we can �nd a point uniformly on a hemisphere by picking two uniform randomvariables U1and U2 and solving for (�; �).2.3 Example: uniform samples in a discAs a second example, suppose that we want to sample a point uniformly with respect toarea in a unit disc. This corresponds to the joint density functionp(x; y) = ( 1=� if x2 + y2 � 1,0 otherwise.which in terms of polar coordinates (r; �) isp(r; �) = 1�rwhere r 2 [0; 1] and � 2 [0; 2�]. In order to sample r and �, we �rst �nd the marginaldensity for r: p(r) = Z 2�0 1�r d� = 2rwhich is then integrated to �nd the cumulative distributionP (r0) = Z r00 2r dr = r20 :



CS448: Lecture #8 7Assuming now that r has already been chosen, the conditional density of � isp(� j r) = p(r; �)p(r) = 12�and its cumulative distribution isP (�0 j r) = Z �00 12� d� = �02�Applying the inversion method, we �rst �nd r0 by setting P (r0) = U1:r20 = U1r0 = qU1We then apply the inversion method again, this time to �, by setting P (�0 j r0) = U2:�02� = U2�0 = 2�U2A couple of comments are in order. Since both of these examples are trivial, wecould easily have switched the order and found the marginal density of � instead of r. Ingeneral, however, the calculations may be easier one way than the other (with respect tobeing able to do the integrations analytically). Also note that sometimes special trickscan be helpful for sampling from the density functions. For instance, the distributionP (r0) = r20 can be sampled by letting R = max(U3; U4), as we showed in the last lecture.2.4 Example: cosine-weighted hemisphereWe would often like to evaluate an integral such as the reectance equation:Lo(!o) = Z fr(!! !o)Li(!) cos � d! ;where Lo(!o) is the radiance reected toward the viewer, Li is the incoming radiance,fr is the bidirectional reectance distribution function, and � is the angle between theincident vector ! and the surface normal N.In the case of a di�use surface fr = Kd, so the integral reduces toLo(!o) = Z KdLi(!) cos � d! :Since the function Li(!) is unknown, a reasonable importance sampling strategy is tochoose ! according to a density proportional to cos �:p(!) / cos � :



8 CS448: Lecture #8Converting this into a density with respect to (�; �) we getp(�; �) / cos � sin � ;where as usual � 2 [0; �=2] and � 2 [0; 2�]. By integrating this density we �nd that thenormalization constant is 1=�, so that the desired joint density function isp(�; �) = 1� cos � sin � :It turns out that we can sample from this density by picking a point uniformly atrandom on the unit disc, and then projecting it vertically up onto the hemisphere.
theta

phirLet (r; �) be the polar coordinates of a point in the unit disc (note that we haveswitched from � to �). Recall that uniform sampling of the unit disc is represented bythe joint density function p(r; �) = 1� rwhere r 2 [0; 1] and � 2 [0; 2�]. We map this into a point ! on the hemisphere withspherical coordinates (�; �), where the vertical projection implies that r and � are relatedby sin � = r :(This can be veri�ed by inspecting the diagram above, or by noting that sin � is thedistance of ! from the z-axis.)The Jacobian determinant of the transformation (r; �) = (sin �; �) is:jJT j = ����� @r=@� @r=@�@�=@� @�=@� ����� = ����� cos � 00 1 ����� = cos �so the densities p(r; �) and p(�; �) are related byp(r; �) = 1jJT j p(�; �) :



CS448: Lecture #8 9This can be rearranged to givep(�; �) = jJT j p(r; �) = cos � r� = 1� sin � cos � :So amazingly enough, this generates the desired distribution over the hemisphere. Tosummarize, we can generate cosine-weighted samples on a hemisphere by �rst choosing(X; Y ) uniformly within the unit disc (such that X2 + Y 2 � 1), and then lettingZ = q1� (X2 + Y 2) :Note that this works for any method of generating samples in the disc, e.g. rejectionsampling, or Shirley's mapping from a square to the unit disc (as discussed below).3 Variance ReductionThe goal of variance reduction is to improve the e�ciency of our sampling. The e�ciencyof a Monte Carlo estimator F depends on both its variance V [F ], and the time T [F ] thatis required to evaluate it: �[F ] = 1V [F ]T [F ]According to this de�nition, F1 is more e�cient than F2 if it yields a smaller variance inthe same running time. (Similarly, an e�cient estimator requires less time to achieve agiven �xed variance.)This de�nition is motivated by the fact that when we take N independent samples,variance is reduced by a factor of N , but computation time is increased by a factor ofN . Letting FN = 1N NXi=1 Yiwhere the Yi are independent and identically distributed samples, we haveV [FN ] = 1N V [F1]T [Fn] = N T [F1] :The de�nition of e�ciency takes into account this tradeo�, by saying that FN and F1 areequally e�cient: �[FN ] = �[F1] :The main goal of unbiased Monte Carlo integration is to maximize e�ciency: to �ndestimators whose variance is small and which are fast to evaluate. Methods for doingthis are often simply called variance reduction methods.Some of the most powerful variance reductions techniques are based on the idea ofanalytically integrating a function that is similar to the integrand. There are severalways to take advantage of this idea, of which the most important are the use of expectedvalues, importance sampling, and control variates.



10 CS448: Lecture #83.1 The use of expected valuesPerhaps the most obvious way to reduce variance is to use analytic integration wherepossible. This idea is commonly referred to as the use of expected values. Speci�cally, itconsists of replacing an estimator of the formF = f(X; Y ) = p(X; Y ) (5)with one of the form F 0 = f 0(X) = p(X) ; (6)where f 0(x) and p(x) are de�ned byf 0(x) = Z f(x; y) dyp(x) = Z p(x; y) dy :Thus, to apply this technique we must be able to integrate both f and p with respect toy. We also must be able to generate samples according to the marginal density p(x).3.1.1 ExampleSuppose that we want to integrate a function h(x) on the interval [a; b], such that 0 �h(x) � m for all x 2 [a; b].
m

a b

h(x)

Perhaps the simplest technique for doing this is the hit-or-miss method. The idea is topick uniform random points inside the rectangle [a; b]� [0; m], and count how many fallunder the curve h(x). Formally, we can represent this strategy by the two-dimensionalfunction f(x; y) = ( 1 if 0 � y � h(x),0 otherwise,and letting p(x; y) be the uniform densityp(x; y) = 1m(b� a)



CS448: Lecture #8 11on the rectangle [a; b]� [0; m]. We can then estimate the integralI = Z f(x; y) dx dyby picking N sample points (Xi; Yi) according to the density p(x; y), and using thestandard estimator Î = 1N NXi=1 f(Xi;Yi)p(Xi; Yi)= m(b� a) � 1N NXi=1 f(Xi; Yi) ;which is simply the area of the rectangle multiplied by the fraction of the sample pointsthat lie under the curve h(x).Now, suppose that we apply the expected values technique by integrating analyticallywith respect to y. We havef 0(x) = Z f(x; y) dy = Z h(x)0 1 dy = h(x)and the marginal density of X isp(x) = Z m0 p(x; y) dy = 1b� a :This leads to the new estimatorÎ 0 = 1N NXi=1 f 0(Xi)p(Xi) = b� aN NXi=1 h(Xi)which is simply the standard Monte Carlo estimator for one-dimensional integration thatwe have been using all along. (It is sometimes called the sample-mean method.)
m

a b

h(x)

Below, we will show that the expected values method always reduces variance. So inparticular, this means that the sample-mean method always gives a lower variance thanthe hit-or-miss method.



12 CS448: Lecture #83.1.2 Variance analysisThe name expected values comes from the fact that the estimator F 0 is simply the expectedvalue of F with respect to Y :EY [F ] = EY "f(X; Y )p(X; Y ) #= Z f(X; y)p(X; y) p(y j X) dy= Z f(X; y)p(X; y) p(X; y)p(X) dy= R f(X; y) dyp(X)= f 0(X) = p(X)= F 0 :To determine the variance of F 0 relative to F , we use the following identity (homeworkproblem #1), where VY is the conditional variance with respect to Y , and EY is theconditional mean with respect to Y :V [F ] = EX [VY [F ]] + VX [EY [F ]] :Using the fact that F 0 = EY F , we immediately obtainV [F ]� VX [EY [F ]] = EXVY [F ]V [F ]� V [F 0] � 0V [F ] � V [F 0]To get from the �rst to the second line, we used the fact that EXVY [F ] is always non-negative (since the variance of a random variable is always non-negative). FurthermoreEY [F ] is a function only of X, so V [F 0] = VX [F 0].So, we �nd that the variance of F 0 is always less than the variance of F . This suggeststhat we should always integrate those parts that we can, as we have done in the exampleabove.3.2 Importance SamplingSuppose we want to evaluate I = R f(x) dx. As we have seen, one method is to chooseN random variables Xi uniformly over the domain, and estimate Î = (1=N) P f(Xi).Suppose that instead, we choose the Xi according to some other density function p(x),and de�ne a new random variableF = 1N NXi=1 Yi where Yi = f(Xi)p(Xi) :



CS448: Lecture #8 13This is unbiased, since E[Yi] = Z f(x)p(x) p(x) dx = Z f(x) dxprovided that p(x) > 0 whenever f(x) 6= 0.Now why would we want to do this? Suppose that p(x) were exactly proportional tof(x). Then we would have: p(x) = cf(x)Yi = f(Xi)p(Xi) = 1cso that Yi always has the same value. This means that the variance of Yi (and F ) is zero,which is the best possible.Unfortunately we can't do this exactly, since it turns out that in order for p to benormalized, we need c = 1R f(x) dx :So if we could evaluate c, then we would already know the answer to our original problem,and there would be no need for sampling.However, if we can �nd a density p that is approximately proportional to f (and thatwe can sample from), we can often reduce the variance of our estimator. This principleis called importance sampling. It should be noted that the argument above assumes thatf(x) � 0, since p(x) can't be negative. If f(x) is sometimes negative, it turns out thatthe best thing is to make p(x) proportional to jf(x)j, but this does not give zero varianceeven if we can sample this way exactly.Importance sampling is a very useful technique in graphics. It is used to samplefunctions that are non-uniform, e.g. a peaked specular lobe of a BRDF, or a solid anglecontaining small light source. The cosine-weighted hemisphere was a simple exampleof this, where we sampled according to the cos � factor that appears in the integral forreected radiance. Other examples are given in the homework problems.3.3 Control VariatesAgain suppose we want to evaluate I = R f(x) dx. The idea of control variates is �ndsome function ~f similar to f that we can integrate analytically, and then subtract it.This is done by rewriting the integral asI = Z ~f(x) dx+ Z f(x)� ~f(x) dxwhere the integral on the left can be evaluated exactly. This leads to a new estimator ofthe form F 0 = Z ~f(x) dx+ 1N NXi=1 f(Xi)� ~f(Xi)p(Xi)



14 CS448: Lecture #8where p(x) is the density that the Xi are sampled from.The new estimator F 0 will have a lower variance than the basic estimator F wheneverV "f(xi)� ~f(Xi)p(Xi) # � V "f(Xi)p(Xi) # (7)Notice that given some analytic approximation ~f , we also have the option of using itfor importance sampling. This is done by letting p(x) be the density functionp(x) = ~f(x)R ~f(x) dx ;assuming that we can �nd a way to generate samples with this density.However, it doesn't make sense to use ~f for control variates and importance samplingat the same time, since if ~f is proportional to p, then the two estimators in equation (7)di�er by a constant and their variance is the same. Thus if ~f is already being used forimportance sampling, it is not helpful to use it as a control variate as well.So if we have found a function ~f that is similar to f , which should we use: importancesampling, or control variates? The answer depends on the exact functions involved, butin general, if f � ~f is a nearly constant function, then it is better to use control variates.If instead the ratio f= ~f is nearly constant, then it is better to use importance sampling.Another consideration is that with control variates, ~f needs to be an approximation tothe entire integrand. For example, if we wanted to apply control variates to the integralZ
 fr(! ! !o)Li(!) cos � d! ;then we would need to approximate both the BRDF and incident light. It would notmake sense to use the BRDF alone as a control variate, since it is scaled by an arbitraryfactor Li in the integral. (Subtracting the BRDF e�ectively replaces Li(!) by Li(!)� 1,and with no knowledge of the magnitude of Li there is no reason to think that this isan improvement.) With importance sampling, on the other hand, using the BRDF as asampling density would be perfectly reasonable.3.3.1 ExampleIn ray tracing, biased results can be avoided by choosing the recursion depth randomly.Typically this is done by de�ning a probability 1� q that the recursion will stop at eachdepth, and increasing the sample weight by a factor of 1=q in the event that the recursioncontinues. (This technique is called Russian roulette.)Typically, when the recursion stops we just return a value of 0. But suppose that wehad some estimate L� of the ambient light in the scene. In this case, we could apply thecontrol variates technique, by returning the valueZ fr(! ! !o)L� cos � d!



CS448: Lecture #8 15instead. We compensate for this by rewriting the integral asLo(!o) = Z fr(! ! !o)Li(!) cos � d!= Z fr(! ! !o)L� cos � d! + Z fr(! ! !o) (Li(!)� L�) cos � d! ;i.e. if the recursion continues, we subtract L� from the actual radiance samples Li(!).One needs to be careful of course, since Li(!)� L� could produce a negative value,and some systems may be unhappy with the concept of negative radiance. Anotherconsequence is that control variates can lead to large relative errors when estimatingvalues close to zero, for instance pixels in a dark region of the image.4 Strati�ed SamplingStrati�ed sampling is another way to reduce variance. We only introduce the basic ideahere, and discuss its variance reduction properties in the next lecture.Given a domain 
, the idea of strati�ed sampling is to split the domain into non-overlapping subregions S1; :::; Sk called strata such thatn[i=1Si = 
 :We then take a �xed number of samples ni to estimate the integral in each region, andadd up the results. For example in graphics we often supersample a pixel, by breakingit into a k � k grid and choosing a random point in each of these strata. This is betterthan choosing k2 points completely at random within the pixel, as we will see next time.For now, let's consider how to pick a good set of strata. For instance, we found earlierthat we could sample a disc uniformly with the mappingr = qUi� = 2�U2
We can see that this results in some long thin regions. As we will show next time, itis better for the strata to have compact shapes, since this tends to result in the integrandhaving a more constant value over each stratum.



16 CS448: Lecture #8Peter Shirley proposed the following alternative mapping from a square to the unitdisc, which results in more uniform strata. This mapping takes concentric squares intoconcentric circles, while preserving their relative area.
Mathematically, the mapping takes a point (u; v) in the square [�1; 1]� [�1; 1] to apoint (r; �) in the unit disc. It is de�ned asr = u� = �4 vu ) when juj � jvj,r = v� = �4 (2� uv ) ) otherwise.This certainly looks like a better strati�cation of a disc, but how do we know thatthese strata have uniform area? We start with a sample (U; V ) whose density function isp(u; v) = 1=4 ;since (U; V ) is chosen uniformly on [�1; 1]� [�1; 1]. We then transform this to a sample(R; �) in polar coordinates using the mapping de�ned above. If we consider just the casejuj � jvj, the Jacobian determinant for the transformation (r; �) = T (u; v) isjJT j = ����� @r=@u @r=@v@�=@u @�=@v ����� = ����� 1 0irrelevant �=(4u) ����� = �4r :So, the density p(r; �) in terms of p(u; v) isp(r; �) = 1jJT j p(u; v) = 4r� 14 = 1� r ;which is the density for sampling uniformly on a unit disc, as we saw in Section 2.3. Ifwe take this one step further and map (r; �) to a point (x; y), the corresponding densityfunction is p(x; y) = ( 1=� if x2 + y2 � 1,0 otherwise.So, Shirley's mapping sends strata of equal area in (u; v)-space into strata of equalarea in (x; y)-space. This is called a constant Jacobian mapping, since the Jacobiandeterminant of the combined transformation (x; y) = T (u; v) is jJT j = �=4.



CS448: Topics in Computer Graphics Lecture #9Mathematical Models for Computer GraphicsStanford University Thursday, 6 November 1997Variance Reduction IILecture #9: Tuesday, 28 October 1997Lecturer: Eric VeachScribe: David Ho�manReviewer: James Davis1 Transformation of the Unit Square into the UnitDiskOften it is useful to be able to sample a circular domain with uniform density. Forinstance, a cosine-weighted sampling of the hemisphere can be obtained by �rst generatingsamples uniformly within a unit disc, and then projecting them vertically up onto thehemisphere (as we saw in the last lecture). This is useful for sampling reections fromdi�use surfaces.To achieve uniform sampling on the unit disk, one might use a simple parameterizationsuch as r = u� = 2�vand sample (u; v) on a regular grid in the unit square. But the strata produced by thismethod do not have uniform (or even similar) areas, as �gure 1 shows.

Figure 1: Image of the unit square under the mapping (r; �) = (u; 2�v)One way to correct this problem is to re-parameterize asr = pu� = 2�v



2 CS448: Lecture #9which produces strata of equal area (�gure 2). But these strata are less and less compactaway from the center of the disk.

Figure 2: Image of the unit square under the mapping (r; �) = (pu; 2�v)There is a better mapping that transforms compact areas of the square of side 2([�1; 1] � [�1; 1]) into compact areas of the unit disk and also preserves their area (orrather, their fractional area, since the area of the unit disk is �=4 times that of theside-2 square). The triangular region below v = u and above v = 0 maps to the region� 2 [0; �=4] using the map r = u� = �4 vuas shown in �gure 3.
u

v
r�1

1
1

�4
Figure 3: Transformation of part of the �rst quadrant by the mapping (r; �) = (u; �4 vu)The mapping can then be reected and rotated to cover the remaining 7 regions ofthe disk as in �gure 4. The fact that this transformation preserves areas can be veri�edby computing its Jacobian determinant, as we did in the previous lecture.
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Figure 4: Completion of the (r; �) = (u; �4 vu) mapping by rotation and reection2 Why (and when) Strati�ed Sampling reduces vari-anceSince mappings like the above are readily available for speci�c domains, most discussionof strati�ed sampling assumes that the domain is an s-dimensional unit cube. Thisdomain is split into strata labeled S1 : : : Sk which are disjoint and completely cover thedomain: Si\Sj = ; for all i 6= j,k[i=1Si = [0; 1]s :In general there are no other shape restrictions on the strata, but in practice they aremost often rectangular regions. We denote the volume of a stratum as vi, and clearlyPi vi = 1. There will be a certain number of samples within each stratum, and we denotethis number as ni. Also, the samples are uniformly distributed, sopi(x) = ( 1=vi if x 2 Si0 otherwiseBy taking ni samples in stratum Si, we get an estimated average value ofÎi = 1ni niXj=1 f(Xi;j)for the integrand in Si, where Xi;j is the jth sample in that stratum (which has thedensity function pi de�ned above). The overall estimate will be the sum of the averages,each weighted by the volume of its stratum:Î = kXi=1 viÎi



4 CS448: Lecture #9The actual average value of the integrand within each stratum is�i = E[f(Xi;j)] = 1vi ZSi f(x)dxand this is the expected value of the estimator for the stratum, so E[Îi] = �i. Thevariance of the function within each stratum is�2i = V [f(Xi;j)] = 1vi ZSi(f(x)� �i)2dx ;so the variance of the estimator for a stratum with ni averaged samples isV [Îi] = �2i =ni ;and the variance of the overall strati�ed estimator isV [Î] = V " kXi=1 viÎi# = kXi=1 V [viÎi] = kXi=1 v2i V [Îi] = kXi=1 v2i �2iniIf we assume that the number of samples in each stratum is proportional to its volume,that is, ni = viN where N in the total number of samples, then this simpli�es toV [Îs] = 1N kXi=1 vi�2i (1)(We have added the subscript s to indicate that this estimator is strati�ed.)If the same number of samples is taken without strati�cation (i.e. where each sampleis chosen independently and uniformly over [0; 1]s), what would the variance be? Wehave already de�ned the mean and variance within each stratum. The variance acrossthe entire domain can be expressed as the mean of the individual variances plus thevariance of the means, or1V [f(X)] = kXi=1 vi�2i + kXi=1 vi(�i � I)2 (2)where X is uniformly distributed on [0; 1]s, and where I is the expected value of themeans, which is the sought-after integralI = Z[0;1]s f(x) dx :1This formula can be proven by expanding the right-hand side directly, or observing that an unstrat-i�ed sample X is equivalent to �rst choosing a random stratum I according to the discrete probabilitiesvi, and then choosing choosing X uniformly within SI . From this point of view, X is chosen condition-ally on I , and we can obtain the given formula using the standard identity V [F ] = EIVXIF + VIEXIFwhere F = f(XI).



CS448: Lecture #9 5f(x) = 0:5f(X) = 0f(x) = 1
Figure 5: In both strata of this 2-dimensional function, the mean is 0.5

f(x)
xS1 S2 S3 S4 S5 S6 S7Figure 6: Well chosen strata can have widely varying meansThen the variance of the non-strati�ed estimator that averages N samples isV [Îns] = 1N " kXi=1 vi�2i + kXi=1 vi(�i � I)2# (3)From equations 1 and 3 we can see that the non-strati�ed estimator's variance is largerthan that of the strati�ed estimator by 1N Pki=1 vi(�i� I)2. Thus we only get a reductionin variance when the means �i of the strata di�er from the overall mean I. For example,in �gure 5, the mean in both strata is 0.5, so the variance of the mean is zero and thereis no advantage in strati�cation (at least when the number of samples in each stratum isproportional to its volume). But in �gure 6, the means vary widely between strata, sothe variance reduction will be large if strati�ed sampling is used.The need for widely varying means explains why compact strata are more desirablewhen little is known of the underlying function to be integrated. If the strata have
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Figure 7: A single symbol from a 4�4 Latin square strati�es both the x and y coordinateswide support in any direction, there is likely to be more variation within the strataand therefore less variation of the means between strata. By using compact strata, thevariance of the means is likely to be increased, thereby increasing the variance reductionachieved by strati�ed sampling.3 Latin Hypercube SamplingIn graphics, a typical application of strati�ed sampling is the selection of ray directionsfor ray tracing. For example, when there are multiple light sources or area light sources,the strata can be chosen to direct rays toward the light. Similarly, anti-aliasing can beperformed by subdividing each pixel into several strata. Depth of �eld e�ects are achievedby sampling over the area of the aperture. Surface reections are handled by samplinga hemisphere of directions according to a bidirectional reectance distribution function,and motion blur by sampling over time. A ray tracer that includes all of these e�ects willbe sampling in at least 9 dimensions (2 for pixels, 2 for the aperture, 2 for the reecteddirection, 2 for the direction to the light source, and 1 for time). If each dimension issplit into just 2 strata, there are 512 samples required per pixel! As the dimensionalityof the space increases, the rate of convergence of the estimator decreases with respect toany particular dimension, just as in numerical integration. One technique to circumventthis problem of dimensionality is Latin Hypercube Sampling.A \Latin square" is an n� n array of symbols { drawn from an alphabet of size n {in which each symbol appears exactly once in each row and once in each column. Figure7 shows a 4� 4 example. If we consider this a square 2-dimensional domain divided into16 square strata, we could take a sample in each square. But we could also take samplesjust in those squares labeled \a". With only 4 samples, we would still have a sample ineach row and a sample in each column.This sampling strategy is easy to extend to s dimensions without the need to constructa full Latin hypercube. In each dimension the range [0; 1] is divided into N intervals,resulting in a domain with N s subcubes. By choosing s permutations �j of the integer



CS448: Lecture #9 7range f1; : : : ; Ng and using the ith number in �j as the jth coordinate of sample Xi(where 1 � i � N), we guarantee that in each dimension we have sampled all N intervalsof [0; 1] { in other words, the samples are strati�ed on each of the dimensions individually.We write the jth coordinate of the ith sample asXji = �j(i)� UijNwhere Uij is a uniform random number in [0; 1], making the probability distributionuniform in each one-dimensional interval and therefore in each s-dimensional subcube.So in the right side of �gure 7, we have �1 = f1; 2; 3; 4g and �2 = f3; 1; 2; 4g.To analyze the convergence of this method, let us �rst suppose that f(x) is an additivefunction, i.e. a function of the formf(x) = sXj=1 fj(xj) (4)where xj denotes the jth coordinate of x. In other words, an additive function is a sumof functions fj that each depend on only one coordinate of the vector x. To get an ideaof how Latin hypercube sample converges for this type of function, letÎ = 1N NXi=1 f(Xi)and suppose that we �x every sample at the center of its cell by setting Uij = 1=2. Thisyields Î = sXj=1 1N NXi=1 fj  i� 12N ! ; (5)noting that under summation over i we can replace �j(i) with i. Equation (5) is simplythe sum of s midpoint integration rules, one for each fj, which has an error of O(N�2)provided that the fj are smooth. It is also possible to show that if Uij is a uniformrandom number in [0; 1] (rather than being �xed at 1=2), the error is O(N�3=2) with highprobability (for smooth functions). In either case, the convergence is better than that ofstandard Monte Carlo,which is O(N�1=2).To generalize this result, suppose that f is decomposed into a sumf(x) = fadd(x) + fres(x)where fadd(x) is an additive function, and fres(x) is the \residual" which is orthogonalto all additive functions, i.e. Z[0;1]s fres(x) gadd(x) dx = 0



8 CS448: Lecture #9for any additive function gadd(x). This decomposition is unique, and we will give anexplicit formula for fadd(x) in terms of f(x) below.Given this decomposition, the variance of Latin hypercube sampling isV [Î] = 1N Z f 2res(x)dx+ o� 1N �for any square-integrable function f(x). The second term is a function that decreasesmore rapidly that c=N for any constant c. Thus, Latin hypercube sampling increases therate of convergence on the components of the function that depend on just one coordinateat a time. The closer that f is to being a purely additive function (i.e. the smaller theresidual part fres(x) is), the better Latin hypercube sampling will do.3.1 Analysis of variance decompositionsWe can determine an explicit formula for decomposing f into its components fadd andfres, using an analysis of variance decomposition (usually abbreviated anova). Let S bethe set f1; : : : ; sg of all coordinate indices, and consider all the possible subsets U � Sof these coordinates (there are 2s possible subsets in all). In the anova framework, anarbitrary function f is expressed as a sumf(x) = XU�S fU(xU )where each function fU depends only on the coordinates xU , and all the fU are orthogonal.The function when U = ; does not depend on any variables, and is called the grand mean:� = f; = Z[0;1]s f(x)dxThe other 2s�1 subsets of U are called sources of variation. For example, the componentsof f that depend on just one variable are called the main e�ects and are de�ned asfj(xj) = Z (f(x)� �) Yi 6=j dxiNotice that all of these functions are orthogonal to the constant function f; = �. Thebest additive approximation to f can then be written asfadd(x) = �+ sXj=1 fj(xj) ;where the residual fres = f � fadd is orthogonal to all additive functions.Similarly, one can de�ne the functionsfj;k(xj;k) = Z �f(x)� �� fj(xj)� fk(xk)� Yi 6=j;k dxi



CS448: Lecture #9 9which represent the parts of f that depend on two particular variables together (thetwo-factor interactions). These functions are orthogonal to f; and to all the fj.In general, fU is de�ned byfU(xU) = Z  f(x)� XV�U fV (xV )! dxS�U (6)where the sum is over all proper subsets of U (V 6= U). This yields a set of function fUthat are all orthogonal, i.e. Z fU(xU ) fV (xV ) dx = 0whenever U 6= V . This implies thatZ f 2(x) dx = XU�S Z f 2U(xU ) dxso that the variance of f can be written asZ (f(x)� �)2 dx = XjU j>0 Z f 2U(xU ) dx :With Latin hypercube sampling, the components of the variance where jU j = 1 convergeat a rate faster than 1=N , leaving only the residual componentZ f 2res(x) dx = XjU j>1 Z f 2U(xU) dx :4 Orthogonal ArraysThis above analysis suggests that one might try to select samples that are strati�ed inevery pair of variables, in addition to every single variable. This is, in fact, possible usinga version of Latin hypercube sampling based on orthogonal arrays.An orthogonal array is an N�s matrix whose entries { from an alphabet of b symbols{ are such that every N � t submatrix contains exactly the same number of copies ofall bt possible rows.2 If we let � be the number of times that each row appears in thissubmatrix, then clearly the total number of rows is N = �bt. The parameter t is called thestrength of the orthogonal array. The following table shows an example of an orthogonalarray Aij whose parameters are (N; s; b; t) = (9; 4; 3; 2).2The submatrix is not necessarily contiguous; it can consist of any subset of the columns.



10 CS448: Lecture #90 0 0 00 1 1 20 2 2 11 0 1 11 1 2 01 2 0 22 0 2 22 1 0 12 2 1 0This array was constructed by the ruleAi1 = xAi2 = yAi(j+2) = x+ jy for j = 1 : : : b� 1;where i = bx+y+1, and 0 � x; y � b�1. This technique works in general for constructingan orthogonal array with N = b2, s = b+1, t = 2, and b symbols, for any prime numberb. There are a variety of other techniques known for constructing such arrays.So, how do we use such an array for sampling? Suppose that we divide the domaininto bs cells, by splitting each axis into b intervals of equal size. Also, assume that thesymbols in the orthogonal array are f0; 1; : : : ; b� 1g. Then each 1 � s row of the arraycan be considered an index that speci�es one of the bs possible cells. The overall strategyis to generate one sample in each of the N cells speci�ed by the rows of the orthogonalarray. Speci�cally, the j-th coordinate of sample Xi is given byXji = Aij + Uijbwhere Uij is a uniform random number in [0; 1].Next, consider the projection of these samples onto any set of t coordinates. (There are�st� possible projections in all.) Then from the orthogonal array property, these sampleswill be uniformly distributed among the bt cells obtained by stratifying these axes into bequal-sized intervals. To see this, observe that the coordinates of the projected samplesare speci�ed by the rows of a particular N� t submatrix. That is, each 1� t row speci�esone of the bt cells in the t-dimensional projection of the domain. By the de�nition oforthogonal arrays, every possible 1� t row appears � times in this submatrix, so each ofthe bt cells occurs exactly � times.Therefore, orthogonal array sampling produces samples that are strati�ed with respectto every possible subset of t coordinates. We should note here that given an orthogonalarray, one can create another with the same parameters simply by permuting the columns,or by permuting the alphabet within each column. This is signi�cant because we don'twant to always sample the same set of N cells out of the �bsN� sets that are possible.



CS448: Lecture #9 11The variance of orthogonal array sampling can be written asV [Î] = 1N XjU j>t Z f 2U(xU) dx + o� 1N � :Thus, it improves the rate of convergence with respect to all components of the integrandthat depend on t coordinates or less. The case t = 2 is particularly interesting for graph-ics. For example, if we apply this technique to distribution ray tracing, it ensures thatall the two dimensional projections are well strati�ed (e.g. over the pixel, lens aperture,light source, etc.) This also includes combinations of dimensions such as the x-coordinateof the current pixel and the x-coordinate of the lens aperture.4.1 Orthogonal array-based Latin hypercube samplingNotice that because we get such good strati�cation with respect to t-dimensional pro-jections, we also get some strati�cation with respect to w-dimensional projections forw < t. For simplicity, assume � = 1. Then in a w-dimensional projection, each cellreceives bt�w samples. For example, this says that in each one-dimensional interval ofwidth 1=b along any axis j, there are exactly bt�1 samples. Notice that this is not as goodas Latin hypercube sampling, which places one sample in each interval of width 1=bt.There is a simple modi�cation to orthogonal array sampling that yields the same one-dimensional strati�cation properties as Latin hypercube sampling. (The result, logicallyenough, is called orthogonal array-based Latin hypercube sampling.) Again assume that� = 1, so that the array has bt rows. Then observe that within each column, the valuesf0; : : : ; b� 1g each appear bt�1 times. The technique works by remapping these symbolsinto a single sequence f0; : : : ; bt � 1g, by letting the bt�1 identical copies of each value mmap to the sequence (bt�1m; : : : ; bt�1(m+1)�1) according to some random permutation.This process is repeated for each column separately. Calling the modi�ed array Â, wethen change the coordinate assignment toXji = Âij + Uijbt :This will ensure that the samples are maximally strati�ed for each one-dimensional pro-jection, as well as for each t-dimensional projection.



CS448: Topics in Computer Graphics Lecture #10Mathematical Models for Computer GraphicsStanford University Tuesday, 11 November 1997Quasi Monte CarloLecture #10: Thursday, 30 October 1997Lecturer: Eric VeachScribe: Matt PharrReviewer: David Ho�man
1 OverviewFor Monte Carlo integration to be e�ective, we want to use sample points that areuniformly distributed across the domain of integration. The last lecture introduced Latinhypercube sampling, which gives samples that are well-strat�ed with respect to any onedimension, and orthogonal array sampling, which gives samples that are well-distributedwith respect to any combination of two, three, or more dimensions.Quasi Monte Carlo (QMC) is based on the approach of removing randomness fromthe generation of sampling sequences; instead, the idea is to look for �xed sequences ofpoints that perform better than random sequences, at least for certain classes of functions.Techniques have been developed to generate both �nite and in�nite sequences of welldistributed quasi-random points; in general, slightly better distributions are possible ifthe number of sample points needed is known in advance.2 DiscrepancyThe �rst question we have to answer is, given a sequence of samples, how well distributedare the samples (and thus, how e�ective will they be in estimating the values of theintegrals we want to compute.) Discrepancy is a measure of irregularity of distributionwhich is used to evaluate the quality of QMC sampling sequences. The basic idea isto look at various regions of the domain and compare the volume of these regions tothe number of sample points inside them. In general, one fourth of the volume shouldcorrespond to one fourth of the sample points, etc.2.1 De�nitionAssume we're evaluating a set of points de�ned over [0; 1]s. To compute the discrepancyof the points, we �rst pick a family of shapes B which are subsets of [0; 1]s. For example,boxes with one corner at the origin are often used. This corresponds to:B = fB = [0; v1]� [0; v2]� � � � � [0; vs] j 0 � vi � 1 for all ig :



2 CS448: Lecture #10Given a sequence of sample points P = x1; : : : ; xN , the discrepancy of P with respect toB is DN(B;P ) = supB2B �����#fxi 2 BgN � �(B)����� ;where �(B) is the volume of B. In other words, we're �nding the maximum di�erencebetween the fraction of points inside one of the shapes and the volume of the shape.When the set of shapes B is the set of boxes with a corner at the origin (describedabove), this is called the star discrepancy D�N (P ).Other popular sets of shapes to use to compute discrepancy include arbitrary axisaligned boxes, hyperplanes that cut the domain into two pieces, etc.2.2 Some ExamplesConsider the set of points in one dimensionxi = i=N:We can see that the star discrepancy of xi isD�N(x1; : : : ; xn) = 1N :For example, take the interval B = [0; 1N ). Then �(B) � 1N , but #fxi 2 Bg = 0. Thisis the interval (along with the intervals [0; 2N ), etc.) with the largest di�erence betweenvolume and the fraction of points contained.We can improve on the star discrepancy of this sequence by modifying it slightly:xi = i� 12N :Then D�N (xi) = 12N :A theorem due to H. Niederreiter (one of the main pioneers of QMC) provides somebounds for the star discrepancy of a sequence of points in 1D:D�N(xi) = 12N + max1�i�N ����xi � 2i� 12N ���� :And thus, the second example's sequence has the lowest possible discrepancy for asequence in 1D. In general, it is much easier to analyze and compute bounds for thediscrepancy of sequences in 1D than in higher dimensions.Another often used type of discrepancy is the extreme discrepancy, which uses ar-bitrary axis-aligned boxes for the set of shapes. The extreme discrepancies of the 1Dexamples given above are both 1N .



CS448: Lecture #10 33 Theoretical Performance of QMCThe Koksma-Hlawka theorem gives an upper bound for the error in QMC evaluation ofintegrals, as a product of two factors: one factor depends on the discrepancy of the pointset used, while the other depends on the function being integrated. Given an integralI = Z[0;1]s f(x1; : : : ; xs) dx1 � � � dxs;and a set of sample points P = (p1; : : : ; pN), consider an estimate of the formÎ = 1N NXi=1 f(pi):The Koksma-Hlawka theorem says thatjI � Îj � V (f)D�N(P ): (1)Thus, the error is split into a component V (f) that depends only on the functionbeing integrated and a component D�N(P ) that depends only on the point sequence.Therefore, so long as V (f) is bounded (and it isn't always bounded), the lower we canmake the discrepancy of the points, the lower the maximum error will be.In s dimensions, it is possible to get sequences such thatD�N(P ) = O (logN)s�1N ! :In particular, note that for s = 1, D�N(P ) = O � 1N � :As the number of dimensions increases, we can't do as well as we can in 1D, but it'snearly as good. Note that this convergence rate is much better than the O(N� 12 ) thatstandard Monte Carlo gives. However, in higher dimensions the (logN)s�1 factor can bequite large. For example if s = 6, then (logN)s�1=N > N�1=2 for all N < 1015. So, thiserror bound is not always very useful in practice.V (f) is called the variation of f in the sense of Hardy and Krause. It's easy to de�nein one dimension: V (f) = Z 10 jf 0(x)j dx;as long as the derivative f 0(x) is continuous. Basically, it's the sum of the heights of allthe monotonic segments of f (see Figure 1).In two or more dimensions, if f is discontinuous, the variation is in�nite and thebounds 1 are meaningless. In three or more dimensions, if f 0 is discontinuous, the vari-ation is in�nite. In general, in s dimensions, the �rst s � 2 derivatives of f must be
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Figure 1: V (f) � d1 + d2 + : : :continuous for V (f) to be bounded. In spite of the lack of theoretical bounds when V (f)is unbounded, however, QMC can still do better than standard MC in practice.4 Constructing Low Discrepancy Sequences4.1 1D: Radical inverse sequencesOne of the simplest low discrepancy sequences to construct is the radical inverse sequence.The idea is to write down an integer in a given base b, and then reect the digits aroundthe decimal point. When the base used is b = 2, this is called the van der Corputsequence: 1 .1 1=210 .01 1=411 .11 3=4100 .001 3=8101 .101 5=8... ... ...It recursively splits the intervals of the 1D line in half. The discrepancy of thissequence is D�N(P ) = O logNN ! :This matches the best discrepancy that has been attained for in�nite sequences in sdimensions: D�N(P ) = O (logN)sN ! :



CS448: Lecture #10 5For �nite sequences, better discrepancy is possible; the bound isD�N(P ) = O (logN)s�1N ! :In terms of theoretical bounds on discrepancy, it is believed that these attained boundsare as good as it gets, but the best proven lower bound for sequences (in an arbitrarydimension s) is D�N(P ) = 
 (logN) s2N !while for a �nite point set it isD�N(P ) = 
0@(logN) s�12N 1A :Thus, most of the continuing work in constructing low-discrepancy sequences centersaround reducing the constant factor k (in one dimension):D�N(P ) = O logNN ! � k logNNfor N � 2. The best k that has been attained so far is 0:224; it has been proven thatk = 0:06 is unattainable.4.2 Two and more dimensions4.2.1 Halton SequencesHalton sequences build on the radical inverse used in Van Der Corput sequences andintroduce �b(i), the radical inverse of i in base b. To generate an n dimensional sequence,we use the radical inverse base b, with a di�erent base for each dimension:xi = (�2(i); �3(i); �5(i); : : : ; �ps(i)):The �rst s prime numbers, p1; : : : ; ps are used as the bases for the s dimensions. Thediscrepancy of these sequences is good:D�N(xi) = O (logN)sN ! :Note that in each dimension, the Halton sequence �lls in the sample points from leftto right as the unit digit increases from 0 to b � 1. Permutations of the sequence canimprove their performance in practice.



6 CS448: Lecture #104.2.2 Hammersley PointsIf you know the number of samples to be taken in advance, discrepancy can be improvedslightly. Hammersley point sets are de�ned by:xi = ( iN ; �2(i); �3(i); : : : ; �s�1(i));whereN is the total number of samples to be taken. See \Ray Tracing and Irregularities ofDistribution", by Don Mitchell, in the proceedings of the Third Eurographics RenderingWorkshop for more on the uses of Hammersley points in graphics (more precisely, theHammersley-Zaremba points, which use permutations as mentioned above).4.2.3 (t; s)-sequences and (t;m; s)-netsA family of low discrepancy sequences called (t; s)-sequences and (t;m; s)-nets has beenconstructed based on looking at the distributions of points with respect to b-ary boxes:these are axis aligned boxes, coincident with the lines of (1b )i. They are de�ned by:E = sYi=1[aib�di ; (ai + 1)b�di ];where di � 0, 0 � ai < bdi , and Q denotes a product of intervals over all dimensions.For example, with b = 5 and s = 3, valid boxes include those of size 1 � 15 � 15 ,125 � 1125 � 1, etc., where the box is aligned on each axis to an integer multiple of itsdimension on that axis.(t; s)-sequences are in�nite sequences with low discrepancy with respect to b-ary boxes,and (t;m; s)-nets are �nite sequences with similarly good discrepancy; details of theconstruction of these sequences was beyond the scope of the lecture.(t;m; s)-nets have some particularly nice properties. By de�nition, s is the number ofdimensions we are integrating over, 0 � t � m, and the total number of points N = bm.(t;m; s)-nets are constructed so that if E is a b-ary box with volume �(E) = bt�m, then#fxi 2 Eg = bt:The best case of this is when t = 0; then any b-ary box of size b�m will have exactlyone point in it{exactly what we'd want!5 SummaryQMC can be a big win when doing numerical integration; keep in mind, though, thatdiscontinuities in the integrand prevent it from being as powerful as one might expectfrom theoretical bounds in the presence of smooth integrands. Another complication isthat classic estimates of variance can't be computed when using QMC, since computingan estimate again will always give the same result.



CS448: Topics in Computer Graphics Lecture #11Mathematical Models for Computer GraphicsStanford University Tuesday, 18 November 1997The Metropolis Sampling AlgorithmLecture #11: Tuesday, 4 November 1997Lecturer: Eric VeachScribe: Homan Igehy
1 Applications of Monte Carlo MethodsMonte Carlo methods were developed in order to solve di�cult integration problems ofhigh dimensionality. The techniques created came out of practical needs rather than the-oretical exercises. Before going into the details of the Metropolis Sampling Algorithm, weshall �rst look at a few typical problems that require the use of Monte Carlo techniques.Monte Carlo is de�nitely not a solution in wait of a problem.1.1 Computer GraphicsA large part of computer graphics deals with rendering and the transport of light. Thelight transport problem is a high dimensional problem: light leaving an emitter makesits way through several bounces on several surfaces (each with its own surface reectanceproperties) before hitting the image plane. To make matters more complicated, discon-tinuities show up in a variety of ways. Within a BRDF, a singularity is present in thecase of mirror reections. A discontinuity in the surface normal of an object causes adiscontinuous change in the amount of light reaching the object (e.g. along the edge ofa cube). Even if all the BRDF's and surface normals are smooth, object boundariesform discontinuities. On the image plane, these discontinuities manifest themselves assilhouette edges. On a surface, these discontinuities form shadow boundaries. In thecase of point light sources, the shadows are discontinuous in value, whereas in the caseof area light sources, the shadows are discontinuous in their �rst or second derivatives.The presence of discontinuities in such a high dimensional problem accentuates the needfor Monte Carlo techniques. Let us take a look at the dimensions involved in typicalrendering methods.1.1.1 Distribution Ray TracingDistribution ray tracing is similar to standard ray tracing in the sense that rays are tracedfrom the eye towards the light source. The di�erence is that at each step of the lighttransport problem, an integral is evaluated. As illustrated in Figure 1, distribution raytracing can be thought of as a simultaneous integration over:



2 CS448: Lecture #11Variable Dimensionstime 1pixel area 2lens aperture 2area light source 2surface reections 2 eachThus, in distribution ray tracing we must evaluate a (7 + 2r)-dimensional integral,where r is the number of surface reections considered.1.1.2 Path TracingPath tracing is a generalization of distribution ray tracing in that it includes light trans-port paths of all lengths. A path can be started in any direction and can be represented asa sequence of points x0; x1; : : : ; xk on the scene surfaces. Each xi can be either be chosendirectly on a surface (e.g. sampling a point on a light source), or by choosing a randomdirection and casting a ray. In either case, each xi has two degrees of freedom. If weinclude an integration over time as well, we get a problem of dimensionality 2(k+1)+ 1for a path of length k. In path tracing, k is not bounded, and we need to integrate overan in�nite-dimensional space.

area light source

surface

image plane lens

moving surface

Figure 1: Distribution Ray Tracing.



CS448: Lecture #11 31.1.3 RadiosityThe form factor computation of radiosity seeks to derive the fraction of light leavingpatch A that falls onto patch B, assuming a Lambertian reectance model. Althoughan analytic expression has been derived for two arbitrary polygonal patches, this modelis slow to evaluate and does not take into account e�ects of visibility. Thus, this dis-continuous 4-dimensional integration problem is amenable to Monte Carlo techniques.Similarly, �nite element-based techniques for radiance (rather than radiosity) need toevaluate coe�cients that represent the fraction of light that leaves patch A, falls ontopatch B, and then gets reected onto patch C. This is a 6-dimensional integral.1.2 FinanceMonte Carlo techniques are widely used in the �nancial world for valuing securities. Oneclass of securities traded is mortgage-backed securities. The mortgages backing thesesecurities have a �xed or variable interest rate and typically have a maturity period of30 years. The value of a mortgage-backed security depends on a complicated mix ofthe prime interest rate, the default rate, the remortgaging rate, and a variety of otherinterdependent factors that vary over time. By modeling these factors over time, a basisfor valuation is provided. Solutions to these models involve integrating functions of 20or 30 or even 360 dimensions. Since these functions are typically smooth, quasi-MonteCarlo techniques work well.1.3 Physics and ChemistryThe proliferation of Monte Carlo techniques was due to the invention of electronic com-puters and their application to problems of physics and chemistry. Monte Carlo tech-niques have been used to solve problems in neutron transport (i.e., bombs), radiationshielding (i.e., reactors), and particle transport (e.g., electron beam lithography).Another area where Monte Carlo methods are used is to predict the properties ofmaterials. This is the application that originally led to the Metropolis Sampling Algo-rithm. Problems in this �eld include the calculation of the density of a liquid at a giventemperature, the magnetic properties of alloys, and the modeling phenomena such assuperuidity.2 A Typical Physics ProblemBefore getting into the Metropolis Sampling Algorithm, let us motivate it with a typicalphysics problem. Imagine a bunch of particles inside a wrap-around box which is atthermal equilibrium, as illustrated in Figure 2. The state of this system can be describedby a vector X = (x1;x2; : : : ;xm)
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σFigure 2: A Typical Physics Problem: Particles with extent �.where xi is the position of particle i, and we let 
 represent the space of all possibleparticle con�gurationsX. (The momenta of the particles are sometimes also required, butwe will ignore them in this formulation.) If �(X) represents the energy of the system, thenthe probability p(X) that the system will be in stateX obeys the Boltzmann distribution:p(X) = f(X)R
 f(X) dXwhere f(X) = e��(X)=(kT ) :Here T is the temperature, and k is Boltzmann's constant. Note that f(X) is just theunnormalized p(X).One model for the energy �(X) is to sum up all possible pair potentials:�(X) = X1�i<j�mV (xi;xj)The hard sphere potential model treats the particles as solid balls of diameter � thatcannot interpenetrate, and any con�guration which satis�es this requirement is equallylikely. This can be achieved by setting V as follows:V (xi;xj) = ( 0 rij > �1 otherwisewhere rij is distance between particles i and j:rij = jxi � xjjAlternatively one could use the Lennard-Jones potential model (illustrated in Figure 3):V (xi;xj) = 4"8<: �rij!12 �  �rij!69=;
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ε Figure 3: The Lennard-Jones Potential.In any case, suppose there is some function g(X) in which we are interested. We wantto �nd the expected value of g(X) where X is distributed proportionally to f(X). Inother words, the quantity of interest G is:G = E[g(X)] = Z
 g(X)p(X) dXIf we choose X1;X2; : : : ;XN according to the distribution speci�ed by p(X), an estimatorfor G is given by: Ĝ = 1N NXt=1 g(Xt)Since f(X) (and consequently p(X)) is a complicated function of a huge number of vari-ables (in our case proportional to number of particles), �nding an appropriate collectionof samples X1;X2; : : : ;XN poses a formidable task. The Metropolis Sampling Algorithmsolves precisely this problem.3 The Metropolis Sampling AlgorithmThe Metropolis Sampling Algorithm was developed in 1953 by Metropolis, Rosenbluth,Rosenbluth, Teller, and Teller (it is also called the M(RT)2 algorithm for obvious reasons).The algorithm takes a random walk to generate a set of samples that are distributedaccording to some arbitrary given function. Speci�cally, suppose want have a domain
 such that X 2 
. Furthermore, let f(X) be some some scalar function. The goal ofthe M(RT)2 is to provide a series of samples X1;X2; : : : ;XN which have a probabilitydensity function proportional to f(X). In other words:



6 CS448: Lecture #11Given: A function f(X) where X 2 
.Goal: Generate Xt � p(X) where p(X) / f(X) and R
 p(X) dX = 1.3.1 Random WalksM(RT)2 generates a set of samples by taking a random walk across 
. A random walkis simply a sequence of samples X1;X2; : : :XN where each Xt is chosen with some prob-ability distribution pt(X). Furthermore, the random walk generated by M(RT)2 is aMarkov chain, meaning that the choice of Xt depends only on Xt�1. If the random walkis independent of the actual value of t, it is called a time-homogeneous Markov chain,which can be characterized by a single transition function for all t:K(Y! X) = fdensity that Xt = X given that Xt�1 = YgIn other words, K(Y ! X) is the probability density of going from state Y to state X.Since it is a pdf, it satis�es:Z
K(Y! X) dX = 1 for all YThus, for a random walk, we choose an initial state X1 according to some initial distri-bution p1(X). Then p2(X j X1) is set to K(X1 ! X), and X2 is chosen according tothat distribution. By repeating this process, pt(X j Xt�1) is set to K(Xt�1 ! X) andXt is chosen according to that distribution. Now since each Xt is a random variable, weget the the following distributions for each step of the random walk:p1(X) = initial distributionp2(X) = Z
 p1(Y)K(Y! X) dYp3(X) = Z
 p2(Y)K(Y! X) dY...pt(X) = Z
 pt�1(Y)K(Y! X) dY...Now if our random walk, which is embodied by K(Y! X), is ergodic, then there existsa stationary distribution p(X) such that:p(X) = Z
 p(Y)K(Y! X) dY (1)That means that for some p(X), the application of a step in our random walk will giveback the exact same distribution. Furthermore, ergodicity guarantees that the randomwalk will converge to p(X) for any initial distribution p1(X):limt!1 pt(X) = p(X)
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...

t = 3t = 2t = 1

...

Figure 4: A Random Walk Across a GridM(RT)2 constructs a K(X! Y) so that its stationary distribution p(X) is proportionalto the desired f(X). Thus, the samples X1;X2; : : : ;XN taken along a random walk willeventually obey the desired distribution p(X) no matter what initial distribution p1(X)is used to pick X1. Although we will not get into the details of ergodicity, it is a relativelyweak condition: there must exist a possibility of getting to any state from any other statein a �nite number of steps in non-periodic fashion.Before getting into the M(RT)2 construction of K(Y ! X), we will �rst give anexample of an ergodic random walk for clarity. Imagine a wrap-around grid of sizeM �M , as illustrated in Figure 4. Each node on the grid represents a distinct point inthe space 
: 
 = fX = [i; j] j 1 � i; j �Mg = f[1; 1]; : : : ; [M;M ]gj
j = M2We want to generate samples for 
 with a uniform distribution:f([i; j]) = 1p([i; j]) = 1M2We propose a transition function K(Y ! X) that will keep us at the current node ormove us to an adjacent node with equal probability:K([i0; j 0]! [i; j]) = ( 15 if ji0 � ij+ jj 0 � jj � 10 otherwiseFigure 4 shows what happens with our random walk after a few steps, assuming aninitial distribution p1([i; j]) which puts X1 at the center. The intensity of a locationcorresponds to the value of the density function pt([i; j]) at step t of the random walk.By observation, we can see that pt([i; j]) converges to p([i; j]), and that p([i; j]) is indeeda static distribution.



8 CS448: Lecture #11Note that if 
 is a discrete domain as in the above example, then p(X) may bereplaced by a column vector p with height equal to j
j. Each entry represents thediscrete probability of being in a given state of 
. Similarly, pt(X) may be replaced witha column vector pt. Furthermore, K(Y ! X) may be replaced by a matrix K of sizej
j � j
j. Each entry (l; k) represents the probability of the random walk moving fromstate l to state k, and the sum of any row is equal to 1. Given this matrix notation, thedistribution for our random walk becomes:pt = Kpt�1 = Kt�1p1Now if K is ergodic, then for any p1 we get:limt!1Ktp1 = pAnd the equation satis�ed by the stationary distribution becomes:p = KpThus p is an eigenvector of K with eigenvalue 1. Thus in discrete domains, �nding atransition function whose stationary distribution is proportional to an arbitrary functionis thus equivalent to constructing a matrix with a speci�c eigenvector (modulo ergodicity).3.2 The Tentative Transition FunctionIn order to constructK(Y ! X), we will break it up into two parts. A tentative transitionis �rst used to propose a transition from the current state into some other state accordingto some chosen distribution. For example, in the aforementioned m-particle problem, atentative transition could be to move a single particle by some small random distance.The pdf of this tentative transition function is denoted by T (Y ! X). Now, once thistransition is proposed, we either choose to move to this new state for the next step ofthe random walk, or else we stay in the same state for the next step of the random walk.This acceptance probability, whose pdf is denoted by A(Y ! X), is chosen in a mannersuch that the combination of T (Y ! X) and A(Y ! X) form a K(Y ! X) whosestationary distribution is the desired function p(X).3.3 Detailed BalanceThe question we ask ourselves at this point is as follows: what is the relationship betweenT (Y ! X), A(Y ! X), and p(X)? To answer this, we borrow an idea from physicalequilibria. Imagine a box �lled with a gas and another box that contains nothing. Aclamped tube connects the two boxes. Once the tube is unclamped, gas begins to owfrom the �rst box into the second box. However, once the second box starts holding somegas, some of that gas ows back into the �rst box. After some time, the two boxes reacha state of equilibrium. Even though gas ows back and forth between the two boxes and



CS448: Lecture #11 9the state of the system is not static, the amount that goes in each direction is equal, andthus the system is at equilibrium.Let us examine what happens when we apply the notion of detailed balance to ourproblem: p(X)T (X! Y)A(X! Y) = p(Y)T (Y! X)A(Y! X) (2)This equation says that once a stationary distribution p(X) is reached, then the chanceof being in state X and then taking a proposed transition into state Y is equal to thechance of being in state Y and then taking a proposed transition into state X. To seehow this provides a solution to stationary distribution, we rewrite Equation (1) in termsof T (Y ! X) and A(Y! X):p0(X) = �Z
 p(Y)T (Y! X)A(Y! X) dY�+�p(X)�1� Z
 T (X! Y)A(X! Y) dY��The �rst term of the above equation expresses the chance of starting in state Y andtaking a transition into X. The second term expresses the chance of starting in state Xand rejecting a transition into another state Y. These are all the ways that one can endup in state X after a step of the random walk. Rearranging the terms and moving p(X)into the integral (since it is constant with respect to Y), we get:p0(X) = p(X) +Z
 p(Y)T (Y! X)A(Y! X)� p(X)T (X! Y)A(X! Y) dYThus in order to get a stationary distribution, the integral in the above equation mustevaluate to zero. One easy way to do this is to enforce the detailed balance of Equation(2) in our choice of T (Y! X) and A(Y! X). Thus, we are left with:p0(X) = p(X)3.4 The Acceptance ProbabilitySince p(X) is given to us (by way of f(X)), and T (Y! X) is some guess for transitions,then our only choice is to set A(Y! X) appropriately in order to meet the condition ofdetailed balance. From Equation (2), we know that we must have:A(Y ! X)A(X! Y) = p(X)T (X! Y)p(Y)T (Y! X) (3)One way to achieve this is:A(Y! X) = min 1; f(X)T (X! Y)f(Y)T (Y! X)! (4)



10 CS448: Lecture #11Noting that f(X)=f(Y) = p(X)=p(Y) since p(X) / f(X), it is clear from substitutionthat Equation (4) satis�es Equation (3). Note that all of the above scalar values canbe readily evaluated for any pair of points. Thus we are now ready for the M(RT)2algorithm.3.5 The M(RT)2 AlgorithmAssuming we have a way of evaluating f(X) at a point, and a way of evaluating T (Y!X), then the algorithm for generating samples with a pdf proportional to f(X) is asfollows: X1 � p1(X)for t = 2 to NXtent � T (Xt�1 ! X)if (random() < A(Xt�1 ! Xtent))Xt = XtentelseXt = Xt�1Note that one may want to reject the �rst several samples since it takes a while for therandom walk to reach the stationary distribution.



CS448: Topics in Computer Graphics Lecture #12Mathematical Models for Computer GraphicsStanford University Tuesday, Dec 1 1997Review of Splines and Introduction to SubdivisionLecture #12: Thursday, Nov 6 1997Lecturer: Denis ZorinScribe: Xiaomei ZhuIn this lecture we will review some simple facts about splines and introduce subdivi-sion. Next few lectures will be about subdivision.1 The Idea of Subdivision.Splines and subdivision are closely related. Splines use piecewise polynomials to inter-polate curves. There are many ways to evaluate splines. One such method is the deCasteljau algorithm; for quadratic splines it is especially simple. Start with the controlpolygon of a spline curve; insert two new control points on each edge connecting two oldcontrol points. Each new control point divides the edge in the ratio 3:1. Connect thenew control points and discard the old.This algorithm can be generalized: note that each new control point is a linear com-bination of old control points with weights 1=4 and 3=4. Rather then using these speci�cweights, we can use other weights. This is the idea of subdivision: use algorithms similarto those that are used for spline evaluation, but modify these algorithms so that theygenerate curves with di�erent properties (which becomes apparent in the one-dimensionalcase) and so that they handle arbitrary control meshes for surfaces (which becomes anissue in the two-dimensional case).2 Subdivision and other modeling methods.We briey compare subdivision to several free-form surface and curve representationsused in geometric modeling: splines, implicit surfaces, and variational surfaces. All ofthese representations are primarily used for smooth surfaces.We can compare these representations from a number of points of view.1. E�ciency. Computational cost is an important aspect of a modeling method.Subdivision is easy to implement and is computationally e�cient; the e�ciencyis a property inherited from splines since the algorithms for evaluation are essen-tially the same. From the point of view of e�ciency, implicit surfaces are not sogood. An algorithm such as marching cubes is required to generated the polygonalapproximation needed for rendering. Variational surfaces are even worse: a globaloptimization problem has to be solved each time a control of the surface is changed.
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AFigure 1: A mesh with an extraordinary vertex: number of faces meeting at A is not 4.Special e�orts are required to guarantee smoothness between spline patches meeting atthe extraordinary point; subdivision handles such situations in a natural way.2. Arbitrary topology. It is important to be able to produce smooth surfaces withcontrol meshes of arbitrary topology. \Arbitrary topology" means two things: �rst,the topological genus of the mesh and associated surface can be arbitrary. Second,the structure of the graph formed by the edges and vertices of the mesh can bearbitrary; speci�cally, each vertex may have an arbitrary degree.These two aspects are related: for example, any control mesh for a sphere (topo-logical genus 0) necessarily has vertices of di�erent degrees. Only closed surfaces ofgenus 1 can be represented using a mesh with all vertices having the same degree.From a practical point of view arbitrary control meshes have a considerable advan-tage: a user of a modeling system would not want to worry about degrees of controlvertices when de�ning a shape.When rectangular spline patches are adapted for arbitrary control meshes, enforcingsmoothness at extraordinary vertices becomes di�cult and considerably increasesthe complexity of the representation. Implicit surfaces can be of arbitrary topo-logical genus, but the genus, precise location, and even connectivity of a surfaceare di�cult to control typically. Variational surfaces can handle arbitrary topologybetter than any other representation, but the computational cost has been thusfar prohibitive. Subdivision canhandle arbitrary topology quite well without losinge�ciency; this is one of its key advantages.3. Surface features. Subdivision allows more exible controls than is possible withsplines. In addition to choosing locations of control points, one can manipulate



CS448: Lecture #12 3the coe�cients of subdivision to achieve such e�ects such as the the sharpness ofcreases or the control behavior of the boundary curves. Implicit surfaces, on theother hand, are very di�cult to control. Variational surface, however, are the bestfor creating features.4. Complex geometry.For interactive applications, e�ciency is crucial. Subdivision-based representationsfor complex geometry are very e�cient and have an advantage in situations whenthe geometry has to be modi�ed (editing, animation). For applications that onlyrequire the visualization of the geometry, other representations, such as H. Hoppe'sprogressive meshes, are likely to be more suitable.3 Review of Splines3.1 Piecewise-Polynomial CurvesSplines are piecewise polynomial curves. In the case of quadratic splines, each polynomialsegment of a curve can be written asx(t) = a2t2 + a1t+ a0y(t) = b2t2 + b1t+ b0Where a2; a1; a0; b2; b1; and b0 are constant coe�cients. Spline curves are typicallyspeci�ed by control points rather then by the coe�cients. The curve can be modi�ed bymoving the control points. Moving a control point has the greatest e�ect on the part ofthe curve near that control point. For B-splines, the e�ect of changing the position of asingle control point is actually local: only a �nite portion of the curve is a�ected.Specifying the curve with control points amounts to rewriting the equations above inthe following form. x(t) = XC ixBi(t)y(t) = XC iyBi(t)Bi(t) are called the basis functions. The collection of basis functions for i = 0; 1; 2; :::; nis the basis for the space of all curves that we can represent. For uniform splines, thebasis functions satisfy Bi(t) = B(t� i)We choose the basis function Bi(t) in such a way that the resulting curves are smoothand that the inuence of the control points is local. One way to ensure smoothness is



4 CS448: Lecture #12to use smooth basis functions. 1 Since polynomials themselves are ini�nitely smooth,we only have to make sure that derivatives match at the points where two polynomialsegments meet. The higher the degree of the polynomial, the more derivatives we areable to match. We also want the inuence of a control point to be maximal at regions ofthe curve close to it, and for this inuence to decrease as we move away along the curve,and for it to disappear completely at some distance. Finally, we would like the basisfunctions to be piecewise polynomial, and we should be able to represent any piecewise-polynomial curve of a given degree with the apropriate basis. In a moment, we will showhow to construct basis functions satisfying all these requirements for polynomial curvesof arbitrary degree.When we talk about curves, it is important to distinguish the curve itself and thegraphs of the coordinate functions of the curve (which also can be thought of as curves).For example, a curve can be described by equations x(t) = sin(t), y(t) = cos(t). Thecurve itself is a circle, but the coordinate functions are sinusoids. For the moment, weare going to concentrate on representing the coordinate functions.3.2 B-Splines Basis FunctionsWe start with the simplest case: piecewise constant coordinate functions. Any piecewiseconstant function can be written asx(t) =X cxi Ui(t)where Ui(t) is the box function de�ned asU(t) = 1 if 0 � t < 1= 0 otherwiseThe functions Ui(t) = U(t� i) are translates of U(t). Furthermore, let us represent Thecontinuous convolution of two functions f(t)and g(t) with(f 
 g)(t) = Z f(s)g(t� s)dsNow a B-spline basis function of degree n can be obtained by convolving the basisfunction of degree n � 1 with the box U(t). For example, the B-spline basis function ofdegree 1 is de�ned as the convolution U(t) with itself. We need to computeZ U(s)U(t� s)dsGraphically, this convolution can be evaluated by sliding one box function along thecoordinate axis from minus to plus in�nity while keeping the second box �xed. The value1The smoothness of the basis functions guarantees the smoothness of the coordinate functions of thecurve. However, it does not guarantee the geometric smoothness of the curve. We will return to thisdistinction in our discussion of subdivision surfaces.
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tFigure 2: The de�nition of degree 1 B-Spline basis function through convolution of U(t)with itself.of the convolution for a given position of the moving box is the area under the product ofthe boxes, which is just the length of the interval where both boxes are non-zero. At �rstthe two graphs do not have common support. Once the moving box reaches 0, there is agrowing overlap between the supports of the graphs. The value of the convolution growswith t until t = 1. Then the overlap starts decreasing, and the value of the convolutiondecreases down to zero at t = 2. The function N1(t) = R U(s)U(t� s)ds is the linear hatfunction as shown in Figure 2.We can compute the B-spline basis function of degree 2 convolving N1(t) with thebox U(t) again. N2(t) = Z N1(s)U(t� s)dsIn this case, the resulting curve consists out of three quadratic segments de�ned onintervals (0; 1), (1; 2) and (2; 3). This is illustrated in Figure 3.In general, by convolving j times, we can get a B-spline basis function of degree jNj(t) = Z Nj�1(s)U(t� s)dsNow convolution has a remarkable propertyTheorem 1. If f(t) is Ck-continuous, then U(t)
 f(t) is Ck+1-continuous.It follows from this theorem that the B-spline basis function of degree n is Cn�1 continuousbecause the basis function of degree 1 is C0-continuous. De�ning B-spline basis functions
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3Figure 3: N2(t) as convolution of N1(t) with U(t).through convolution leads us to a scaling equation for splines similar to the dilationequation that we had for scaling functions of wavelet bases. Recall that U(t) is Haarscaling function and that it satis�es the dilation (scaling) equationU(t) = U(2t) + U(2t � 1) (1)We have de�ned the B-spline basis function of degree j asNj(t) = 
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CS448: Lecture #12 7where f and g are functions and a is a constant. By substituting Equation 1 intoEquation 2 and expanding, we obtain an expression of the formNj(t) =X skNj(2t� k)where sk are some constants. Next time we will show that the coe�cients sk allow us tocompute successive piecewise-linear approximations to the limit curve starting with thecontrol polygon.



CS448: Topics in Computer Graphics Lecture #13Mathematical Models for Computer GraphicsStanford University Tuesday, Dec 1 1997Analysis of Subdivision CurvesLecture #13: Tuesday, Nov 11 1997Lecturer: Denis ZorinScribe: Hoofar Razavi1 IntroductionAs we saw in the last lecture, the basis functions used for generating a B-spline of degreen is derived from the convolving the box function with itself n times:N(t) = nOi=0 U(t)where U(t) = ( 1 if 0 � t < 10 otherwiseandN denotes convolution. These basis functions all have local support and are piecewisepolynomial with degree n. However, more importantly, they also satisfy the dilationequation, which we �rst encountered in the context of wavelets. The dilation equationfor the B-spline basis is simply:N(t) =Xk skN(2t � k) (1)From before we also know that if a set of basis functions satisfy the dilation equationmultiresolution techniques such as successive re�nement can be applied to functions inthe spaces these basis functions span. We set out to �nd sk so that we can apply thesetechniques to the representation of our curves. If you are familiar with DeBoor's knotinsertion algorithm, the above formula can be interpreted as a special case of DeBoor'sformula.2 The DerivationRecall the following properties of convolution for functions f(t), g(t), and h(t), giventhat m(t) = f(t)N g(t):f(t)N(g(t) + h(t)) = f(t)N g(t) + f(t)N h(t) linearityf(t� i)N g(t� k) = m(t� i� k) time shiftf(2t)N g(2t) = 12m(2t) time scaling



2 CS448: Lecture #13Also, recall from last time that the box function can be written in terms of its owndilates U(t) = U(2t) + U(2t � 1)Now, looking at the �rst degree basis and using the above observation we haveN(t) = U(t)NU(t) �rst degree basis functionU(t) = U(2t) + U(2t � 1)N(t) = (U(2t) + U(2t � 1))N(U(2t) + U(2t� 1))Rewriting the above using the convolution properties presented we getN(t) = U(2t)OU(2t) + U(2t)OU(2t� 1) + U(2t)OU(2t� 1) + U(2t� 1)OU(2t � 1)= 12N(2t) + 12N(2t � 1) + 12N(2t� 1) + 12N(2t� 1 � 1)= 12N(2t) +N(2t� 1) + 12N(2t� 2)Comparing the above derivation to Equation 1 we arrive at the coe�cients s0 = 12 ,s1 = 1, and s2 = 12 . We have managed to rewrite the basis function for a �rst degreeB-spline in terms of its own dilates as well. The above derivation generalizes to B-splinebasis functions of higher degrees. Now we compute the coe�cients sk for degree n � 1splines splines Nn�1(t) = nOi=0 U(t)= nOi=0 (U(2t) + U(2t� 1))With the derivation of the coe�cients of the �rst degree spline, we make the followingobservation. The coe�cients of the translates of the dilate of N(t) in equation 1 are simplythe elements of the matrix S. Recall that the binomial expansion derives the coe�cientsfor each term of the exponentiation:(x+ y)n = nXi=0 aixn�iyiwhere ai =  ni !Similarly, because the convolution operator is linear, just like multiplication, we canderive our coe�cients simply through the binomial expansion by rewriting the above



CS448: Lecture #13 3equation.N(t) = (U(2t) + U(2t� 1))O(U(2t) + U(2t� 1))O(U(2t) + U(2t� 1))| {z }n : : := nXi=0 si U(2t)OU(2t)O :::| {z }i U(2t + 1)OU(2t+ 1)O : : :| {z }n�iFrom the above it is easily seen that the sk coe�cients are none other than thecoe�cients of the binomial expansion for (x+ y)n divided by 2n.3 Representing CurvesConsider a point in the plane " cixciy #to be the ith control point of a curve we would like to represent. The curve, (t), is thusrepresented as (t) = " x(t)y(t) # =Xi " cixciy #N(t� i)As we saw in the last lecture, each of the translates of N(t) has a maximum value atsome point during the interval it is nonzero. Writing our curve in this manner ensuresthat each control point inuences the curve as well as guaranteeing that such inuenceis limited, due to the local support of translates of N(t).We can rewrite the above more compactly as(t) =Xi ciN(t� i)Now consider c, the vector of control points of a given curve:c = 26666666666664 ...c�2c�1c0c1c2... 37777777777775and the vector N(t), which has as its elements the translates of the function N, thedesired basis function, de�ned above:



4 CS448: Lecture #13N = h : : : N(t+ 2) N(t+ 1) N(t) N(t� 1) N(t� 2) : : : iIn this notation we can denote our curve as Nc. Since we know that each of the elementsof N can be represented in terms of its dilates we rewrite the whole vector as suchN(2t) = h : : : N(2t + 2) N(2t+ 1) N(2t) N(2t � 1) N(2t � 2) : : : iWhere we relate the two vectors with the matrix S as follows:N(t) = N(2t)SRewriting (t) based on the above representation yields:(t) = N(2t)ScWe can think of N(2t) as our new basis and Sc as our new control points. Sinceeach successive rewriting of the function N uses basis functions that are twice as narrowas the functions on the previous step, they are shifted by one half of the shift on theprevious step. The new control points correspond to values of t which are twice as denseas on the previous level. As we will see below, the new control points are simply linearcombination of the old points since they are related through the matrix S. The elementsof S are related to the coe�cients sk in Equation 1 byS2i+k;i = skRepresenting our curve, using the above, at each degree gives us a set of successivere�nements of the curve:(t) = N(t)c0 Zeroth degree= N(2t)c1 = N(t)Sc0 First degree...= N(2jt)cj = N(t)Sjc0 J th degreefrom which we can see the relationship between control points at di�erent levels:cj+1 = Scjwhere S is our in�nite subdivision matrix. Looking more closely at one component, i, ofour control points we see that: cj+1i =Xl Si;lcjlTo �nd out exactly which sk is a�ecting which term, we can divide the above intoodd and even entries. For the odd entries we have:



CS448: Lecture #13 5cj+12i+1 = sumlS2i+1;lcjl = sumls2(i�l)+1cjland for the even entries we havecj+12i = sumlS2i;lcjl = sumls2(i�l)cjlFrom which we essentially get two di�erent subdivision rules one for the new evenpoints of the curve and one for the new odd points. As examples of all of the above,let us consider a couple of concrete cases. For piecewise linear subdivision, the basisfunctions are hat functions. The odd coe�cients are 12 and 12 , and 1 for the even point.For second degree splines, the odd coe�cients turn out to be 14 and 34, and 34 and 14 forthe even ones.4 Discrete ConvolutionThe coe�cients sk can also be derived from another perspective, namely discrete convo-lution. More explicitly, using generating functions for a sequence xk we can consider apolynomial X(z) =Xk xkzkwhere X(z) is the z-transform of the sequence xk; for the case of two coe�cients we have(aO b)k =Xn ak�nbnSuppose we have two functions that satisfy the dilation equation:f(t) = Xk h0(k):f(2t� k)g(t) = Xk h1(k):g(2t� k)Then f N g also satis�es the dilation equation with coe�cients h0(k) = 1=2h0xh1 whereh0(k) = 12Xi h0(k � i)h1(i)Since U(t) satis�es the dilation equation U(t) = U(2t)+U(2t� 1), N(t) = Xn�1i=0 U(t)satis�es a dilation equation N(t) = Pk skN(2t� k) withsk = (1=2)[:::0110:::]x(1=2)[:::0110:::]x:::x(1=2)[:::0110:::] (n times):The z-transform of [... 0 1 1 0 ...] is 1+z.We obtain the following generating function for splines:S(z) = (1 + z)n2n�1Again, the values sk become apparent: they are simply the coe�cients of each of theterms in the generating function above.



6 CS448: Lecture #135 Interpolation vs. ApproximationSplines are not interpolating, that is, they do not pass through their control points.We can generate interpolating curves by choosing the even rows of the S matrix to be: : : 0; 0; 1; 0; : : :, so that the control points, once added are never moved. Then we choosethe coe�cients for the odd points in such a way that the generated curves are smooth.One such choice is the four point scheme, �rst introduced by Dyn, Levin, and Gregory),which has generating functionS(z) = 116(�z�3 + 4z�2 � z�1)(1 + z)4Recall that convolving with a box increases smoothness and convolution with U(t)means multiplication of the generating function by (1 + z)=2. We have four factors(1 + z)=2 in the generating function above, but three of them are required just to getsubdivision to converge. One extra term (1 + z)=2 ensures that the curve is smooth.In general, the di�cult part is to �nd a set of coe�cients for which subdivision con-verges. There is no general method to achieve this; once we have a convergent subdivisionscheme, we can obtained desired smoothness by convolving with the box.6 Subdivision vs. SplinesThe subdivision coe�cients sk's need not be �xed as we presented them so far. We canvary them, both between levels of subdivision and within one level, between points toobtain di�erent curves. In this regard, splines are just a special case of the more generalclass of curves, subdivision curves.There is no su�ciently strong reason for using subdivision in one dimension (in factnone of the commercial line drawing packages do) but the argument becomes much morecompelling in higher dimensions.



CS448: Topics in Computer Graphics Lecture #14Mathematical Models for Computer GraphicsStanford University Tuesday, December 1 1997Classical Subdivision SurfacesLecture #14: Thursday, 13 Nov 1997Lecturer: Denis ZorinScribe: Mark WangReviewer: Hoofar RazaviIn this lecture we discuss the basic ideas of the analysis of subdivision, using subdi-vision curves as an example, and introduce the a simple subdivision scheme for surfaces{ Loop scheme.1 Subdivision of Curves near Extraordinary PointsLast time we have shown that the uniform B-spline curves can be thought of as a specialcase of subdivision curves. So far, we have seen only examples for which we use a �xedset of coe�cients to compute the control points everywhere. The coe�cients de�ne theappearance of the curve, for example, whether it is smooth or has sharp corners. It ispossible to control the appearance of the curve by modifying the subdivision coe�cientslocally.Consider the four-point curve interpolation algorithm from the previous lecture. Marka single control point of the curve. Suppose that we change the coe�cients that are usedto compute new control points near a marked control point on the coarsest level. For ex-ample, we can replace the coe�cients �1=16; 9=16; 9=16;�1=16 of the four-point schemeby the coe�cients 0; 1=2; 1=2; 0, whenever we compute a new control point adjacent tothe marked point. As a result, we introduce a corner into the limit curve at the markedpoint.Changing the coe�cients of subdivision for computing a �xed number of neighborsof a marked point on each level does not a�ect the smoothness of the curve outside of aarbitrarily small neighborhood of the control point.To determine local properties of a subdivision curve, we do not need the whole in�nitevector of control points or the in�nite matrix describing subdivision of the entire curve.Smoothness is a local property of a curve, which means that we can consider an arbitrarilysmall piece of the curve around a given point, and still be able to determine if the curveis smooth at that point or not.It turns out that for the four-point algorithm, we need to consider only 7 controlpoints; these 7 points completely de�ne the piece of the curve around a control point.We can consider a set of 7 control points on any subdivision level, as we do not care howsmall our piece of the curve is. Note that we can compute the positions of the seven



2 CS448: Lecture #14control points on level j + 1 from the positions of similar seven control points on level j,using a 7� 7 submatrix S of the in�nite subdivision matrix.The local subdivision matrix for the four-point scheme is:0BBBBBBBBBBBB@ cj+1�3cj+1�2cj+1�1cj+10cj+11cj+12cj+13 1CCCCCCCCCCCCA = 0BBBBBBBBBBB@ � 116 916 916 � 116 0 0 00 0 1 0 0 0 00 � 116 916 916 � 116 0 00 0 0 1 0 0 00 0 � 116 916 916 � 116 00 0 0 0 1 0 00 0 0 � 116 916 916 � 116 1CCCCCCCCCCCA0BBBBBBBBBBBB@ cj�3cj�2cj�1cj0cj1cj2cj3 1CCCCCCCCCCCCAAs we iteratively apply the subdivision S to the initial vector for control points, wesee that each of the 7 control points becomes closer to the central control point c0.Some properties of the curves generated by subdivision can be inferred from theproperties of the subdivision matrix. In particular, smoothness properties of the curveare related to the eigenstructure of the subdivision matrix.2 Properties of the Subdivision Matrix2.1 PreliminariesRecall from linear algebra that an eigenvector x of the matrix M is a non-zero vectorsuch that Mx = �x, where � is a scalar; � is the eigenvalue corresponding to x.Assume S has real eigenvectors x0; x1; : : : ; x6 which form a basis, with correspondingreal eigenvalues �0 � �1 � : : : � �6. We can then write any vector x of length 7 as alinear combination of eigenvectors: x = nXi=0 aixiSimilarly, we can write a decomposition of this type for a vector c of 7 2-D pointsrather than single numbers. In this case each \coe�cient" ai is a single 2-D point.The eigenvectors x0; : : : ;x6 are simply vectors of 7 real numbers. The expression c =P6i=0 aixi, where c is a vector of 2D-points can be written more explicitly asc = 6Xi=00BBBBBBBBBBB@ x0iaix1iaix2iaix3iaix4iaix5iaix6iai 1CCCCCCCCCCCA



CS448: Lecture #14 3where xji 2 R represents the j-th component of eigenvector xi.In the basis of eigenvectors we can easily compute the result of application of thesubdivision matrix to a vector of control points, that is, the control points on the nextlevel: Sc0 = S 6Xi=0 aixi= 6Xi=0 aiSxi by linearity of S= Xi=0 ai�ixiApplying S n times, we obtain Snc0 = 6Xi=0 ai�ni xi2.2 Convergence of SubdivisionIf �i > 1 for some i, Snc0 clearly would diverge as n got larger and larger.Hence, we can see that in order for the sequence Snc0 to converge at all, it is necessarythat all eigenvalues are at most 1. It is also possible to show that only a single eigenvaluemay have magnitude 1.2.3 Invariance under A�ne TransformationsIf we moved all the control points simultaneously by the same amount, we would expectthe curve de�ned by these control points to move in the same way as a rigid object. Inother words, the curve should be invariant under distance-preserving transformations,such as translation and rotation. It follows from linearity of subdivision that if sub-division is invariant with respect to distance-preserving transformations, it also shouldbe invariant under any a�ne transformations. The family of a�ne transformations inaddition to distance-preserving transformations, contains shears.Let ~1 = [1111111]T Then ~1 � a represents a displacement of our seven points by avector a.Applying subdivision to the transformed points, we getS(cj +~1 � a) = S(cj) + S(~1 � a) by linearity of S= cj+1 + S(~1 � a)We see that for translational invariance we needS(~1 � a) = ~1 � a



4 CS448: Lecture #14
Figure 1: Invariance under translationTherefore, ~1 should be the eigenvector of S with eigenvalue �0 = 1.2.4 Geometric Behavior of Repeated SubdivisionIf we assume that �0 is 1, and all other eigenvalues are less than 1, we can choose ourcoordinate system in such a way that a0 is a zero vector; then we have:cn = 6Xi=1 ai�ni xiDividing both sides by �n1 , we obtain:cn�n1 = a1x1 + 6Xi=2 ai  �i�1!n xiAssume that �2; : : : ; �6 < �1. In this case we see that the sum on the right approacheszero as n!1. In other words the term corresponding to �1 will \dominate" the behaviorof the vector of control points (decrease much slower than the other ones).In the limit, we get a set of 7 points arranged along the vector a1. Geometrically, thisis the tangent vector of our curve at our center point.If there were two equal eigenvalues, say �1 = �2, as n increases, the points in thelimit con�guration will be linear combinations of two vectors a1 and a2, and in generalwould not be on the same line. This indicates that there will be no tangent vector at
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Figure 2: Repeatedly applying the subdivision matrix to our set of seven control pointsresults in the control points converging to a con�guration aligned with the tangent vector.The various subdivision levels have been o�set vertically for clarity.the central point. This leads us to the following condition, that, under some additionalassumptions, is necessary for existence of the tangent:All eigenvalues of S except �0 = 1 should be less than �1.2.5 SummaryFor our subdivision matrix S we desire the following characteristics:� The eigenvectors should form a basis.� The �rst eigenvalue �0 should be 1.� The second eigenvalue �1 should be less than 1.� All other eigenvalues should be less than �1.3 Schemes for Subdivision SurfacesWe now focus our attention on the 2-D extension of curves, subdivision surfaces. Thereare a variety of subdivision schemes for surfaces, including� Loop� Catmull-Clark� Doo-Sabin
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Figure 3: A tensor product B-spline.� ButteryIn this lecture, we focus on the Loop scheme.3.1 Representation of Surfaces with SplinesIn the 2-D case, we use a polyhedral surface as a control mesh analogous to the controlpoints in the curve case. Additional restrictions may be imposed on the mesh. As anexample, consider a uniform tensor product B-spline where all points not on the boundaryof the control mesh are restricted to having exactly 4 neighbors.While B-splines may seem like a good general solution at �rst as a control mesh forsurfaces, what if we wanted to represent, say, a sphere? Unlike our B-spline, it is a closedsurface with no boundary, and it is topologically impossible to represent it using such amesh. For a mesh in which each vertex has 4 neighbors, the quantity f � e+v (known asthe Euler characteristic), where f is the number of faces, e is the number of edges, andv is the number of vertices, is 0. On the other hand, for a polyhedral mesh topologicallyequivalent to a sphere the Euler characteristic has to be 2.3.2 3-Directional Quartic SplinesThe Loop scheme is based on three-directional quartic Box splines, which are de�ned overregular triangular meshes (each face is a triangle, each vertex has 6 neighbors.) Otherschemes are based on other types of splines: tensor product of quadratic B-splines forthe Doo-Sabin scheme, and tensor product of cubic B-splines for Catmull-Clark.The generating function for 3-directional Box spline isf(z1; z2) = 116(1 + z1)2(1 + z2)2(1 + z1z2)2
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Figure 4: Part of a 3-directional quartic spline, with the three directions of symmetryhighlighted.
Figure 5: Loop subdivision rules for vertex (left) and edge (right) points at a regularvertex of degree 6.3.3 Rules for SubdivisionSimilar to the one-dimensional case, for the Loop scheme we need 2 rules, a \even" one(for adding new control points) and a \odd" one (for modifying existing ones.) Considerthe case where each vertex has six neighbors (has degree 6).New vertices are created by splitting the edges of the old mesh. Each old edge givesrise to two new edges and three more edges per triangle are created by connecting thenew vertices. Each old triangle is subdivided in four.Our challenge is to make the scheme work for arbitrary triangular meshes. We cannotsimply use the spline rules, because they assume that each vertex has 6 neighbors. Howdo we update the position of vertices with degree other than 6 (known as extraordinary
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Figure 6: At an extraordinary point, we need to alter our vertex subdivision rule.vertices)?Observe that the rule for the spline iscj+10 = 58cj0 + 116 6Xi=1 cjiwhere c0 is the vertex that we recompute, and ci, i = 1 : : : 6 are the immediate neighbors.This rule can be naturally generalized to the case of n neighbors ascj+10 = (1 � �n)cj0 + � 6Xi=1 cjiWe need to set the coe�cient of our center point to be (1� n�) in order for the sumof the coe�cients to add up to 1 which is required for a�ne invariance of the scheme.Note that changing a rule at an extraordinary point will only change the characteristicsof the generated surface locally, so the analysis in this case is similar to the analysis thatwe did for subdivision curves with special rules near a point.The choice of the parameter � in the formula above is not unique, and di�erentconsiderations can be used to pick an appropriate value. The original value chosen byLoop was � = 1n  58 � �38 + 14 cos 2�n �2!We can easily verify that in the case n = 6, � is 116 as we would expect. However,the exact value of � does not matter too much: the generated surfaces are smooth fora range of �. For example, for n > 3, we can choose � to be simply 38n ; the resultingsurfaces will be quite similar to those obtained using the original Loop's rules.



CS448: Topics in Computer Graphics Lecture #15Mathematical Models for Computer GraphicsStanford University Tuesday, 1 December 1997Classical Subdivision Surfaces IILecture #15: Tuesday, 18 November 1997Lecturer: Denis ZorinScribe: Joey BehelerReviewer: Mark WangIn the previous lecture, we discussed the Loop subdivision scheme which works fortriangular meshes. In this lecture we will look at several other subdivision schemes.1 BackgroundEach subdivision scheme can be thought of as two rules: the topological re�nement rulethat describes how the re�ned mesh is created from the original mesh, and the subdivisionrule, that is used to compute the locations of the vertices of the new mesh. The �rst rule,which we will call simply the re�nement rule, describes how many new vertices are addedto the mesh and which vertices in the new mesh are connected by edges. For example,the Loop scheme replaces a triangle at subdivision level j with 4 triangles at level j+1 .The new mesh at subdivision level j+1 is created by splitting each edge and connectingthe inserted vertices as shown in Figure 1.Figure 1: Connecting the 3 new vertices creates 4 new level j+1 triangles.Two of the schemes that we consider in this lecture are de�ned for quadrilateral ratherthen triangular meshes. For such meshes we have two main options for re�nement rules.The �rst re�nement rule, used by the Doo-Sabin subdivision scheme, �rst builds alevel j+1 quadrilateral in the center of each existing level j face quadrilateral. The newmesh is obtained by connecting each vertex of the level j+1 quadrilateral with its threeneighbors to produce 3 more level j+1 quadrilaterals. This re�nement rule is illustratedin Figure 2.The second re�nement rule, which is used by the Catmull-Clark subdivision schemesubdivides a level j quadrilateral into 4 level j+1 quadrilaterals. New vertices are createdby splitting each edge into two and creating a new vertex for each face. This method isillustrated in Figure 3.
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Figure 2: Re�nement rule used by Doo-Sabin subdivision scheme. Step 1: New verticesare added to create level j+1 quadrilaterals in the center of level j quadrilaterals. Step2: The vertices of the center face quadrilaterals are connected to their neighbors. Eachlevel j quadrilateral is covered by parts of 9 level j+1 quadrilaterals, but there are only 4level j+1 quadrilaterals created for each level j quadrilateral. The vertices of the level jquadrilaterals are discarded. This re�nement rule works for even degree tensor-productsplines.
Figure 3: Re�nement rule used by Catmull-Clark subdivision scheme. New vertices areadded on each edge and in the center. When connected, 4 new level j+1 quadrilateralsare produced from the single level j quadrilateral. This re�nement rule works for odddegree tensor product splines.2 Doo-Sabin2.1 QuadrilateralsThe Doo-Sabin subdivision scheme is based on quadratic splines. Recall that a generatingfunction for one-dimensional quadratic splines is (z + 1)3=4. For a tensor product spline



CS448: Lecture #15 3of total degree 4 the generating function isf(z1; z2) = (1 + z1)3(1 + z2)322 � 22If we multiply this out we end up with:f(z1; z2) = (1 + 3z1 + 3z21 + z31)(1 + 3z2 + 3z22 + z32)16The coe�cients of the monomials of f(z1; z2) are the coe�cients of the subdivisionscheme.We can arrange the coe�cients into a table, with the coe�cient of zi1zj2 in position(i; j): 116 � 0BBB@ 1 3 3 13 9 9 33 9 9 31 3 3 11CCCAFor quartic (that is, of total degree 4) tensor-product splines we have 4 rules fordetermining the positions on the vertices on the next subdivision level. They are theEven-Even, Even-Odd, Odd-Even and Odd-Odd rules. Each rule uses 4 coe�cients fromthe above table. The name of each rule determines which 2 rows (Even or Odd) andwhich two columns (Even or Odd) of the table are selected. The Even-Even rule, forexample selects from the even column and even row giving the coe�cients 116 , 316, 316, and916 . Geometrically, this results in a point EE that is 116C0+ 316C1+ 316C2+ 916C3 as shownin Figure 4.2.2 Doo-Sabin subdivision: N-gonsDoo-Sabin subdivision extends the rules for quartic splines described above to generalpolygonal meshes. For each N -gon at level j , we create a level j+1 N -gon. This issimilar to dealing with extraordinary points in the Loop scheme, but now we cannotuse symmetry to compute all coe�cients once one of them is known. The rules for thevertices of the new N -gon can be derived using the eigenstructure of the subdivisionmatrix. Suppose we are computing a new vertex of the N -gon on level j+1. This vertexis a linear combination of the vertices of the old N -gon. Suppose these vertices arenumbed from 0 to N �1 starting with the vertex nearest to the vertex on level j+1 thatwe are computing. Then the coe�cients are �0 = 14+ 54N , �k = 3+2cos( 2�kN )4N , k = 1 : : : N�1where k is the vertexes number.
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Figure 4: The level j+1 point determined by the Even-Even rule is at 116C0 + 316C1 +316C2 + 916C3. The other points are determined in a similar manner. All rules are thesame up to a renumbering of the points.3 Catmull-Clark3.1 Quadrilateral RulesThe Catmull-Clark subdivision scheme is based on cubic splines.Its generating function is:f(z1; z2) = (1 + z1)4 � (1 + z2)464In this case, there are three di�erent rules called the vertex rule, the edge rule and theface rule for computing point positions. These rules also correspond to various choices ofcolumns and rows of the table of coe�cients of the generating function: Even-Even, Odd-Even etc. The vertex rule computes a new position of an existing vertex using the vertexitself and 8 immediate neighbors. The edge rule computes the position for a new vertexinserted on an edge between two existing vertices. It uses the closest 6 existing vertices.The simplest rule, the face rule, creates a new point in the middle of a quadrilateral face.All rules are shown in Figure 5.3.2 Extraordinary VerticesFor extraordinary vertices, Catmull-Clark scheme uses modi�ed rule similar to Loop'sscheme. Since there are quadrilaterals meeting at the extraordinary point instead oftriangles, we have two sets of vertices that should have equal coe�cients by symmetry.We call them inner and outer vertices (Figure 6). This leaves us two degrees of freedom.
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Edge Rule Face RuleFigure 5: Each black circle represents a vertex at level j; we compute the position of thevertex at level j + 1 marked by by the black square. Note that for the vertex rule, thecontrol vertex with weight 916 and the new vertex aren't necessarily aligned as they arein the �gure.
Inner Vertex
Outer VertexFigure 6: Inner and outer vertices surrounding an extraordinary point in a quadrilateralmesh.If the coe�cients of inner vertices are �N and the coe�cients of all outer vertices are beN , where N is number of inner vertices. The coe�cient of the central vertex is 1��� by a�ne invariance. The values for � and  which Catmull and Clark came up with are� = 32N = 14NNote that for N = 4, we do get the coe�cients for the spline vertex rule. Also, notethat the weight on an inner or outer point is proportional to 1N2 - we do divide by Ntwice. These coe�cients are by no means unique: there is a range of � and  that leadsto smooth surfaces.



6 CS448: Lecture #153.3 Arbitrary MeshesWe have de�ned Catmull-Clark scheme on quadrilaterals; it can be extended to handlearbitrary polygonal meshes. Observe that if we do one step of re�nement, splitting eachedge into two and inserting a new vertex for each face (Figure 7), we get a mesh whichhas only quadrilateral faces. Special rules described in Catmull and Clark's paper areused for this �rst step. On all other steps of subdivision standard rules described abovecan be applied. Figure 7: Splitting a hexagon into quadrilaterals.4 Buttery Rule : Interpolation on a Triangular GridThe Buttery subdivision scheme is similar to the Loop scheme, but it creates an inter-polated surface which contains the vertices of the original triangular mesh. The Loopscheme had two rules, one for changing positions of old vertices and one for computingpositions of new vertices. Since the Buttery scheme is interpolating, we don't need arule for changing the positions of old vertices. If we want the scheme to generate smoothsurfaces, we do need wider support for the rule that adds a vertex. To add a new vertexwe use the coe�cients shown in Figure 8.
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1/8Figure 8: Each black circle is a control point with the corresponding weight. The blacksquare is the new vertex.This scheme is based on the one-dimensional four-point interpolating scheme withcoe�cients �116 ; 916; 916; �116 . This subdivision scheme generates smooth interpolating sur-faces only for regular meshes. Smoothness, however, is not guaranteed at extraordinarypoints. A modi�cation of this scheme with special coe�cients for computing new vertices



CS448: Lecture #15 7adjacent to the extraordinary vertices generates surfaces that are smooth everywhere foralmost all con�gurations of control vertices. The coe�cients of the scheme are given bysj = 1n �14 + cos 2�n + 12 cos 2�n � ; j = 0 : : : n� 1if the extraordinary vertex has degree n � 5. The coe�cients are 5=12;�1=12;�1=12for n = 3 and 3=8; 0;�1=8; 0 for n = 4.
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Figure 9: Rule for inserting a new vertex next to an extraordinary vertex for the Modi�edButtery scheme.5 CreasesThe Loop scheme can be modi�ed in such a way that a path of control vertices on thecoarsest level can be "marked" meaning the regular Loop scheme rule is replaced withan alternative scheme. To create a crease, the normal weights of 18 ; 38; 38 ; 18 are replacedwith weights 0; 12 ; 12 ; 0 for adding new points on the crease. For changing the position ofold points on the crease we weight the current position with 34 and its two neighbors onthe crease edge with 18 . This rule replaces the normal Loop scheme rule for changing theposition of old vertices. The e�ect is that any vertex on the path won't be inuencedby the rest of the surface, it will only be inuenced by points already on the path. Thedownside of this approach is that the surface may behave badly as it approaches thisindependently de�ned curve.



CS448: Topics in Computer Graphics Lecture #16Mathematical Models for Computer GraphicsStanford University Tuesday, 9 December 1997More on Subdivision Surfaces and SmoothnessLecture #16: Tuesday, 20 November 1997Lecturer: Denis ZorinScribe: Szymon RusinkiewiczReviewer: Joey BehelerLast time, we talked about various subdivision schemes for two-dimensional surfaces.We will now clear up the mystery of where the coe�cients in those methods came from,by examining how those coe�cients inuence the smoothness of subdivision surfaces.1 What Is a Smooth Surface?We shall start with an exact de�nition of a smooth surface. Informally, we would like toexpress the concept that a smooth surface is \a smooth two-dimensional subset of space."In other words, we need to de�ne some subset of (three-dimensional) space that has anon-degenerate two-variable parameterization that is continuous and di�erentiable. Tomake this concept rigorous requires a somewhat complicated de�nition:De�nition 1. A simple smooth surface in three-dimensional space is de�ned as asubset A of space, such that the intersection of A and a neighborhood of a point X inA has a regular parameterization p from the unit disc. Thus, if A � R3, BX is theneighborhood of some X 2 A, and D � R2 is the unit disc, A is a simple smooth surfaceif and only if D p�! ATBX . A regular parameterization p is one that is continuouslydi�erentiable, one-to-one, and has a Jacobi matrix of maximum rank.This de�nition corresponds directly to the intuition above. We pick a point X on ourcandidate surface A and examine its immediate neighborhood. This will be some regionof space that intersects A. We claim that we have a simple smooth surface only if thatregion of intersection (which will be some patch of A) has a continuously di�erentiableone-to-one mapping onto a disc.
A B

A BÇ

DFigure 1: De�nition of a simple smooth surface.



2 CS448: Lecture #16The condition that the Jacobi matrix of p have maximum rank is necessary to makesure we have no degeneracies (i.e. that we really do have a surface, not a curve or point).If p = (p1; p2; p3) and the disc is parameterized by x1 and x2, the condition is that thematrix 0BBB@ @p1@x1 @p1@x2@p2@x1 @p2@x2@p3@x1 @p3@x2 1CCCAhave maximal rank, i.e. two.Although the above de�nition is certainly adequate for some applications, it is conve-nient to have a slightly di�erent de�nition. The problem arises when we consider surfacesthat intersect themselves { no self-intersecting surface can be a simple smooth surface.This becomes obvious when we consider a point on the line of intersection, since itsneighborhood in three-dimensional space consists of pieces of two smooth surfaces.
AFigure 2: Self-intersecting surface - it is not simply smooth at A.We would prefer to have a de�nition of smoothness that is more local, and independentof global properties such as self-intersection. If we perform some topological deformationon a smooth surface, we would like the surface to continue to be classi�ed as smooth,even though the deformation might cause it to intersect itself. Therefore, we introducea modi�ed de�nition:De�nition 2. A surface A � R3 is smooth (i.e. C1) if and only if� There exists a mapping f from a parametric domain M � R2 onto A.� For every point X 2M there exists a regular parameterization of the unit disc ontof(U), where U is the neighborhood in M of X.We add an extra mapping f into the de�nition to provide a way of de�ning neigh-borhoods on the surface itself.This de�nition is convenient when working with subdivision surfaces, since it canbe shown that the mapping f always exists as we subdivide. In particular, consider atriangular mesh in the vicinity of an (ordinary or extraordinary) vertex of degree k. Inthe original mesh, we just let f be the mapping from a regular k-gon to a portion of
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Ux p
DFigure 3: De�nition of a C1 (i.e. smooth) surface.the mesh. As we subdivide the mesh, we subdivide the k-gon using the midpoint rule.We see that each added vertex in M corresponds exactly to a vertex added to the mesh.Note that although the mapping f de�ned in this way need not be smooth, this is not arequirement for the de�nition of a smooth surface { the only requirements are existenceand smoothness p.There is yet another de�nition of smoothness encountered from time to time. This isthe notion of geometric smoothness:De�nition 3. A surface A is geometrically smooth at X 2 A if and only if surfacenormals are de�ned in a neighborhood around X and there exists a limit of normals atX. This is a useful de�nition, since it is easier to prove surfaces geometrically smooth(all that is required is to show the existence of a limit), and also since the de�nition isvery intuitive (it captures the notion that a surface is smooth if there exists a tangentplane). Geometric smoothness, however, is weaker than C1 smoothness. Geometricsmoothness at X implies the existence of a parameterization from the unit disc that isregular everywhere except at X. This contrasts with the regular de�nition of smoothness,which requires the parameterization to be regular everywhere.As a simple example of a surface that is geometrically smooth but not C1, considerthe shape in Figure 4. Points in the vicinity of the central point are \wrapped aroundtwice", so while there exists a tangent plane at that point, the surface does not \locallylook like a plane". Formally, there does not exist a regular parameterization from theunit disc onto the neighborhood of the center point, even though that parameterizationis regular in the neighborhood of that point.From the previous example, we see how the de�nition of geometric smoothness mustbe strengthened to become C1:Lemma 4. If a surface is geometrically smooth at a point and the projection of thesurface onto the tangent plane at that point is one-to-one, the surface is C1.
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Figure 4: Example of a surface that is geometrically smooth but not C1.2 Smoothness of Subdivision SurfacesWe now turn to an examination of the smoothness properties of a subdivision surface.We will �rst examine the Loop scheme, and show how the eigenvalues of the subdivisionmatrix determine how smooth the limiting surface will be.
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CS448: Lecture #16 5by 0BB@ ck+10...ck+13n 1CCA = S 0BB@ ck0...ck3n 1CCAIn this equation, n is the degree of the vertex, so two rings of triangles around it require3n+1 points. S is the local portion of the subdivision matrix. Note that the coordinatescki are themselves vectors in three-space.We can now rewrite each of the coordinate vectors in terms of the eigenvectors of thematrix S. Thus, c0 = 0BB@ c00...c03n 1CCA = Xi aixi;and ck = (S)kc0 = Xi (�i)kaixi;where the xi are the eigenvectors of S, and the �i are the corresponding eigenvalues,arranged in nonincreasing order. As stated in an earlier lecture, we require �0 to be 1for all subdivision schemes, in order to guarantee invariance with respect to translationsand rotations. Furthermore, all stable, converging subdivision schemes will have all theremaining �i less than 1.It is clear that as we subdivide, the behavior of ck, which determines the behaviorof the surface in the immediate vicinity of our point of interest, will depend only on thelargest eigenvalues of S. In the limit as k !1, we care only about �0 and �1 for curves;for surfaces, we also care about �2.To proceed with the derivation, we will assume for simplicity that �1 � �2 > �3.Furthermore, we let a0 = 0 { recall that this corresponds to choosing the origin of ourcoordinate system in the limit position of the vertex of interest. Then we can writeck(�1)k = a1x1 +  �2�1!k a2x2 + � � � ;where the higher-order terms disappear in the limit.We now have two cases to consider { we will �rst consider what happens if �1 = �2.In this case limk!1 ck(�1)k = a1x1 + a2x2:



6 CS448: Lecture #16This means that, up to a scaling by (�1)k, the control points approach a �xed con-�guration. This con�guration is determined by x1 and x2, which depend only on thesubdivision scheme chosen, and on a1 and a2, which are determined by the initial con-ditions. Note, however, that given any non-degenerate initial conditions, the result willbe the same up to an a�ne transform. Therefore, in some sense, all surfaces subdividedusing a given rule \look the same" in the limit, and the limiting con�guration dependson the eigenvectors x1 and x2 of the subdivision matrix.Now recall that a1 and a2 are just vectors inR3, while x1 and x2 are 3n+1-componentvectors, one component per control point. Therefore, we see that the expression a1x1 +a2x2 must represent a set of control points that all lie in one plane. So in the limit asubdivision rule with �0 > �1 = �2 > �3 leads to smooth surfaces.Now consider what happens when �1 > �2. In this case, the control points stillapproach a plane, but they \stretch" in one direction more than another. Therefore westill get smooth surfaces. Note that we must be careful to consider both �1 and �2, andnot come to the erroneous conclusion that the control points might approach a line andtherefore form a crease.In the next lecture we will formulate a su�cient condition for smoothness.
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In which Denis discusses the smoothness of subdivision surfaces, introduces multires-

olution surfaces and brings subdivision to its conclusion.

1 The Smoothness of Subdivision Surfaces

1.1 Introduction

The condition for smoothness of subdivision surfaces can be stated very simply. We could
just start by explaining everything at the beginning.

Reif’s sufficient condition for smoothness : Suppose the eigenvectors of a subdi-
vision matrix form a basis, the largest eigenvalues three eigenvalues are real and
satisfy

λ0 = 1 > λ1 ≥ λ2 > |λ3|

. If the characteristic map is regular and one-to-one, then almost all surfaces
generated by subdivision are smooth (C1-continuous.)

We need to define several concepts mentioned in this criterion.

1.2 Subdivision surfaces as mappings

We will discuss subdivision on triangular meshes; constructions for schemes defined on
quadrilateral meshes are similar. Suppose the initial control mesh for the surface has one
extraordinary vertex of degree n and the rest of the vertices are regular (degree 6.) If we
are interested only in local properties of subdivision surfaces, in fact this is the only kind
of mesh we have to consider — any initial mesh after sufficient number of subdivision
steps locally is identical to the mesh with one or none extraordinary vertices.

Consider a triangulation of the plane R2 which has similar structure: one vertex of
degree n in the center, and all other vertices of degree 6. We can establish a one-to-one
correspondence between the vertices of the triangulation of R2 and the vertices of the
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mesh R3; this defines a mapping from the set of vertices of the triangulation, which is a
subset of the points of the plane, to the control vertices of the surface.

Suppose each time we apply the subdivision rules to compute the finer control mesh,
we also apply midpoint subdivision to the triangulation of the plane. This means that
we leave the old vertices where they are, and insert new vertices in the middle of each
edge of the triangulation. Note that each control vertex that we insert in the mesh in R3

corresponds to a new vertex of the midpoint-subdivided triangulation.
As we repeat this process, we get a mapping from a denser and denser subset of the

plane to the vertices of the finer and finer control mesh. In the limit we get a map from
an everywhere dense set on the plane to the surface, which can be extended by continuity
to the whole plane. As a result, we get a natural parameterization of the subdivision
surface over the plane: f : R2 → R3.

To analyze smoothness, we need to consider arbitrarily small piece of the surface
around the extraordinary point. In particular, we can take the part of the surface defined
over a n-gon U that consists out of triangles adjacent to the extraordinary vertex: f :
U → R3. Note that the n-gon can be chosen on any level of subdivision; let U j be the
n-gon after j subdivision steps.

We can construct the map f for n = 6; in this case, initially we have a regular
triangulation on the plane. It is easy to show that for splines–based subdivision the
mapping f in this case will be just the standard piecewise-polynomial mapping defining
the spline.

In general, subdivision schemes are typically constructed in such way that the map-
ping f that we get for a regular initial mesh (with all vertices of degree 6) is C1-continuous.

An important observation about the mapping f is that after sufficient number of
subdivision steps in a neighborhood of any point inside the triangles of the initial trian-
gulation of the plane, the map coincides with the map generated from a suitably chosen
regular mesh (this is not true on the boundaries of triangles!)

In particular, f is C1-continuous inside each triangle of the n-gon U0 and we can
compute the derivatives. To ensure smoothness of the surface, f should have Jacobi
matrix of maximal rank.

It turns out that we need not consider all possible maps f to establish smoothness of
subdivision. In most cases it is sufficient to consider a single map called the characteristic

map which is completely defined by the subdivision scheme. To define this map, we need
to discuss eigenvalues and eigenvectors of the subdivision matrix.

1.3 Characteristic Map

The part of the subdivision surface on U is completely defined by a set of the control
vertices near the extraordinary vertex v. For example, for Loop’s scheme the surface is
defined by two rings of control vertices around v. For a vertex of degree n these rings
contain 3n + 1 vertices, including the extraordinary vertex itself. Let ci = (xi, yi) be the
control vertices for the two rings, forming a vector c of length 3n + 1:



CS448: Lecture #17 3

ci = (xi, yi) (1)

c =



















c0

c1

c2

...
c3n



















(2)

c0 is the initial vector of control vertices and cj is the vector after j subdivisions. If
we define S to be the subdivision matrix, then the act of subdividing can be represented
as repeated multiplication of c by S, exactly as in the case of the curves.

cj+1 = Scj (3)

cj+1 = Sj+1c0 (4)

After each subdivision the 3n + 1 control vertices defining the surface on the n-gon
U j are becoming closer and closer to the central vertex. One more remarkable thing
happens: if we scale the control vertices cj, we will see that the configuration of the
control vertices converges to a limit. To describe this more precisely, we have to look at
the eigenvalues and eigenvectors of the subdivision matrix.

Suppose λi are the eigenvalues of S, and they are numbered in nonincreasing order:
|λ0| ≥ |λ1| ≥ |λ2| ≥ |λ3| ≥ · · · ≥ |λ3n|. For simplicity we assume that there is a basis of
eigenvectors of S. λ0, as usual, must be 1. For convergence we need λ1 < 1. In addition,
we assume that λ1, λ2 are real and |λ3| < λ2.

Then similar to the one-dimensional case that we have considered before,

cj+1 ∼= λn
1a1x1 + λn

2a2x2. (5)

where λ1 and λ2 are the eigenvalues of S, x1 and x2 are corresponding eigenvectors,
and a1 and a2 are vectors in R3 defining the tangent plane.

We have used the usual trick of moving the origin of our coordinate system to the
central point of the subdivision, so that a0 is 0, and there are no terms containing λ0. In
this expression only a1 and a2 depend on the initial control vertices; the eigenvectors x1

and x2 depend only on the choice of the subdivision scheme.
Now we are ready to define the characteristic map. Note that when we described

subdivision as a function from the plane to R3, we could have use control vertices not
from R3 but from R2; clearly, subdivision rules can be applied in the plane rather then in
space. Then in the limit we obtain a map from the plane into the plane. The characteristic
map is the map of this type.

As we have seen, the configuration of control points near an extraordinary vertex
approaches a1x1 + a2x2, up to a scaling transformation. This means that the part of the
surface defined on the n-gon U j as j → ∞ approaches the surface defined by the vector of
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control points a1x1 + a2x2. Up to an affine transform which does not affect smoothness,
in the limit all surfaces generated by subdivision are identical to the surface generated
by the control vertices ci, such that ci = ([x1]i, [x2]i, 0), that is, the first two coordinates
are corresponding coordinates of the eigenvectors x1 and x2. The control vertices ci are
obtained from a1[x1]i + a2[x2]i applying the affine transform taking a1 to e1 and a2 to
e2, where e1, e2, e3 are the basis vectors. By throwing away the last zero coordinate, we
obtain a vector of control points in R2 completely defined by the eigenvectors of S. This
is a map from the n-gon U0 to R2.

As we have discussed, inside each triangle of the n-gon U0 the map is C1. Moreover,
the map has one-sided derivatives on the boundaries of the triangles, except at the
extraordinary vertex, so we can define one-sided Jacobians on the boundaries of triangles
too. Moreover, it is possible to show that the Jacobian actually has to be continuous
away from the extraordinary vertex despite the fact that the derivatives may be not
continuous. We will say that the characteristic map is regular if its Jacobian is not zero
anywhere away from the extraordinary vertex (including the boundaries!)

Now we have all of the tools that we need to understand the condition given at the
beginning:

Reif’s sufficient condition for smoothness : Suppose the eigenvectors of a subdi-
vision matrix form a basis, the largest eigenvalues three eigenvalues are real and
satisfy

λ0 = 1 > λ1 ≥ λ2 > |λ3|

. If the characteristic map is regular and one-to-one, then almost all surfaces
generated by subdivision are smooth (C1-continuous.)

2 Multiresolution Surfaces based on Subdivision

2.1 Problems With Subdivision

Subdivision is great, but there are some problems with it. One problem is that it’s often
easier to generate or manipulate a model with different levels of detail. For example,
when manipulating a model of an armadillo, it’s much easier to move an ear as a single
object than to move each point that makes up the ear.

One solution for this problem (the one we will be considering) is multiresolution
surfaces based on subdivision, We discuss how to use multiresolution surfaces, but will
discuss how to generate these surfaces from arbitrary meshes. That is a separate and
complicated topic.
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2.2 Wavelet-Like Multiresolution Surfaces

2.2.1 Wavelets A Blast From the Past

As you recall, wavelets separated low-frequency and high-frequency components of an
image. Another way of looking at this is that wavelets generate a signal of averages, and
a signal of details.

We will now apply the same strategy to subdivision surfaces.

2.2.2 Comparison of Wavelets and Subdivision

The following figure is a diagram of a wavelet filter. The boxed section is analogous to
subdivision, adding more points.

H H

H H

0 0

1 1
~

~

Analogous to Subdivision

Figure 1: A wavelet filter bank.

If H0 is known, it is typically possible to choose H1, in such a way that they form a
filter pair.

2.2.3 Another Strategy

If we are doing a hierarchical wavelet transform and we do not subsample the detail part
of a signal, the resulting signal is two times larger than if we has subsampled. However,
if we skip the subsampling in 2D, the resulting signal is only 4

3
times larger.

1 +
1

2
+

1

4
+

1

8
+ · · · = 2 (6)

1 +
1

4
+

1

16
+

1

64
+ · · · =

4

3
(7)

H H0 0
~

Detail

Averages

Figure 2: A filter bank that doesn’t subsample the detail.
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2.3 Performance of Multiresolution Surfaces

With full detail, the computer takes a long time to manipulate the model in the figure.
However, by taking out levels of detail and then manipulating the model, everything
becomes much faster.

Also, it is much easier to perform gross manipulations of the image when it has coarse
detail. For example, if we want to move the ear, we don’t have to move every control
point, we just have to go to lower detail, move a few points, and then go back to high
detail. The details follow the changes made at the coarse level.

Model manipulation is therefore improved in three different ways by using multires-
olution surfaces.

1. It is faster because there is much less load on the computer.

2. It is faster because the user needs to manipulate fewer control points.

3. It is more intuitive, because the user can manipulate large sections of the image
easily. For example, is is much more intuitive to “move the ear” than it is to “move
all of the control points that comprise the ear”.

See Figure 3, Figure 4, and Figure 5 for examples.

Figure 3: Armadillo Man

3 Improvements of Multiresolution Surfaces based

on Subdivision

3.1 Dynamic Subdivision

Another problem with subdivision is that it sometimes gives too much detail. We do
not always want the same resolution everywhere; we want more resolution only where
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Figure 4: Armadillo Man at coarse resolution, with his ear moved.

Figure 5: Armadillo Man at high resolution, with his ear moved.

we want a finer representation. In Figure 6, Figure 7, and Figure 8, more resolution is
needed where the surface changes rapidly than where the surface remains fairly constant.

This problem can be solved by adaptively subdividing the surface. A triangle will
only be subdivided if more subdivision is necessary. A flat plane, for example, should not
be subdivided and given more detail, even if an adjacent jagged peak is being subdivided
and given more detail.

Figure 6: A fairly smooth model.
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Figure 7: The same model with a slight bump.

Figure 8: The same model with a large bump.

3.2 Adding Details Correctly

If a coarse version of an image is modified, care must be taken when adding back the
details. If they are added blindly, the results may not be what is intended, as in the
picture below.

A better strategy is to remember the normal of the surface where a detail is located,
and to add the details relative to this normal.

Figure 9: A figure with some detail.
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Figure 10: The figure was changed and the detail followed.

Figure 11: The detail was changed to reflect the new normal.
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1 Plane Curve Review

We first finish up the previous lecture topic of plane curves. The ellipse is used to show
some of the properties of the evolute.

Figure 1: The envelope of the normals is the evolute.

Figure 2: The evolute is the trace of wavefront singularities.

Figure 1 shows the normals to an ellipse drawn at uniform intervals. Recall that the
envelope of the normals is the evolute. The figure shows that this evolute is a well defined
curve which is the obviously traced out curved diamond shape. Notice that the evolute
has cusps. Although it’s not shown in the figure, if you think about it you can see that
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if you drew an osculating circle to the ellipse at any point, its center would fall on the
evolute. Another way to think about this is to consider that the differential section of
the surface around a point is a tiny arc of the circle centered on the evolute.

You may also recall from the previous lecture that the evolute is the trace of wavefront
singularities. Figure 2 shows the offset curves of an ellipse. Again, these curves are drawn
at uniform offset intervals. Note that they fold over, and their singularities and cusps lie
on the evolute.

These two figures illustrate caustics, a subject we will return to in the next lecture.
This one is devoted to curves in space and surfaces.

2 Space Curves

R = 1/κ

n

t

b

Figure 3: A space curve with a Frenet frame made from the tangent, normal, and binor-
mal. The radius of the osculating circle is proportional to the curvature.

The previous lecture dealt with curves in the plane. Figure 3 shows a curve in space.
A space curve can be parametrized by arc length with the function x(s). At every point
it has a well-defined tangent t = x′(s), which is the derivative of the curve with respect to
s. The derivative of the tangent is the curvature times the normal: t′ = κn. We can once
again fit an osculating circle to the curve at the point, whose radius is the inverse of the
curvature. In the plane this osculating circle argument was straightforward. However,
the extra degree of freedom in space gives us a whole family of circles which fit the curve.
We pick the one whose center is pointed to by the normal vector n.

2.1 The Frenet Frame

We know that the tangent is perpendicular to the normal. We can define a coordinate
system with the addition of a third orthogonal vector, the binormal: b = t × n. This
triad of axes is uniquely determined by the curve and is known as the Frenet frame.

The Frenet frame has the following properties:

b · b = n · n = t · t = 1 (1)

b · n = n · t = t · b = 0 (2)
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Equation 1 expresses the fact that the axes have unit length, while equation 2 is a
consequence of their orthogonality. The Frenet coordinate frame changes as you move
along the curve or surface – it’s a function of space. We can express any vector or point
with respect to this frame. It’s often useful to express changes in this frame:

t′ = cttt + ctnn + ctbb

n′ = cntt + cnnn + cnbb

b′ = cbtt + cbnn + cbbb

where ctt means (t′ · t). We already know that t′ = κn, which takes care of the first
line:

t′ = 0t + κn + 0b
n′ = (n′ · t)t + (n′ · n)n + (n′ · b)b
b′ = (b′ · t)t + (b′ · n)n + (b′ · b)b

To simplify b′, we start with the last term. We know from above that b · b = 1.
When we differentiate with the chain rule we find that d

dx
(b · b) = d

dx
b2 = 2b · b′ = 0.

So b · b′ = 0 and the last term drops away.

We attack the first term of b′ by noting from above that b · t = 0, which when
differentiated gives b′ · t + b · t′ = 0 and thus b′ · t = −b · t′. Substituting the definition
of the tangent gives −b · t′ = −b · κn = −κb · n. Since we know that b · n = 0, we have
found that b′ · t = 0 and can drop the first term.

To find the middle term of b′ we use two of the results from the other terms: b′ ·b = 0
and b′ · t = 0. If the dot product of two vectors is 0 they are perpendicular, so b′ is
perpendicular to b and t. The same is true for n, so b′ must be some multiple of n. We
will define the torsion τ of the curve by the equation b′ = −τn. Just as the curvature
κ measures the rate of change of the tangent, the torsion τ measures the rate of change
of the binormal.

Our remaining unknown is n′. We use the chain rule as above to find that n′ · n = 0
and drop the middle term. For the first term, we differentiate (n · t) = 0 to find that
n′ · t + n · t′ = 0. Substituting t′ = κn and n · n = 1 shows that n′ · t = −n · t′ =
−n · κn = −κ(n · n) = −κ · 1. Thus the middle term simplifies to −κ. We find the last
term of n′ using the same process: n′ · b = −n · b′ = −n · (−τn) = τ(n · n) = τ · 1 = τ .
We have thus found that n′ = −κt + τb.

We have just derived what are known as the Frenet-Serret formulas:

t′ = κn

b′ = −τn

n′ = −κt +τb
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These formulas are just a system of differential equations which tell us about the
motion of the Frenet frame. It is plausible that we can integrate them to recover infor-
mation about the curve itself. In fact, we can completely reconstruct a curve just from
curvature and torsion at every point. We state without proof the strong theorem which
states this result. It is one of the many theorems in different branches of mathematics
known as the Fundamental Theorem.

Theorem 1. The Fundamental Theorem of Curves

Given an arc length s, and two arbitrary functions κ(s) and τ(s), we can uniquely

determine the shape of curve x(s).

2.2 The Darboux Vector

At the beginning of the last lecture we pointed out that there are many legitimate ways
to describe a curve: algebraic, parametric, and intrinsic. The previous section was an
example of the intrinsic approach.

Figure 4: Two geometric interpretations of the Frenet frame from Koenderink [1]. On
the left is the continuous case, while the right shows a less common piecewise linear view.
Reproduced without permission from [1], Figures 110,111.

Koenderink’s extremely readable book [1] builds up the ideas discussed in this lecture
by describing several different interpretations in both words and pictures. Figure 4, from
the book, shows two different geometrical interpretations of the Frenet frame.

On the left we can clearly see the coordinate frame defined by the normal, tangent, and
binormal at point P ′. The normal lies in the shaded plane defined by the infinitesmally
close points P, P ′ and P ′′. At every point there is a well defined normal – it just changes
as you move.

The picture on the right shows a piecewise linear approximation to the smooth curve,
as might be constructed by a set of linked rods. The rods themselves show the tangents.
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The binormal for the point corresponding to P is drawn as an additional vertical rod.
The osculating planes formed by each two neighboring rods are also shown. As the
name implies, the osculating circles lie in these planes. This drawing shows that you can
consider the plane as determined by two vectors instead of by a circle.

The normals at each point lie in this osculating plane, and the binormal at that point
is perpendicular to this plane. The angle α is the amount of “turn” between the rods,
which is the curvature. The binormal is the axis of this rotation. The angle β is the
amount of turn around the tangent between two neighboring points – that is, the torsion.

Thus we can think of moving from one endpoint of a rod to the other by locally
rotating the curve a little bit around the binormal and a little bit around the tangent.
We thus see the motivation for defining the Darboux vector as that combined rotation:

d = κb + τt

We can use this quantity to rewrite the Fresnel-Serrat formulas concisely as

t′ = d× t

b′ = d × n

n′ = d × b

t

n
b

d

Figure 5: The Darboux vector and coordinate frame on a cylindrical helix.

It is also useful to consider the geometric interpretation of the Darboux vector and the
coordinate frame on a cylindrical helix, as shown in Figure 5. The case of the cylindrical
helix is unique because both the rate of translation and of rotation are constant. The
Darboux vector is the axis of the cylinder, the normal points towards that axis, and the
binormal is on the surface of the cylinder. The coordinate frame travels in a screw motion
on a helix on the surface of the cylinder as it translates up the instantaneous tangent
and rotates around the axis d.
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3 Surfaces

We now move on from curves to surfaces. Consider a curve C passing through a point
P on a surface, represented by the parametric equations u=u(t), v=v(t), so the curve in
space is represented as x = x(u(t), v(t)). The tangent vector at a point is the derivative,
and can be determined via the chain rule:

t = ẋ =
dx

dt
=

∂x

∂u

du

dt
+

∂x

∂v

dv

dt

Thus the tangent to the curve at the point P has direction components

ẋ = xu

du

dt
+ xv

dv

dt
= xuu̇ + xvv̇

The tangent vector to C at P is a linear combination of the vectors ẋ and v̇ tangential
to the parametric curves at P. Thus, the tangent to C at P lies in the plane determined
by the tangents at P to the parametric curves. If we move in parameter space by (du, dv),
we will move by dx in position along the curve.

3.1 The First Fundamental Form

The differential arc is the magnitude of the change: ds = |ẋ|. This differential arc ds is
the distance between two points. We can can compute ds2 as follows:

ds2 = (xu · xu)du2 + 2(xu · xv)dudv + (xv · xv)dv2

= Edu2 + 2Fdudv + Gdv2

= I

This expression for ds2 is known as the first fundamental form of the surface. Its
constituent elements E = xu · xu, F = xu · xv, and G = xv · xv characterize the surface
metrically. For instance, we can express the change in area as dA = (EG − F 2)1/2 and
the area of a surface patch is

∫ ∫

(EG − F 2)1/2dudv.
The direction of the normal to the surface is xu ×xu. We normalize by its magnitude

to find the unit normal:

N =
xu × xv

|xu × xv|
.

We can also express the magnitude of the normal using E, F , and G:

(xu × xv) · (xu × xv) = (xu · xu)(xv · xv) − (xu · xv)
2

= EG − F 2
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resulting in

N =
xu × xv

sqrt(EG− F 2)
.

3.2 The Second Fundamental Form

The first fundamental form allowed us to understand arc length and areas. We now move
onward to curvature. Recall that we are discussing a curve on a surface. We now need to
distinguish between the normal to the curve, which we have been writing as n, and the
normal to the surface, which we shall call N. These two quantities are often different.
An example is any circle on the sphere which is not a great circle: the normal to the
circle is different from the normal to the sphere.

kn
k

kg

surface tangent

Ν
surface normal

T

Figure 6: The total curvature can be decomposed into geodesic and normal components.

The tangent t is of course perpendicular to the normal and proportional to some
vector which we will call k. We can decompose k into two components:

k = kn + kg

= κnN + κgT

These components are shown in Figure 6. The first component is proportional to
the surface normal and is the normal curvature kn. The second is known as the
geodesic curvature kg or tangential curvature, and is intrinsic – it depends on the
characteristics of the surface itself, not its embedding in three dimensional space. We
focus for now on the normal curvature.

Note that the normal curvature of a curve on a surface is not the same as the normal
curvature of a space curve. Here we discuss the former. The normal curvature vector kn

of all curves on a surface through a given point which share a tangent vector is the same.
The normal curvature is the projection of k onto N: κn = N ·k = N · t′. Since N · t = 0,
we can differentiate along the curve to find that (N · t)′ = N · t′ = −N′ · t. Thus

κn = N · t′ = −N′ · t = −
dN

ds
·
dx

ds
=

−dN · dx

ds · ds
=

II

I
=

edu2 + 2fdudv + gdv2

Edu2 + 2Fdudv + Gdv2

Recall the ds2 is I, the first fundamental form. The quantity −dN · dx is the second
fundamental form, also called II or the shape operator. It describes how the tangent
(or normal) plane turns as you move around the surface. There are direct analogs to
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the elements E,F, and G found in first fundamental form, namely e = −Nu · xu, 2f =
−(Nu ·xv)+Nv ·xu), and g = −Nv ·xv. The properties of the shape operator are explored
in great detail in classical differential geometry.

3.3 Meusnier’s Theorem

kg

kn

(varies)

k family of vectors k 
with same kn
as kg varies

Figure 7: There is an entire family of curvature vectors which all share the same normal
component.

Above we discussed the decomposition of k into the geodesic and normal components,
as shown in Figure 6. Consider all the vectors k with the same normal component. These
can be thought of as the intersection between the surface and a normal plane. Figure
7 shows that there is a family of such vectors which result from changing the geodesic
component but leaving the normal component fixed. Thus all curves through the same
point have the same normal curvature vector.

Actually, there are two different but interesting ways to move a plane about a normal
vector: it can rock or roll. Figure 8 shows both cases. First, a family of planes which
share a tangent can rock around the normal. All osculating circles to curves with the
same tangent direction describe a sphere, sometimes known as Meusnier’s sphere.

We can roll around the tangent vector to gain other degree of freedom In this case
the osculating circles will change size as we rotate (unless the surface is a perfect sphere).
The above discussion has been an informal statement of Meusnier’s Theorem, which we
will not prove.

The family of osculating circles that result from rocking around the tangent vector
at a point has a well-defined minimum and maximum. The minimum and maximum
circles are perpendicular to each other. The radii κ1 and κ2 of these two special circles
are called the principal radii of curvature of the surface. The tangents are called the
lines of curvature, and t1 · t2 = 0. At every point on the surface we can compute these
characteristic numbers which define the local curvature properties.

The radii of curvature are used to define the Gaussian and the mean curvature. The
Gaussian curvature K is defined as K = κ1 · κ2. The motivation for this definition is
not immediately obvious, but we will discuss it in the next lecture.

H =
κ1 + κ2

2

is the appropriately-named mean curvature.
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surface tangent

a) Rock around tangent axis: front view tangent

surface

one of the osculating circles

osculating circles

enclosing Meusnier sphere

b)  Rock around tangent axis: side view

tangent

tangent

κ2

κ1

a) Roll around tangent axis N

tangent

tangent

Figure 8: Meusnier’s “Rock and Roll” Theorem. a) Rocking around the tangent vector on
the normal plane: there are a whole family of circles which share the same tangent on the
surface. b) A side view of the rocking, looking down onto the tangent axis, showing the
rotating osculating circles which form Meusnier’s sphere. c) Rolling around the tangent
vector on the normal plane. The size of the osculating circle changes, and the maximum
and minimum sizes appear in perpendicular directions. The radii of curvature κ1 and κ2

of these extremal circles are shown.

3.4 Ellipsoid

The curvature vectors on a surface are uniquely determined. Figure 9 shows the lines
of curvature on an ellipsoid. In this case κ1 and κ2 are both positive: that is, they are
both on the same side of the tangent plane. The lines of curvature form a net: they
always intersect at right angles, and thus form a nice natural parametrization for the
surface. These lines can be computed by starting at some point and integrating. The
dot in the figure is called an umbilic point and is the place where minimimum and
maximum curvatures are the same. At this point the local neighborhood of the surface
can be approximated by a perfect sphere.

We can also define a series of concentric ellipsoids. Consider the 3D net we could
define by connecting up the lines of curvature on these offset ellipsoids. These new
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Figure 9: Lines of curvature meet at right angles and form a net on an ellipsoid. The
minimimum and maximum curvatures are the same at the dot, which is an umbilic point.
Reproduced from [3], Figure 2.22

surfaces would all meet at right angles and thus form a nice 3D curvilinear coordinate
system.

3.5 Cuboid

Figure 10: A cuboid surface colored by Gaussian curvature. Reproduced from [2], Plate
1

Figure 10 shows a cuboid surface colored by Gaussian curvature. The figure is anno-
tated with a color legend since these notes are distributed in black and white. The red
parts at the “corners” of the cuboid are elliptic – they are locally convex and both the
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Gaussian curvature K and the principal radii κ1 and κ2 are positive. The blue patches
in the center of the faces are concave: the Gauss curvature is still positive although the
radii κ1 and κ2 are both negative. The center of curvature is on the opposite side of
the tangent plane. The green parts of the surface along the edges have negative Gauss
curvature. They are saddle points where the principle radii of curvature have different
signs. Two colors meet along parabolic lines. These lines of inflection separate the
positive and negative Gaussian curvature regions.

3.6 The Apollo of Belvedere

Figure 11: The Apollo of Belvedere with parabolic lines drawn in by Felix Klein. Repro-
duced from [1], Figure 440.

Figure 11 shows a reproduction of the Apollo of Belvedere. Parabolic lines were
hand-drawn on its surface at the behest of mathematician Felix Klein. He hoped that
decomposing a complex shape along parabolic lines would illustrate its fundamental aes-
thetics. Supposedly he abandoned this theory after seeing the resulting picture. Harvard
mathematics professor David Mumford has looked at the problem more recently. Find-
ing the true parabolic lines is tricky and is rather sensitive to noise. Stanford graphics
professor Marc Levoy will be scanning the real Apollo during his Digital Michelangelo
Project in Italy next year, at which time the parabolic lines could be computed directly
to satisfy the curiosity of any aspiring aestheticians among us.

All theories of aesthetics aside, parabolic lines have many nice properties. Some of
these pertain to caustics, which we will hear about in the next lecture.
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CS448: Topics in Computer Graphics Lecture #20Mathematical Models for Computer GraphicsStanford University Tuesday, 6 January 1998CausticsLecture #20: Tuesday, 9 December 1997Lecturer: Pat HanrahanScribe: Christopher StolteReviewer: Tamara MunznerIn this lecture, we discuss applications of di�erential geometry within the �eld of com-puter graphics. We will see how concepts discussed in earlier lectures can be used tosolve problems involving the geometry of optics. Speci�cally, we will look at Fermat'sPrinciple, rays and wavefronts, and caustics.1 Fermat's PrincipleIn geometrical optics, we assume that the wave-like behaviour of light is insigni�cant andthus model the behaviour of light using rays. Light emitted from a point is assumed totravel along such a ray through space. In an e�ort to explain the motion through spacetaken by rays as they pass through various media, Fermat developed his Principle ofLeast Action.The path of a light ray connecting two points is the one for which the timeof transit, not the length, is a minimum.At the time that Fermat developed this principle, his justi�cation was more mystical thanscienti�c. His justi�cation can be summarized by the statement that nature is essentiallylazy, and these rays are simply doing the least possible work.We can however develop a more useful formulation of the principle. We know from earlierlectures that the time along a curve through space can be calculated asS(t) = Z dt = Z dsds=dtWe also know that ds=dt is velocity, which for light is know to be dsdt = c� where � is therefractive index of the medium. Therefore, we have



2 CS448: Lecture #20S(t) = Z dsc�(s) = 1c Z �(s)ds / Z �(s)dsWe can thus de�ne the optical path length from one point on a ray to another as thegeometric path length weighted by the refractive index of the media. Furthermore, wecan now restate Fermat's Principle asLight travels along paths of stationary optical path length, where the opti-cal path length is a local maximum or minimum with respect to any smallvariation in the path.Determining the path taken by a light ray between two points then becomes a simplematter of optimizing S(t) between the points.2 Applications of Fermat's PrincipleWe can make several observations as a result of Fermat's Principle which will prove usefulas we explore the realm of geometric optics:1. In a homogenous medium, light rays are rectilinear. That is, within any mediumwhere the index of refraction is constant, light travels in a straight line.2. The angle of reection o� of a surface is equal to the angle of incidence. This isthe Law of Reection.We can also make some interesting and useful observations about conic surfaces. Conicsurfaces are particulary useful in mirror optics - for example, the design of telescopes.We consider two conjugate points - two points that are perfect images of each other.A salient property of these conjugate points is that the optical path length of all raysconnecting them is equal.Consider a conic surface such as an ellipse. An ellipse is de�ned as the locus of allpoints such that the sum of the distances from each point to two �xed points (the foci)is constant, as in Figure 1. The two foci of a mirrored ellipse must then be opticallyconjugate points. A point source located at one focus must be imaged perfectly at theother focus.
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d d
1

2Figure 1: An ellipse. The ellipse is de�ned as the locus of all points such that the sumof the distances from each point to two �xed points is constant: d1 + d2 = c.In the case of a parabola, one focus has become in�nite. This can be interpreted bysaying that an aggregate of rays, parallel to one another and to the axis of a paraboloidafter being reected by the paraboloid, will pass through the focus of the paraboloid.The Newtonian telescope leverages this fact in its design to collect and focus light fromdistant objects.In general, a conic surface can be thought of as having two foci and these foci will beoptically conjugate points. Figures 2 and 3 illustrate how this property of conic surfacesand geometrical optics has been applied in the design of the Cassegrainian telescope andthe Gregorian telescope.As a side note, a construction called a \Cartesian Oval" is similar to an ellipse, but hasweighted distances. That is, rather than being constrained by the equation d1 + d2 = c,as in Figure 1, the oval is constrained by the equation n1d1 + n2d2 = c. The resultingnon-elliptical shape will nevertheless have two points of perfect focus.3 Virtual Light SourcesWe now turn our focus to virtual light sources. In traditional ray tracing, a visual raythat encounters a reective surface is bounced o� of that surface and cast in the directionof reection. Similarly, visual rays are refracted through volumes. Eventually these visualrays reach a non-reecting surface and the shading calculation is calculated at this pointof intersection. This traditional model is depicted in Figure 4.Although this traditional ray tracing model does allow us to simulate the e�ect of seeinga scene through a reective or refractive surface, it does not extend to the simulation ofrefracted or reected illumination. In other words, the shading calculation at the pointof intersection is limited to the direct components of illumination.
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Hyperboloid

Paraboloid

B

A

Figure 2: The Cassegrainian telescope con�guration Point A is where the focus of theparaboloid and the virtual focus of the hyperboloid coincide. Point B is the real focus ofthe hyperboloid.We can utilize di�erential geometry to allow us to solve this more complex problem -determining the reected illumination at a point on a surface. To do this, we must castrays from light sources so that they will reect o� of the mirrored surfaces and intersectthe point being illuminated. When the light is reected o� the mirrored surfaces it ispossible that the light rays may diverge or converge depending on the curvature of thereective surface at the point of reection. Thus there are two key problems that mustbe solved - determining which light rays will intersect the point being illuminated andcalculating the proper irradiance at that point. The problem of reected illumination isdepicted in Figure 5.Finding the paths from the light source to the point P that reect o� of the mirroredsurface is not as complex as might be assumed. A possible path from the light source tothe point P is depicted in Figure 5. The optical path length isd(x) = q(s � x)2 +q(p� x)2



CS448: Lecture #20 5
Ellipsoid

Paraboloid
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A

Figure 3: The Gregorian telescope con�guration Point A is where the focus of theparaboloid and one of the foci of the ellipsoid coincide. Point B is the other focusof the ellipsoid.According to Fermat's Principle, we want to optimize d(x) in order to determine the pathof the light rays. If the mirrored surface is de�ned by g(x) = 0 then we can optimize d(x)subject to the constraint that x lie on the surface de�ned by g(x) using the technique ofLagrange multipliers: rd(x) + �rg(x) = 0g(x) = 0Solving these equations yields paths of locally extremal length.Recall from our earlier discussion of conic �gures that the two focal points of an ellipseare perfect images of each other - the optical path lengths of all reected rays connecting
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Figure 4: Reected Visual Rays
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Figure 5: Reected Iluminationthem are equal. If we select s and p as our foci of a family of ellipsoids and vary theoptical path length, we get a family of confocal ellipsoids.The system of equations produced by the Lagrange multipliers have a simple geometricinterpretation. The extremal points must not only lie on the surface de�ned by g(x) = 0,but they must also lie on the surface of one of these confocal ellipsoids and the ellipsoidmust be tangent to the surface at the point of contact. Figure 6 depicts this geometric



CS448: Lecture #20 7
P

X

S

Figure 6: Osculating Ellipsoidinterpretation.4 Rays and WavefrontsIn order to be able to compute the proper irradiance at a point being illuminated, we willneed to determine if the rays of light from the light source are converging or divergingat the point. A given light will be the source of many rays, and the paths of the raysemitted are determined by the following equation:S = Z �(s)dsWe will de�ne a wavefront W to be the surface de�ned by the points on each ray ata constant s. Alternatively, the wavefront can be described as the locus of points at agiven optical path length. We will not go into the details of wavefront properties, but oneimportant property that should be noted is that the wavefront surfaces are orthogonalto the rays. You can think of wavefronts as isosurfaces in space.This section is focused on intuitive concepts rather than formal derivations. In this entirediscussion, light sources are assumed to be point light sources, although similar conceptsand methods can be extended to the area light source case. Figure 7 depicts three simpletypes of wavefronts: those emitted by a single local point light, those emitted by anin�nitely distant point light and a set of converging wavefronts.
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(c)

S

light ray

wavefront

(a) (b)Figure 7: Three di�erent wavefronts: (a) those emitted by a single local point lightsource, (b) those emitted by an in�ntely distant point light and (c) a set of convergingwavefronts.We are interested in the convergence and divergence of the rays because we need to beable to calculate the intensity of the light at a point being illuminated, and the intensityof the light can be shown to be equal to the radiant power of the light divided by thewavefront area.Intuitively, this makes sense. Consider a set of rays which represent light moving forwardover time, and two wavefronts de�ned by these rays at di�erent points in time. Further-more, consider the two patches of area on these wavefronts, shown in Figure 8, which arede�ned by this set of rays. The situation in the �gure is a divergent wavefront, so thearea dA0 is greater than the area of dA. If the wavefront were converging, the oppositewould hold.We can think of these two patches of area as the ends of a tube containing the set of rays.Although the area of the two patches is di�erent, the total power transmitted throughthe tube is a constant. Thus the intensity, which can be thought of as the number ofrays per unit area, decreases as it passes through the tube. Note again that the intensitywould increase in the case of a convergent wavefront.We can formalize this intuition. We consider the general situation of the neighborhoodof a point on a rectilinear ray. There is some orientation of a cutting plane at this pointthat will yield the maximum radius of curvature r1, and another orientation of a di�erentcutting plane which will yield the minimumradius of curvature r2. Furthermore, we knowthe planes associated with these two radii of curvature are orthogonal from our earlierlectures on di�erential geometry. These radii of curvature are depicted in Figure 8.Let dA be this element of area on the wavefront. All rays passing through dA willintersect some subsequent wavefront with area dA0. Let d�1, d�2 be the elements of angle
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dA’Figure 8: A ray and two small patches of area, dA and dA0 on two wavefronts associatedwith the ray. For small enough patches, the area of the patch is de�ned by the radi ofcurvature and the angle subtended at the center of curvatures as dA = r1d�1r2d�2.subtended at the centers of curvature by these point areas. Because of the conservationof energy, we must have d� = I 0dA0 = IdAwhere d� is power and I is intensity. ThereforeII 0 = dAdA0 = r1r2d�1d�2r01r02d�1d�2 = r1r2r01r02 = �0�This illustrates the important point that the intensity is not only related to the area ofthe wavefront, but also to the inverse of the Gaussian curvature of the wavefront.We know also that as a wavefront evolves forward according to the principles of optics,that the new wavefront will be an o�set surface from the original wavefront. Thus, if thewavefront is diverging we can express the new radii of curvature asr01 = r1 + dr02 = r2 + d



10 CS448: Lecture #20Alternatively, if the wavefront is converging, we can express the radii of curvature asr01 = r1 � dr02 = r2 � dSince intensity is inversely proportional to the radi of curvature, this means that at somepoint there must be in�nite brightness. This point of in�nite brightness is called a caustic,from the dimunitive form of the Greek word for \burning iron".The caustic is thus the evolute, the locus of the centers of curvature. In the three dimen-sional case, there will be two caustic surfaces, one for each of the principal directions ofcurvature. What we colloqially call \caustics" are the curves formed by the intersectionsof these surfaces with a ground plane or object.5 OrthotomicsWe have seen from above that when a wavefront converges, a caustic is created. We areinterested speci�cally in the case where a point light source shines upon a curved reector,and the reected light converges to a caustic. The orthotomic curve is an intermediatecurve that we will use to �nd the caustics in this reected case.Because of the complexities of the three dimensional case, where the caustic is a curveand there are two caustic surfaces, we will focus our discussion on the orthotomic in thetwo dimensional case.We will construct the orthotomic for an arbitrary light source and reective surface. Indoing so, we will show that the orthotomic corresponds to the reected wavefront.We construct the orthotomic as follows. Given a source s and a curve c, pick a point xon the curve and �nd its tangent. Then the locus of reections of s about such tangentsform the orthotomic curve, also known as the secondary caustic. This construction isdepicted in Figure 9.We now explain the construction of the orthotomic more rigorously. In this explanation,let n be the normal to the curve at point x and t be the tangent. Let x be the vectorfrom s to the point x.We know that if we reect x about the tangent at x, this will de�ne the point:
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rFigure 9: Construction of the Orthotomic Curvey = 2[x � n]nLooking at Figure 9 we can understand the formula for the point y. When we reect thevector x across the tangent to the curve at x, it de�nes this new point. We can thennote that the projection of x onto the normal n multiplied by 2 also gives us this samepoint. We must multiply by two to account for the fact that we have reected the vectorx across the tangent. To �nd y0 we simply di�erentiate:y0 = 2[x0 � n]n+ 2[x � n0]n+ 2[x � n]n0= 2[t � n]n� 2�[x � t]n� 2�[x � n]t= �2�[(x � t)n+ (x � n)t]/ (x � t)n+ (x � n)tWe use identities from the previous lectures: t � n = 0, n0 = ��t, x0 = t.Consider the vector [y � x]. We would like to show that the normal to the orthotomiccurve at the point y lies in the same direction as this vector. The normal at the point ymust be perpendiculer to the tangent at y (which we will call ty). If the vector r (whichis the reection of x across the tangent to the curve at x) is in the same direction, it toomust be perpendiculer to ty. Since ty = y0, it is su�cient to show that [y� x] � y0 = 0:



12 CS448: Lecture #20[y� x] � y0 / [y� x] � [(x � t)n+ (x � n)t]= y � [(x � t)n� (x � n)t]� x � [(x � t)n� (x � n)t]= (x � t)(n � y)� (x � n)(t � y)� (x � t)(x � n) + (x � n)(t � x)= (x � t)(n � 2(x � n)n)� (x � n)(t � 2(x � n)n)= 2(x � t)(n � n)(x � n)� 2(x � t)(n � n)(x � n)= 0We know that the normal to the point y must be perpendicular to the tangent at y,which we calculated above. Since the dot product of the vector [y� x] with this tangentis zero, this vector must lie in the same direction as the normal at y. Furthermore, fromthe �gure and the law of congruent triangles, we can see that the reected light ray rfrom the source must also travel in the direction of [y � x].Therefore the normal to the orthotomic at y is along the direction of r and passes throughx. In more detail, light from s is reected by the curve at x, according to the the Lawof Reection. Thus the incident ray and the reected ray make equal angles on oppositesides of the normal to x. By congruent triangles, the reected ray is along the line fromy to x. From above, this is the normal to y.It follows then that light rays having the orthotomic as their intial wavefront (i.e lightrays starting simultaneously at all points on the orthotomic and then propagating downthe normals) are the same as light incident from s and reected by x. Thus the causticby reection of s is the caustic of the orthotomic.Now, let's sum up intuitively what we have just formally explained. Given a light sourceand a curved reector, we want to be able to �nd the caustics that would be formed. Aneasy way to compute these caustics is to use the orthotomic curve. The orthotomic curvehas the property that its wavefronts will evolve to the same caustics as the wavefrontsfrom the true light source will after being reected.6 The Gauss MapEvery point on a surface has some normal n(u; v). The Gauss map is a mapping of everypoint on a surface to the point on the unit sphere with the same normal. This map is notone-to-one. Figure 10 shows an intuitive sketch of this construction for a small portionof the gauss map. The 3D case is too complicated to draw, so we show the 2D analog.
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GFigure 10: Construction of the Gauss map: the multiple normals on the original surfacethat are in the same direction as the vector N map to the single point on the unit spherewith normal in the direction of N . When the multiplicty of points being mapped to asingle point on the unit sphere is greater than one, folds develop in the Gauss map.The resulting Gauss map may have folds. These folds correspond to inection points onthe original surface, that is, the bottom of a concave valley, the top of a convex hill ora saddle point. At these points, the map which we are tracing out on the unit spherechanges direction because of the change in curvature at the inection point on the originalsurface. If the original surface is smooth, the Gauss map will be continuous.Consider a small patch of area S on the original surface. There will be a correspondingarea patch w on the Gauss map. The Gaussian curvature is the di�erential ratio of thetwo areas: � = limS!0 Sw .We can formally de�ne the Gauss map:G(x(u; v)) = f(u; v)as a map G : s = S2 from the surface patch S to the unit sphere S2.When we are dealing with in�nitely distant point light sources, the Gauss map can beused to tell how many virtual lights will be created by a reective surface. ConsiderFigure 11. For every position of the viewer and the light source there is a vector H:H = L+ EjL+ Ej
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Figure 11: Specularities The number of virtual lights is the multiplicity of the points onthe Gauss map with normal equal to H.The number of virtual lights created by a reective surface is the multiplicity of pointson the Gauss map with normal equal to H, that is how many layers exist on the Gaussmap.We are thus interested in the folds created on the Gauss Sphere when the mapping isperformed. When the reective object is deformed or moved, the virtual lights on itssurface move, and may be created or destroyed. This creation or destruction of virtuallights occurs at the parabolic points on the Gauss map.7 Implementation IssuesWhen trying to implement shading calculations using virtual lights, we can utilize someof the properties we have learned to optimize our calculation. A brief overview of thetechniques that can be used when implementing virtual lights is provided here. For amore detailed exposition, see [1].Most importantly, we can leverage the observation made above that the intensity of lightis proportional to the Gaussian curvature of the wavefront associated with that point.Thus, rather than keep track of all of the geometry associated with the wavefronts wecan simply track the Gaussian curvature as the wavefronts evolve forward.Propogating curvature through free space is trivial - we just need to add distance to theradius of curvature. The di�culty lies in e�ciently calculating the change in curvaturethat occurs when the wavefront is reected o� a curved reector.



CS448: Lecture #20 15We derive the equations necessary to calculate the reected curvature. Recall the equa-tion giving the directions of the reected ray:n(r) = n(i) + 2 cos in(s)In these equations, n(i) and n(s) are the normals to the incident wavefront and surfacerespectively; n(r) is the normal to the reected wavefronts. i is the angle of incidence ofthe rays.We calculate the vector u = n(i)�n(s). This vector must be tangent to both the incidentwavefront and the surface since it is perpendicular to both normals. We can calculatethe curvatures of the incident wavefront in the direction of u by rotating the principalcurvatures using the angle between u and the line of curvatures and Euler's Formula. Thecurvatures of the surface in this direction can be computed using the curvature tensor ofthe surface.The curvatures of the new wavefronts are computed by taking the directional dervvativesof n(r) in the direction u. These derivatives can be computed from the formulae for thereected vectors and the directional derivatives of the normals on the incident wavefrontand the surface.For reection: �(r)u = �(i)u + 2 cos i�(s)u�(r)uv = ��(i)uv � 2�(s)uv�(r)v = �(i)v + (2= cos i)�(s)vFor refraction: �(t)u = ��(i)u + �(s)u�(t)uv = ��(i)uv + (cos i= cos t)�(s)uv�(t)v = ��(i)v + (cos i= cos t)2�(s)vRemember that the curvature of a plane is 0. Therefore, the curvatures of an outgoingwavefront reected from a planar surface will be the same as the incoming wavefront(the fact that �uv switches sign is a result of the change in orientation of the coordinate



16 CS448: Lecture #20system due to reection). This is as expected, since a perfectly reected wave doesnot change its shape. Note also that a planar wavefront incident onto a a reectingsurface essentially inherits the curvature of the surface. Thus if the surface is convex,the reected wavefront will be diverging; whereas if the surface is concave, the wavefrontwill be converging, eventually forming a caustic.References[1] Mitchell,D. and Hanrahan,P., Illumination from Curved Reectors, ComputerGraphics 26, 2 (1992), 283-291.[2] Stavroudis, O. N. The Optics of Rays, Wavefronts and Caustics,Academic, 1972.
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