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1 Why are wavelets useful?

Wavelets have a few interesting applications, some of which are mentioned below. How-
ever, the applications of wavelets by themselves are limited. The ideas behind wavelets,
which we will be covering in this lecture and future lectures, are more important.

The most common use of wavelets is in signal processing applications. For example:

o Compression applications. If we can create a suitable representation of a signal, we
can discard the “least significant” pieces of that representation and thus keep the
original signal largely intact. This requires a transformation which separates the
“important” parts of the signal from less important parts.

In the simplest case, we can decompose a signal into two parts: a low frequency
part, which is some sort of average of the original signal, and a high frequency
part, which is what remains after the low frequency part is subtracted from the
original signal. If we are interested in the low frequency part and hence discard
the high frequency part, what remains is a smoother representation of the original
signal with its low frequency components intact. Alternatively, if we are most
interested in the high frequency part, we may be able to discard the low frequency
part instead.

This approach, that of decomposing a signal into two parts, is common for all
wavelets. Also fundamental to wavelet analysis is a heirarchical decomposition, in
which we may apply further transforms to an already decomposed signal.

o Edge detection. With this application it is most important to identify the areas in
which the input image changes quickly. We can discard the smooth (low frequency)
parts. The simplest wavelet basis, the Haar basis (to be discussed later) is suitable
for this application.

Along this vein, the book by Strang and Nguyen describes a widely used application
of wavelets, fingerprint compression, in which edge detection figures prominently.

o Graphics. Two prominent uses of wavelets in graphics include
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1. Curve and surface representations; and

2. Wavelet radiosity.

These two reflect two quite different uses of wavelets.

o Numerical analysis. Wavelets are used in the solution of partial differential equa-
tions and integral equations.

2 History of Wavelets

The first use of wavelets was by Haar in 1909. He was interested in finding a basis on a
functional space similar to Fourier’s basis in frequency space. In physics, wavelets were
used in the characterization of Brownian motion. This work led to some of the ideas used
to construct wavelet bases. Wavelets were also used for analysis of coherent states of a
particular quantum system. Finally, in the signal processing field, S. Mallat discovered
that filter banks have important connections with wavelet basis functions.

3 Filters and Filter Banks

3.1 Linearity and Time Invariance

Consider a discrete input signal x(n), a filter H, and an output y(n). We express the
operation of H on the input signal x as y = Hx.

We call the filter H “linear” if scaling the input scales the output, and we call H “time
invariant” if shifting the input (in time) correspondingly shifts the output. In these notes
all filters will be assumed to be linear and time invariant.

3.2 Filter operation

If H is linear and time invariant, the we can express its operation as follows:
y(n) = X hlk)e(n — )
k

This operation is called a convolution. The individual coefficients k(i) are the “im-
pulse responses” of the system.

The equation y = Hax can also be written as an infinite matrix, with y and x column
vectors and H in the following form:
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Note that the entries of the filter are in reverse indexed order. If the input stream is
finite with n elements, H is a finite n X n matrix.

3.3 What is a basis?

For a given space of functions, a frame is a collection of functions such that any function
in the space is a weighted sum of the functions in the frame. In other words, if the
functions in the frame are fy... f, ..., then any function ¢ can be written as ¢ = >_; a; f;.

A basis is also a collection of functions. Any basis is a frame, but a basis also has the
property of linear independence. With a basis, the coefficients a; of the expansion of the
function ¢ (written as a weighted sum of the basis functions ¢ = Y, a;f;) are uniquely
determined. Another way to state this property is that no function f; in the basis can
be written as a weighted sum of the other functions of the basis.

For a function space we can define an inner product. One example of an inner product
is a dot product, used in a vector space. In a function space we define the inner product
< f,g > of two functions f and g as [ f(¢)g(t)dt.

One desirable property of a basis is orthogonality. With an orthogonal basis, the
inner product of two basis functions f; and f; is equal to zero if ¢ # ;.

A second desirable property is orthonormality, which implies that taking the inner
product of a basis function f; with itself equals 1. For our functional basis we see that
[ fA(H)dt = 1.

In summary, an orthogonal, orthonormal basis implies that

fi=g
<fi7fj>_{0 Z7£]

So why is orthonormality a desired property? Let us define a function = as the
weighted sum of the basis functions, + = Y a;f;. We would like to find the coefficients
a;, and orthonormality makes this simple. We only need to take the inner product of the
function z with a;’s associated basis function to find the associated coefficient a;.

<z, f;> = Zai<fi7f] >

K
= a; < f;, f; >

_= a]

3.4 Filters and wavelets, Haar filters

Each wavelet basis has two filters associated with it. In general those filters are expressed
in the form y(n) = 3 h(n)x(n).

The Haar basis is particularly simple. The two filters are Hy and H; and are defined
as follows:

Hy :y(n) = %x(n) + %x(n - 1)
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Hy:y(n) = %x(n) — %x(n - 1)

For Hy, all h coefficients are zero except for ho(0) = 1/2 and ho(1) = 1/2. Similarly, in
Hyi, hi(0) =1/2 and hy(1) = —1/2.

Hy computes a moving average of its input, resulting in a sequence which is smoother
than the initial sequence. Hence it is a low pass filter. H; computes a moving difference
and serves as a high pass filter.

3.5 Scaling functions and the dilation equation

We define a function ¢ as a “scaling function”. Scaling functions obey the dilation
equation,
#(1) = 23 ho(k)o(2t — k). 1)

Note that the filter coefficients used (the h¢’s) are from the first of the pair of filters. We
will use the second filter later.

If this equation has an appropriate solution ¢(¢), then we can construct a frame using
any integral values of j or k& in the following generating relation:

A2t — k). (2)

Next we introduce the wavelet equation (3), which uses the coefficients from the
second pair of filters:

w(t) =2 hi(k)p(2t — k). (3)

We generate a wavelet basis with a similar generating relation
w(2/t — k).

Note that scaling functions don’t form a basis; wavelets do. But wavelets are con-
structed from scaling functions, so we have to find a scaling function first.

As can be seen from the wavelet equation, wavelets are defined as linear combinations
between scaling functions one level below, where a “level” is defined as the set of all scaling
functions generated with a given j.

For instance, the Haar scaling function satisfies the dilation equation with the solution

o) = o(2t) + ¢(2t — 1).
And the Haar wavelet satisfies the wavelet equation with the solution
w(t) = $(20) — 621 — 1),

The Haar basis spans the space of all functions with integrable square.
Haar wavelets are orthogonal.
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4 Filters and Filter Banks

4.1 Definition of several operators

Here we will define four operators and describe their operation (Figure 1).

S HO A2

S HL 2

Figure 1: Our 4 operators

The first operator, H = Hy, is the Haar moving average filter. It outputs the average
of its current input and its previous input.

The second operator, Hy, is the Haar moving difference filter. It outputs half the
difference between its current input and its previous input.

The third operator, 1 2, is an upsampling operator. It outputs each input twice,
outputting at double the rate of its input.

The fourth operator, | 2, is a downsampling operator. It outputs every other input
it receives, outputting at half the rate of the input.

4.2 Overview

We will look at two filter banks, an analysis bank and a synthesis bank. The analysis
bank will use the Haar filter pair, consisting of a low pass and a high pass filter. We would
like to pick a synthesis filter bank such that the output of the analysis and synthesis filter
connected in series is the same as the input into the analysis filter, with perhaps a time
delay.

First we will look at the analysis bank, then the synthesis bank, then we will put
them together and show that the aforementioned property holds.

4.3 Haar analysis bank

Figure 2 shows the analysis bank.

The input comes in on the left side, and the output of the filter bank leaves through
the two paths on the right side. It is desirable (but not necessary) that the bandwidth
and storage requirements in the system be equal to those of the input stream. Hence,
the downsampling operators cut the bandwidths in half (compared to that of the input
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HO V2

H1 V2

Figure 2: The Haar analysis bank

stream) on each of the two output streams, and the overall bandwidth requirement en-
tering the analysis bank is equal to that leaving the bank. In this case the filter bank
can be viewed as a linear transform: if the input signal had finite length n, the output
will also have length n, consisting of two halves, each having length n /2.

4.4 Synthesis bank

Given the above analysis bank, what synthesis bank should we use to reproduce the input
on the output? The basic analysis filter structure is shown in Figure 3. The output of
each of the upsampling filters has the same bandwidth as the initial input stream, but
note the outputs of filters ' and G are summed to create an output stream with the
same bandwidth as the original input stream.

A2 F

o

— A2 G

Figure 3: The basic synthesis bank

Conveniently enough, it turns out that we can use the Haar moving average filter Hy
as the filter F'in Figure 3 and similarly, replace G with — H;. This structure is shown in
Figure 4.

The complete filtering system is shown in Figure 5.
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A2 H

o

— A2 -H1

Figure 4: The Haar synthesis bank

{HO V2 A2 HO
Hi[y2lh2 -Hj

analysis synthesis

Figure 5: The complete system

5 Transforms used for analysis and construction of
filters

Two related transforms are the Fourier transform and the z transform. To see more
background on Fourier transforms, please consult the handout on “Antialiased Shifting
and Resizing” distributed in class. Both transforms are described in detail in most signal
processing books.

5.1 The Fourier Transform

The Fourier transform is defined on both a discrete signal x(k) as

X(w) = a(k)e™™ (4)

k

and a continuous signal x(¢) as
X(w) = / o(t)e .

Following the signal processing tradition, we use j to denote \/—1.

5.2 The z Transform

The z transform is similar but does not use powers of e™7“. instead choosing powers of

Z
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5.3 Frequency response

The frequency response of a filter I is written as H(w) (or H(e’)). In Fourier space, the
frequency response is useful for analyzing linear time invariant filters. Why? Convolution
(i.e. the operation we use to describe filter operation) is simply multiplication. In other

words, the operation
y(n) =>_h(k)x(n— k)
k

in Fourier space is equivalent to

We can see, then, that H(w), used as a filter, serves to emphasize or deemphasize fre-
quencies in the input signal. Fach frequency component of the input X (w) corresponding
to a frequency w is scaled by H(w). For example, a low-pass filter passes through com-
ponents with small w (H(w) is close to 1 when w is small) and suppresses high-frequency
components (H(w) is close to 0 if w is close to ).

5.4 Frequency response of the Haar basis

First we will look at the frequency response of Hy, the moving average function. Recall
that the frequency response of an input stream is defined in (4). In Hy the only coefficients

that are non-zero are h(0) = h(1) = 1/2.
Thus we can calculate the input response using (4):

Ho(w) = (L+e7)/2
e—jkw/?(ejkw/Q + e—jkw/?)/Q

eI cos(w/2)

and |Ho(w)| = cos(w/2).

With a similar derivation we can show that |Hi(w)| = |sin(w/2)].
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1 Filter Banks as Transformations
A filter bank H transforms an input z into an output y = H(x). Figure 1 shows the

familiar example of a analysis filter bank that separates the low and high frequencies of
a discrete input signal. If the filter bank is linear, then the corresponding transformation

Filter Bank H

Hy 12

Yo

z e R” cR"

\/
@
I
|

n

Figure 1: A analysis filter bank.

can be represented as a matrix H, and applying H to z is achieved by computing the
matrix product y = Hzx.

As an example, we shall now compute the matrix H for the Haar analysis filter bank,
assuming an input x consisting of n samples ( € R"). Recall that the Haar low pass
filter Hy simply averages adjacent entries of its input. This operation can be represented
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by the matrix?

—_ =
—_ =
—_

E Ran‘

11
1

The Haar high pass filter H; computes half the difference between successive input sam-
ples, and can be represented? as

1 -1
1 -1
1 1 -1
Hl(n):— ERan
2
1 -1
L 1_

The downsampling operation is represented as the matrix®
(10000 --- 0 0]
00100 00

pw=100001--00]|cRrzx"
00000 - 1 0]

which picks out the first, third, etc. entries of x. The combined action of low pass filtering
and then downsampling is represented by the matrix

) — D(”)Hén) — c R2X".

Similarly, the combined action of high pass filtering and then downsampling is represented

Note that Hén) averages the final entry of @ with zero since there is no next element. This is a moot

point since the downsampling step that follows throws away the last entry of Hén)x.

2The filter matrix H{n) differences the final entry of  with zero since there is no next element. This
boundary anomaly is, once again, a moot point since the downsampling step that follows throws away
the last entry of H%n)x.

3Here we have tacitly assumed that n is even. Since the downsampling operation picks out the first,
third, etc. components of its input, the last component will be discarded.
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Filter Bank Hgyq

H, 12— L(/4) [ (n/2) [ (n),
Hy P2 ( H, ol B/A) [ (n/2) [ (n) 4
Hy 9 ( I, V2 B/2) [ (n) 4
xr e R" ( Hy 12 B g
L/ (»/2) [ (n)
ity | B |

B

Figure 2: Hierarchical decomposition of a signal.

as

B™ = ptm g = - cRZ*",
1 -1
JE—|

The top and bottom branches of the filter bank produce (see Figure 1)
yo= LMz e R? and y1 = B™z e R3,
respectively. The output of the filter bank is

Yo L g LM
Yy = — = — = H(n)l‘ - Rn7 Where H(n) = - € Rn)(n .
n By B

Thus, we have expressed the operation of the Haar filter bank on an input of length n as
the matrix H shown above.

The output of the top branch of the filter bank is a coarse version of the input signal.
We can build a hierarchical representation of a signal by recursively filtering the low pass
output of the filter bank. This process is illustrated in Figure 2. In each step of the
recursion, the signal rate decreases by a factor of two. If the signal is discrete and finite
(and a power of two in length), then we eventually reach a signal with one sample. In the
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case of the Haar analysis filter bank, this sample will be the average of the elements of
the original signal. The sum of the sizes of all the outputs from the high pass steps and
the output of the final low pass step is equal to the size of the original input. The final,
hierarchical representation of an input signal is a collection of signal details at various
resolution levels (scales) and a coarse version of the original signal (which is the output of
the final low pass filter). The entire process can be represented as a single transformation
matrix Hgy which one can think of as rewriting the input z in terms of another basis
to produce the output y = Hyyex. Figure 2 shows the Hyy matrix that results when the
Haar filter bank is applied three times.

When the input to the system is an image (a 2D signal), the first filter bank application
produces a blurred version of the image (the low pass output) and the details of the
original image (sharp edges) which are not contained in the blurred version (the output
of the high pass filter). The second low pass filter application takes the blurred version
from step one and blurs it even further. The differences between the second blurred
image and the first blurred image are captured in the output of the second high pass
filter. This recursive process transforms an image into a collection of images that capture
image details at different scales and one final coarse image.

2 The Haar Wavelet Basis

If a hierarchical decomposition via filter banks writes a discrete signal in terms of new
basis. Can we find a similar decomposition for continuous signals? Answering this
question is where the dilation equation

o(t) =2 ho(k)o(2t — k) (1)

and the wavelet equation

w(t) =23 hy(k)o(2t — k) (2)

come into the picture. The function ¢() is called the scaling function, and the function
w(t) is called the wavelet function. The dilation equation and wavelet equation must
hold for all ¢. Replacing ¢ by 27!t gives

$(27) = 2 ho(k)(2't — k) (3)
w27 = 23 hi(k)e(27t — k) (4)

This last set of equations is more convenient for describing the construction of the wavelet
basis corresponding to a filter bank.
We now illustrate the wavelet basis construction from the dilation equations using the

Haar filter bank. Recall that the low pass Haar filter Hy is defined by ho(0) = ho(1) = 1/2
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o) oy | et-)

Figure 3: The Haar scaling functions ¢(t), ¢(2t), and ¢(2¢ — 1).

R0 Lo o=
0 111 0o 1 1 0o 1 1
2 2 2

—11-_

Figure 4: The Haar wavelet function w(t).

(all other coefficients are zero). Substituting the Haar low pass filter into equation (1),
we get

o(t) = o(2t) + H(2t = 1).

The solution to this recurrence is the Haar scaling function

1 iftel0,1)

0 otherwise

o) - { 5)
The functions ¢(t), ¢(2t), and ¢(2t — 1) are shown in Figure 3. The high pass Haar filter
H; is defined by h1(0) = 1/2 and hy(1) = —1/2. Substituting into (2) yields

w(t) = d(2t) — H(2t — 1).

It follows easily from (5) that the Haar wavelet function is

1 ifte[0,1/2)
w(t){ —1 iftefl/2,1) .

0 otherwise

The wavelet function w(t) is shown in Figure 4. The scaling function ¢(¢) is the contin-
uous analog of the discrete low pass filter Hy. Applying ¢(t) to f(t) yields

o0

S f0) de = [ () dr,

0

<qb,f>:/

— 00
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the average value of f over the interval [0,1). The wavelet function w(t) is the continuous
analog of the discrete high pass filter Hy. Applying w(t) to f(t) yields

00 L 1

<w,f>:/ w(t) (1) dt:/jf(t) dt—/l £(t) dt.

— 0 5

The filter ¢ is an averaging operator, and the filter w is a differencing operator.

Now consider functions defined on the interval [0, 1). Let V7 denote the set of functions
that are constant on the 2/ subintervals [[/27, (I4+1)/27),1 = 0,1,...,2/ —1. Any function
in V7 can be represented exactly by a linear combination of the 2/ functions

bin(t) = (2t — k), k=0,...,2 —1.

This should be clear (at least for the case j = 3) from the upper left hand corner in
Figure 5 which shows the 2/ = 8 functions ¢z = ¢(2° — k), k = 0,...,7. Similarly, the

wavelet functions are denoted by
wir(l) =w(2t — k), k=0,...,2 —1.
We collect the scaling and wavelet functions at fixed resolution level j in the sets
O, ={op(t) : k=0,...,27 =1} and Q={wp(t) : k=0,....27 —1},

respectively.

As previously mentioned, ®; is a basis for V7. Applying equations (3) and (4) with
J = 3 to the functions ¢sx(t) = ¢(2°t — k), k = 0,...,7 yields the functions ¢ (t) =
&(2% — k), k=0,...,3 and wy(t) = w(2*t — k), k = 0,...,3. In detail,

[ ¢20 ¢30
¢21 ¢31

P22 P32
P23 — o[ ®) P33

Wa0 ¢34
Wat ¢35
Wa2 ¢36
W3 ¢37

The results of this step are shown in the middle and last columns of the first row. The
final column in the first row shows the separation of the low pass output functions &,
from the high pass output functions Q5. Note that ®; U, is also a basis for V2. The low
pass output functions are further refined by once again applying equations (3) and (4),
this time with j = 2. In matrix notation,

¢10 szo
¢11 _ 21,-_[(4) ¢21
Wi ¢22
w11 ¢23
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— | [ Ho, Hy > n
1 —> | [] 1
] Dy
[ 1 Ho, H, 1 1
[ ] —_— ] —
d L] O -
[ 1] Ho, Hy L]
[1 E—— ] []
[T L] Q,
| Ho, Hy — Wu
_ o — | — o | . =1
”box” basis
Ho, Hy — R — T o
- > g™
LT — _
— Ho. I, —— ><: o
> - , ] 1
] ] L1 ] L 1=
L] L] L]
[] ] []
L] L] L] Q,
[] [] []
L] L] L]
4% ] []
L] L] -
I Ho, Hy \ [ N || Po
| | > | 1| $o
\ | \ \ 7
] ] 971
- L] —
]
L] L]
[] ] []
L] ] L] O
[] ] []
] ] ] ?
[] []
] ] 4‘35 _

wavelet basis

Figure 5: The Haar wavelet basis.

This defines the four new functions ¢1x(¢) = ¢(2t — k), k = 0,1, and wx(t) = w(2t — k),
k = 0,1 shown in the second row of Figure 5. The last column of this row shows the
separation of the low pass outputs ®; and high pass outputs ;. The set &; U Qy U (),
is, again, a basis for V2. Finally, the third row shows the result of applying the dilation
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and wavelet equations with j = 1 to ¢14(¢t) = ¢(2t — k), k = 0,1 to produce the scaling
function ¢ox(t) = ¢(t — k), & = 0 and the wavelet function woi(t) = w(t — k), k = 0.

More precisely,
P00 _og® P10 ‘
Woo o1

The elght functions qboo, Woo, W10, W11, W0, W21, W2, W23 in (I)O U QO U Ql U QQ form the
the Haar wavelet basis for V2. In general, the Haar wavelet basis for V7 contains the 2/
functions in ®q U Qo U Qy U--- U Q4.

3 Some Examples

Suppose we have a function® z(¢) defined on [0,1) by

9 ifte0,1/4)
=] TN/
TN 3 e [1/2,3/4)
5 ift e [3/4,1)
The function x(¢) is in the space V2. In terms of the basis ®, x(¢) has representation
9
. 7
3
5

A graphical representation of x(¢) in terms of the basis ®; is

x(t) = 9 ><I ®20

+ 7 X b2
+ 3 X P22
+ 5 x | P23
Applying the Haar sythesis filter bank H® to z gives
8 (947)/2
4 (3+5)/2
_ g4, _
s=e=10 (9-7)/2
—1 (3—-5)/2

4This example is taken directly from the paper “Wavelets for Computer Graphics: A
Primer (Part 1)” by Eric J. Stollnitz, Tony D. DeRose, and David Salesin in IFEE Com-
puter Graphics and Applications, 15(3):76-84, May 1995. It 1s also available online at
http://wuw.cs.washington.edu/research/graphics/projects/wavelets/article/.
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The elements of z are the coefficients of the representation of x(¢) in terms of the basis

(I)l U Ql.

x(t) = 8 ><| P10

+ 4 x Iﬁbn
-|-1><| Wio

+ —1 x

I w11
Applying the Haar analysis filter bank H® to the first two elements in z and leaving the
high pass outputs in place gives

) [ 2 ] 6 (8+4)/2
y— | _ |2 |_|8=-472
Z3 1
24 —1 —1

The elements in y are the coefficients of the representation of x(¢) in terms of the Haar
wavelet basis ®g U Qg U €.

o) = 6 x| | 400

—|—2><I Iwoo
—|—1><I w10
+ —1 x

I w11

The Haar wavelet transform of the signal t =[ 9 7 2 5 Jisy=[6 2 1 —1].

We can also compute the wavelet transform of by multiplying the system filter bank
matrix Hgys by z. Figure 2 shows Hgys when the Haar analysis filter bank is applied three
times. In the example in this section, we only need two applications and the input vector
has length n = 4. This results in the matrix

1 1 1 1

A0 A I I S R

Hyo=| BOLW | = i1 6 6
BW (2) (2) 11

2 2
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The system output is

just as we derived previously using the hierarchical construction.

In general, computing the representation of an n-dimensional vector in a different
basis via an n x n matrix-vector multiplication requires O(n?) arithmetic operations.
For computing the Haar wavelet transform, however, we can do better. The hierarchical
construction given at the beginning of this section requires only O(n) arithmetic opera-
tions. In fact, if applying the analysis filter bank to an n-sample signal requires at most
kn operations for some constant k (as it does for the Haar filter bank), then the total
number of operations to compute the wavelet transform is at most

n n
fn 4 ke 4 ke 4tk
nko kot

210g2 n S

Essentially, the hierarchical construction implements a fast matrix-vector multiply by
taking advantage of the structure of Hgys.

Another informative example to consider is the Haar transform of a constant signal,
say x =] ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ]. Computing the Haar transform of x is equivalent to
decomposing the function x(¢) = ¢, t € [0,1) in terms of the basis ®¢ U Qo U Oy U Qy for
V3. Applying the Haar analysis filter bank three times gives

R _
c

H(?)

=
a8 a0
coocococoo

=
|
I T T N N S S
=
X
=
|

cCoo o8 a a o
oo oo
cooc oo o0 o
Il
cCooc oo o oan
Il
<

The output y contains only one nonzero coefficient, namely the coefficient for ¢go(t) =
@(t). This transform result is obvious from the functional point of view since x(t) = co(t).
Discarding the zero coefficients in the output leaves a very compact representation of the
signal = (one which is eight times smaller than the original representation). In general,
the Haar basis provides a compact representation for parts of a signal with little variation.
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For the final example of this section, consider the Haar transform of the delta signal

|
-5~

—_

OO OO OO O OO ORI
Il
<

— Hyyor =

SO oo oo oo oo oo o oo oo

Note that 11 of the 16 output coefficients are zero. This is not the case for the Fourier
transform of = which contains energy at all frequencies. The coefficients of the Haar
basis functions whose support interval (i.e. the interval over which the basis function is
nonzero) does not overlap with the support of the represented function are all zero. The
Haar basis allows one to make spacially localized (at some scale) changes to a function
by simply adjusting the coefficient(s) for the basis function(s) of the appropriate scale (j)
and location (k). This is very different from the Fourier representation in which a change
to a single basis function coefficient causes spacially global changes to the represented
function.

4 Orthogonal Filter Banks and Wavelet Bases

In Section 1, we showed how to view a filter bank as a transformation represented by a
square matrix H (assuming the input and output are the same size). We say that a filter
bank is orthogonal if its corresponding matrix is orthogonal. A matrix H is orthogonal
if its inverse is equal to its transpose: HTH = HH' = I. The set of column vectors
and the set of row vectors of an orthogonal matrix are both orthonormal sets of vectors
(it would make more sense to call such matrices orthonormal, but the historical term for
such matrices is orthogonal). With a suitable scaling of the input before low pass and
high pass filtering, the Haar filter bank is indeed orthogonal. For example, for n = 4 we
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have
" 11
g o | _ |21 Lo
pw | 2|1~
1 -1
and
(HO)T 70 = g gy = L
2

Therefore, the matrix v2H is orthogonal. A modified Haar filter bank which includes
a scaling by /2 before the low pass and high pass operations is orthogonal.

A basis of functions fo, f1,... (for some class of functions on the real line) is an
orthonormal basis iff

<f¢,fj>:/7:_oofi(t)fj(t) dt:{(l) ii;; '

It is very easy to write a function f in terms of an orthonormal basis. Taking the inner
product with f; with both sides of

f=>af;
gives
<f[fi> = <Zaz’fufj>
= Z;Zai<fnfj>
<f,fi> = a;

Therefore, the coefficient a; in the decomposition of f is simply the inner product < f, f; >
of f with the jth basis function f;. In Section 2 we saw how a filter bank gives rise to
a wavelet basis via the dilation and wavelet equations (at least in the case of the Haar
filter bank). What conditions on the filters will guarantee an orthonormal wavelet basis?

It turns out that orthogonality of a filter bank implies orthonormality of the basis
generated by the filter bank though the dilation and wavelet equations. The proof of this
fact will be given in the next lecture. Since the normalized Haar filter bank is orthogonal,
this fact implies that the corresponding normalized Haar wavelet basis is orthonormal.
The wavelet basis given in Section 2 is not normalized, but its orthogonality can be
verified directly from the equations for its scaling function ¢(t) and wavelet function

w(t).
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In this lecture we will discuss the the criteria used in the design of wavelet filter
banks. We will show the design process using the the Daubechies wavelet as an example

(Figure 1).

b
D.
N
. W
WA
2 3
-1

Figure 1: The scaling function of the Daubechies wavelet (for a filter of length 4) is on
the top and its wavelet function is at the bottom. Note that the shape of this wavelet
and the Haar wavelet resembles waves, hence the name.

1 Properties of Wavelet Bases and Filter Banks

The first step in the design process is to formulate a set of requirements for the filter
bank and the associated basis. The following five properties are particularly important:
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1. Finite filters. Also known as filters with Finite Impulse Response (FIR). The basis
functions derived from such filters have compact support. For efficiency, we would
like to make our filters as short as possible.

2. Orthogonality. For orthogonal filter banks one filter essentially defines the whole
bank; choosing a synthesis filter with good numerical properties (for example, sta-
bility) guarantees that the corresponding analysis filter also has the same properties.
For orthonormal bases in functional spaces it is easy to compute the coefficients:
we just need to take the dot product of the input function with each basis function.
Orthogonal filter banks allow implementations with minimal quantization error.

3. Good approximation. We want to have a set of basis functions that yields a good
approximation to functions with as few coefficients as possible. Clearly, this cannot
be achieved for arbitrary function; however, we may require that all sufficiently
smooth functions are approximated with few coefficients.

4. Symmetry. Nonsymmetric low-pass filters are particularly undesirable for image-
processing applications: such filters lead to “smeared” images after low-pass filter-
ing.

5. Regularity. Sometimes it is desirable to have a smooth approximation even after
many terms in the approximation are truncated. Suppose we express f as a linear
combination of a wavelet basis functions f;:

o0
f:Zaifi where a; -0 as 1 — oo.
1=0

The function g = Y%, a;f; is an approximation of the function f after we truncate
the coefficients after some number k. If the basis is not regular, it is likely that ¢ will
not be smooth because the only way to build a smooth function from non-smooth
basis functions is to have non-smooth features of basis functions cancel each other.

Unfortunately, the constraints imposed by the requirements of orthogonality and sym-
metry are too restrictive: the only filter bank that satisfies both requirements is the Haar
filter bank. Further, good approximation and high regularity can be achieved only at the
expense of increasing the length of the filter. A trade-off has to be made depending on a
particular application. For example, the Daubechies wavelet basis has compact support,
is orthogonal, and has maximal approximation order among all bases generated by filters
of given size.

A set of coefficients h(k) can be computed according to the requirements that we set.
We will show how the coefficients of the Daubechies wavelet are constructed in Section 5.

With these coefficients, we can solve for the scaling function ¢ of the wavelet basis
using the dilation equation.
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2 The Cascade Algorithm

For the Haar wavelet we could guess the solution of the dilation equation. In general,
solutions of dilations equations cannot be expressed using elementary functions. Rather
then providing formulas for solutions, we describe an algorithm that for a large class of
dilation equations yields a solution when one exists. This algorithm is called the cascade
algorithm.

Recall that the dilation equation is

o(t) = V23 c(k)o(2t — k). (1)

Note that we use normalized filter coefficients, so the coefficient in front of the sum
in the right-hand side is v/2 not 2. Given a set of coefficients ¢(k), the cascade algorithm
solves the dilation equation iteratively. The iteration begins, for example, with the Haar
scaling function,

1 iftel0,1)

0 otherwise

0~

In the ith step, we plug ¢'~! into the right hand side of the dilation equation to obtain
o
¢(t) = V2 e(k)p' T (2t — k). (2)
k

Each iteration hopefully takes us closer to the scaling function we are looking for.
The cascade algorithm converges when ¢' = ¢'~'. In the case of the Haar filter bank

(c¢(0) = g, e(l) = g), convergence is achieved in the first iteration.
1 - 1 D - 1 T -
0 1 2 0 1 2 0 1 2
1 - oo - 1
0 1 2

Figure 2: Cascade algorithm uses Haar scaling function as starting point and solves the
scaling function iteratively. Shown here are ¢°, ¢!, ¢%, ¢°, and ¢>.

A more interesting example is to use a set of coefficients where ¢(0) = 1/4, ¢(1) = 1/2,

¢(2) = 1/4.
8(1) = VACH(20) + 3621 — 1) + 162 —2)) 3
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In the limit, the scaling function we get, with this particular set of coefficients, is a “hat”
function (see Figure 2). Remarkably, this is a linear spline basis function. All other spline
basis functions can be found as solutions of dilation equations for a particular choice of
coefficients.

Using the cascade algorithm, we can derive some properties of the basis functions
generated by a filter bank directly from the properties of the filters, without having
explicit expressions for the basis functions themselves.

3 Orthogonality of Wavelet Bases

To illustrate the idea of deriving the properties of the wavelet basis from the properties
of a filter, let us prove that if a wavelet filter bank matrix is orthogonal, then the set of
wavelet basis functions is orthonormal.

The coefficients to the dilation equation are found in the filter bank matrix F':

If ' is orthogonal, the following relations among the coefficients must hold:
S eln)en — 2k) = 8(k) (4)
Zn:d(n)c(n —2%) = 0
Zn:d(n)d(n — k) = &(k)

Note that d(k) is 1 when k& =0 and is 0 elsewhere.

A wavelet basis is composed of the top level scaling functions ¢(¢f — k) and the wavelet
functions w(2't — k) at all scales. In order to show that a wavelet basis orthonormal, we
must prove that the inner products of between different function are 0, while the inner
product of a basis function with itself is 1.

<ot — k), ot —ka)> = (ks — ko) (5)
<Pt — k1), w2t —ky)> = 0 (6)
<w(2't — k), w(2t —ky)> = 8(i — §)5(ky — ky) (7)

We use proof by induction in the context of the cascade algorithm to show Equation (5)
first. Note that it is sufficient to prove Equation (5) for k; = 0, because we can reduce
the general case to the the case t; = 0 by replacing ¢ with ¢ + k.
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We start from the base case ¢°(¢ — k), which are the Haar scaling functions. They
are known to be orthonormal:

<@°(1),°(t — k) > = 8(k)
then we will prove that
<HO,F(—R)>=6(k) = <dT), (- k)> = 8(k)

From the dilation equation,
<HT. 6 R)> = [IVEY k) (2 — kIVEY elha) 21 — o)
= 23 e(ky)e(k) / G (20 — k) (2L — k) — ko)t

k1ko

Let T =2t — ky, then t = (T 4 k1) /2, dt = dT'/2, and

<), ot — k) > = Y e(ky)elks) / ¢ (1) (T + ky — ky — 2k)dT

k1k2

By the induction hypothesis < &;(t), ¢:i(t — k) > = §(k),

<), ot —k)> =3 clkr)e(k2)8(ky — ko — 2k)

k1 ko

By the definition of ¢, the only non-zero terms in the summation are those when ky =
k1 — 2k,
<), ¢t — k) > =D ek )e(ky — 2k)
ky
Now let n = ky, ' '
<@ (t), ot (t —k)> =" c(n)e(n — 2k)

This is §(k) given by Equation (5). Thus Equation (5) is true. Equation (6) and Equa-
tion (7) can be proven by similar arguments.

4 Approximation

A good approximating basis will have only a few large coefficients for a smooth function
and leave the rest relatively small. If we truncate the summation, the reconstructed
function is still very close to the original f.

The quality of approximation for a basis is related to the number of the vanishing
moments of the basis functions. We say that a function has P vanishing moments if

/fitkdt =0 where ke€[0.P—1]
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If f(¢) is smooth around some point to, it can be represented by a Taylor’s series expansion
with remainder R(t),

and the coefficient a; for the basis function f; can be computed by taking the dot
product of f(¢) and each component function of the basis, since the basis is orthonormal®

a; = < f, fi>

If the basis function f; has P vanishing moments, all the terms in the summation will
vanish since they are all linear combinations of monomials t* where k& < P.

a; = / (t — to)T R(t) f:(t)dt

Suppose the original wavelet function w(#) has support Iy and f;(¢) = w(2/t — k), with
2 ~1y. Then fi(t) has support I with |I| = bl - and

23 DY

a; < C/ It —to|Fdt < D27F (', D are some constants not depending on P
I

This formula indicates that the magnitude of coefficients rapidly decreases as P grows.
The following condition on filters ensures that the wavelets have P vanishing moments:

ST(=1)"n*ho(k) =0 where k€ [0..P —1] (8)

n

We state this condition without a proof.

5 Computing the Daubechies Filter Bank Coefficients

Now we are ready to compute the coefficients of the Daubechies filter bank. Using
the cascade algorithm we can find the scaling function and the wavelet with arbitrary
precision.

LAll integrals without specified range are taken over (—co ...+ 00).
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The Daubechies filter bank is orthogonal and FIR, and has the best approximation
for a given filter length. We compute the coefficients for the case when the filter length
is assumed to be 4. Our filter bank matrix will look something like this,

cg ¢ ¢ ¢33 0 0 0
0 0 c ¢ ¢ ¢ O

If the coefficients satisfy

cé—l—c%—l—c%—l—c?g = 1 (9)
CgCo + Ci1C3 = 0, (10)

then the filter bank matrix will be orthogonal. As we have proved in Section 3, this guar-
antees that the wavelet basis is orthonormal. Since we have four coefficients, we still have
two degrees of freedom left to maximize the approximation order. Using Equation (8),
we get the two remaining constraints, that ensure that the wavelet has two vanishing
moments:

co—¢+ecg—c3 = 0 when k=0 (11)
—c1+2¢0—3cs = 0 when k=1 (12)

By solving the system of equations together with Equation (9) and (10), we get
14++3 3+V3 33 1-3
co = , ¢ = , Cp= , C3=
T 42 TR T2 T2

For longer filters, we can obtain bases with more vanishing moments. The equations
for coefficients can be solved explicitly only for small filter lengths; for longer filters the
values for coefficients can be computed numerically.
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In the previous lecture we dropped symmetry in favor of orthogonality, and thus
arrived at the Daubechies wavelets. This time around we relinquish orthogonality and
settle for the next best thing, biorthogonality. Without orthogonality, the construction
of our filters becomes subject to far fewer constraints; as a result, the process of meeting
the other desired criteria is more involved.

1 Giving Up on Orthogonality

Recall the set of properties we identified as desirable for a wavelet filter:

1. Finite Impulse Response.
2. Orthogonality.

3. Good approximation.

4. Symmetry.

5. Regularity (smoothness).

Unfortunately, enforcing FIR, orthogonality, and symmetry together yields nothing better
than the Haar case. To see this, consider a symmetric signal of length, say, 6:

c(0) e(l) e2) «(3) c(4) <3
= ¢(0) e(1) e(2) ¢2) 1) <(0)
Now consider various even shifts of this signal:
c(0) (1) e2) 2) (1) <(0)
0 0  ¢0) 1) e2) e(2) ¢(1) ¢(0)
0 0 0 0 ¢0) ¢l) ¢2) ¢(2) e(1)
By hypothesis, ¢(0) # 0 (since the signal has length 6). Because of the orthogonality

condition

> e(n)e(n — 2k) = o(k)
we must have ¢(2)¢(0) = 0 hence ¢(2) = 0, and ¢(1)¢(0) = 0 hence ¢(1) = 0. Every
coefficient except ¢(0) must be 0, so all finite, symmetric, orthogonal filters have the
form

c¢0) 00 --- 0 0 ¢0).
Of those, the only reasonable low-pass filter is the one with length 2, i.e., the Haar filter.
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2 Perfect Reconstruction from General Filter Banks

In Lecture #1 we saw that if we use the Haar filter pair in our analysis bank, all we need
for perfect reconstruction of the input signal is another copy of the Haar filter pair, with
the sign of H; flipped, in our synthesis bank. But what are the conditions for perfect
reconstruction in the general case?

Here is the general structure we will consider:

(Ho 12 +2 FOW
12 +2 i)

Hy
analysis bank synthesis bank
: . . L
The analysis bank can be represented as a single matrix | where L corresponds

to Hy followed by downsampling and B corresponds to H; followed by downsampling.

In the case of an orthogonal filter bank, ] is orthogonal. It is also possible to use a

B

non-orthogonal l— , but for perfect signal reconstruction the synthesis bank must be

B
of the form { L ‘ B } such that

L] B]-[L]ZE-LJFB-B:[

gl

7= 5] - g

(where each [ represents an identity matrix and each 0 a zero matrix). Equation (1)

as well as

=~z

gives us constraints in terms of coefficients:

L-L=1 < Y ho(k)fo(k —2n)=d(n)
L-B=0 — Zn:ho(k)fl(k—Qn):() (2)
B-L=0 < Zn:hl(k)fo(k—Qn):() (3)
B-B=1 «— Zn:hl(k)fl(k—Zn)zé(n)
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3 Alternating Flip

Conditions (2) and (3) above denote the biorthogonal nature of the system: L is orthog-
onal to B and B is orthogonal to L. We can ensure that some of the biorthogonality
conditions are satisfied requiring that the coefficients of the mutually orthogonal filters
be the same but in reverse order and with every other sign flipped:

Jolk) = (=1)*h(N — k)

Ji(k) = —(=1)*ho(N — k)

(N is the order of the filters.)
It also turns out that, if we use alternating flip, L - L = I is equivalent to B- B = I;
so we are now left with only one condition to worry about: how to choose fy and hyg.
We no longer have a single dilation equation as in the orthogonal case, but rather a
pair of dilation equations:

o(t) =2 ho(k)p(2t — k)

o(t) =23 folk)o(2t — k)

What does this mean in the continuous domain? There is a nice interpretation in terms
of bases; but first we should introduce the concept of multiresolution analysis.

4 Multiresolution Analysis

All wavelets exhibit a multiresolution structure in the following sense: they are made up
of nested sets of increasingly refined and powerful bases. Given a scaling function ¢ and
its associated wavelet function w, we can form the space

Vo = span(¢(t — k)) = span(¢(2°t — k))
spanned by the translates of ¢, and the space
Wo = span{w(t — k)) = span(w(2°t — k))
spanned by the translates of w. By scaling ¢ we can also build
Vi = span{w(2t — k)) = span{w(2't — k)),
which (provided that w is the wavelet derived from ¢ ) will be exactly the sum of Vj and

Wol
Vi=W+ W,
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What this means is that any function in Vj can be represented as the sum of a function
in Vp and a function in Wy. Further scaling of ¢ and w by powers of 2 allows us to define
an infinite sequence of spaces V; and W;:

Vi = span(¢(2't — k)
W; = span(w(2/t — k))
At every level we have V; = V,_y + W,_1, which implies the infinite nesting of the bases:

VoCcWViCcVWV,C...

Note: All of the above applies in both orthogonal and biorthogonal cases; but if the
V;’s and W;’s are mutually orthogonal, i.e.,

V; L W, for all y
or (by definition)
(fv, - fw;) = 0 for all functions fy, € V; and fw, € W,

then we have orthogonal multiresolution and we write V; = V;_; @& W,_; instead of
Vi=Via+ Wi

In summary, here are the defining properties of a multiresolution set {V;} of functional
spaces:

1. V; C Vjp and U; V, = L?
2. f(t) eV <= f(2t) € Vi,
3. fyeVy <= ft—k) eV

5 Dual Bases

We start with finite-dimensional spaces. Let y be a vector such that y = 3 a;y; for some
set of coefficients a;. If the y;’s form an orthonormal basis, finding the coefficients a; is
particularly straightforward: each «; is equal to the inner product (y;,y).

If the {y;} basis is not orthogonal, however, we lose the luxury of such a simple
computation. But it turns out that it is possbile to find a set of vectors {g;} such that

i = (Jiry)- (4)

Since y = > a;y;, we have
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and the g; vectors are therefore determined by the set of conditions
(yir 95) = 6(i = J) (5)

or, in matrix notation,

Y.V =1.

This property makes {y;} and {§;} dual bases. Two bases are said to be duals of
each other if there exists a one-to-one correspondence between them such that the inner
product of corresponding basis elementsis 1 while the inner product of non-corresponding
elements is 0.

The same concept applies to functional spaces. If a filter bank provides perfect re-
construction of the input signal, the bases generated by the synthesis functions & and W
are duals of the bases generated by the analysis functions ¢ and w. Given {V;} and {W,}
as defined in Section 4, this duality can be seen in the relations

Vi LW,

and

Vi L Wi
Since the dual wavelets at level 7 are orthogonal to the primal scaling functions at the
same level, i.e.,

(62— k), 62t~ k) = 0,
6 and @ give us a way to compute the coefficients of ¢ and w much in the same way

that property (5) allows us to compute the «;’s in (4). To see this, consider the following
analysis of an input signal f:

f = Z akqb(t — k) + Z bikw(Tt — k)
k i, k

We can obtain the a;’s and b;;’s as follows:

by, = <f77])(22t_k)>

6 Where to Enforce Which Conditions

The desirable conditions we started out with were formulated for single wavelet bases,
whereas we are now dealing with two wavelet bases — a primary and a dual. How does
that change the way we enforce the conditions?

Symmetry is not a problem: an immediate consequence of the alternating flip is that
each filter in the primary bank is symmetric with respect to the corresponding filter in

the dual bank.
Un fact (w(2' — k), (27t — k)) = 0 for any j < i.
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Good approximation, in the case of a single wavelet, required a large number of
vanishing moments. Now that we have two distinct wavelets w and @, which one should
have many vanishing moments? The same argument applies as in the single-basis case of
Lecture #3; there it was shown that a coefficient a; would be small if the basis function
fi had many vanishing moments. The derivation hinged on the condition

a; = <f7f2>

in order to arrive at the expression

a; = / (t — to)T R(t) f:(t)dt

and, ultimately, at a bound on the magnitude of a;. With our dual wavelets, a similar
derivation would start out with

bir = (f, (2t — k).

Immediately we see that the dual wavelet @ (as opposed to the primal w) is the one that
should have many vanishing moments.

As for smoothness, recall that when a function gets projected onto a basis and some
of the projected elements are discarded, the truncated projection takes on the local
properties of the basis — in particular, smoothness or jaggedness. For instance, if a
function

[ = a;fi

v

-
Il
=]

is approximated by
J
[ = Z a;fi,
=0

f takes on the smoothness properties of the f;’s. In compression applications, truncation
is applied after the analysis stage, which means that the truncated terms come from the
primary basis. Therefore we should strive for a smooth analysis filter. In other words,
the smoothness condition should be enforced on the primal w.

7 Spline Wavelets

We conclude with a simple example of a biorthogonal wavelet basis. As we have seen
in the beginning, orthogonality prevents us from constructing finitely supported scaling
functions; in particular, we cannot use spline basis functions as scaling functions. Recall
our discussion of the cascade algorithm: a linear spline satisfies the scaling equation with
coefficients 1/4, 1/2 and 1/4. In addition to symmetry, splines have one more very nice
feature: out of all scaling functions with given support, they have maximal smoothness.
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This is exactly one of our requirements for the scaling functions/wavelets of the synthesis
filter bank.

In the simplest spline filter bank, Fj is the linear spline filter 1/4, 1/2, 1/4. Recall that
we can get the analysis filter H; by alternating flip. This leaves us one filter to choose,
say, Ho. The simplest filter satisfying Equation (2) has just one coefficient 2(0) = 1. This
completely determines the filter. However, it is clear that the analysis filters are quite
bad: the low-pass part of the signal is just subsampled version of the filter. Note that
the high-pass filter of the synthesis filter has one vanishing moment. By increasing the
support of the analysis filters, we can improve them, ensuring existence of corresponding
wavelet basis and greater number of vanishing moments. For example, if the support size
is increased to 4, we obtain coefficients —1/8, 1/4, 3/4, 1/4, —1/8 for the analysis filter
Hy. This is so-called 5/3 spline filter bank (the numbers refer to the number coefficients
in the analysis and synthesis low-pass filters.)

This filter bank is shown below.

1 1 3 1 1 1 1 1
[—M@Zv—g 12 T2 T2 d ]
11 }2 T2 11 .3 1 1 |
1> 29 1 87 47 47 47 8

analysis bank synthesis bank
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In this lecture we will talk about various applications of wavelets in graphics, with
concentration on wavelet radiosity. Typical applications of wavelets in graphics and image
processing include:

1. Image editing, compression, and retrieval [3, 4].
2. Curve and surface editing, compression, and variational modeling [2, 6].

3. Global illumination problems (e.g. radiosity) [7, 8, 9].

The book Wavelets for Computer Graphics: Theory and Applications by Stollnitz, DeRose,
and Salesin [1] gives an overview of these applications.

1 Image Compression using Wavelets

One successful application of wavelets in image compression is finger print file compression
[5]. The FBI has about 30 million finger print images, each with size about 10M bytes.
Wavelet compression outperforms JPEG in compressing those finger print files. The main
problem with JPEG is that it introduces blocking artifacts at high compression ratios,
which can obscure the fingerprint “minutiae” (e.g. ridge endings).

Generally, image compression consists of the following steps:

1. Choose a basis. First we may want to divide the image into fixed sized blocks
(e.g. as in JPEG). Then we choose a set of basis functions that has the desired
properties, such as smoothness, vanishing moments, symmetry.

2. Transformation of the image, by projecting it into the chosen basis.
3. Quantization of the coefficients.

4. Coding. After quantization we could further compress the coefficients using lossy
or lossless compression techniques.

The main reason for dividing the image into fixed sized blocks is to make the basis
functions local. With wavelets this is not necessary since the basis functions already have
local support.

Given a set of 1D scaling functions {¢; j(x)} and wavelets {¢; ;j(x)}, there are two
ways to construct a 2D basis: standard basis and non-standard basis.
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1.1 Standard Basis

In this case, we first apply a wavelet transform to all the rows of the original image, then
we apply a wavelet transform to all the columns of the resulting coefficients. Let

Vi = Span{¢i;(x)}, Wi = Span{iy;(x)},
V! = Span{¢i;(y)}, W/ =Span{t;(y)}
from previous lectures we know
V% = ‘6 €>va<$>vva"' @>vvﬁ—1
Vi = WeWwsaWi--—-a W, _,
Assume that the initial image [ € V,, x V!, we can expand V,, x V! to be

n—1 n—1 n—1n—1
VixVi=WVoxVy @ Y VoxW @ Y WyxVy @ > 3 WixW
J=0 Jj=0 i=0 j=0

In other words, we project the original image [ € V,, x V! into the following set of basis
functions:

doo(x)doo(y) Poo(x) i (y)
Gin()ooly)  in(x)thim(y)
where j =0...n —1, k=0...2 — 1, and similarly for j/, k.
The disadvantage of the above set of basis functions is that they have bad support
shape. For example, for those ¢oo(x)1;1(y), they could be wide in the x dimension and

narrow in the y dimension(they look like horizontal strips). Those basis functions won’t
represent the original image locally, so they are a bad set of basis functions.

1.2 Non-standard Basis

In contrast with standard basis function, non-standard basis transforms the original
image I, € V,, x V! in an interleaved fashion. First we use one pass of wavelet transform
to all the rows, then we do the same thing for all the columns. After one pass the image

will look like this:
(Vieo x Vi ) (Ve x Wiy )
(Wace x VI ) (Wamax Wi, )

We can repeat the above process to the upper-left subimage I,,_; € V,_; x V/_; and
conitue in similar fashion until we have Iy € V5 x V. The above operations could be
written algebraically as:

Vix Vo= VoxVy & Y. (VixV/=ViyxV.))

= Vox Vg @© Y (ViaxW_., @ VL xWey & Wiy xW.)

K3
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In other words, we project the original image I € V,, x V! into the following set of basis
functions:

Go0()Poo(y) bix( )b (y)
o) (y) V()0 (y)

where j =0...n— 1 and k&K' =0...2/ — 1.
For non-standard basis, the filter supports are more localized than standard basis
since all the products only involve scaling functions and wavelet functions of the same

level. As you might expect the non-standard basis usually gives more compression ratio
than the standard basis.

2 Wavelet Radiosity

The final section will talk about wavelet radiosity. For more information, please consult
[8], [9] and [10].

The radiosity equation could be written as:

Bla) = B(x)+ [ K(e,y)Bly) dy (1)

where x and y are points on 2D scene surfaces.

Since the above equation is an integral equation, we have to project it into a finite basis
to solve it. In traditional radiosity method, we first divide the environment into N surface
patches, associate N basis functions with those patches, project the above equation into
a matrix form, and use numerical algorithms like Jacobian iteration to solve the linear
system. The problem is that it’s very expensive to project the kernel K(x,y) into a
N x N matrix. In [7] they use hierarchical algorithm to reduce the computation time
from O(N?) to O(k* + N) using box basis functions, where k is the number of initial
patches and N is the number of subdivided elements. [8] and [9] further extends the
ideas by using wavelet basis functions. The merit is that by doing so we can get a better
discretization of the kernel K(x,y), thus throwing away those smaller coefficients does
not hurt too much.

Let V = Span{B;(x),i = 1... N} to be the function space spanned by basis { B;(x)}.
The approximate solution B(l‘) is represented as a linear combination of these basis
functions:

Assume that {B;(«)} is orthonormal, and define operator P, to be the projection of a
function f to V| i.e.

P,(f) = _(f, B))B;

7
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Another way to think about this is that P, transforms a function f into a column vector
Vs which is of dimension N and contains the coeflicients of the projection.

We now solve the approximate equation

B(z) = (P,E)(z) + (P,KP,B)(x)

where K = P,K P, is the approximate transport operator. Because of the leftmost P,,
B(x) lies in the subspace V and can be represented by its coefficients b;.

Mathematically, let

B(r) = Y (B() Bix)Bilx) = Y e:Bilx)

K(z,y) = Y3 ((K(z,y), Bi(2)), Bi(y)) Bi(x) B;(y)

Then

since {B;} is orthonormal.
If we put the above result into equation (1) we have

N
bi = €; + Z kijb]‘
7=1

or in matrix form

B=F + R’B, where

b €1 kir Fig
B _ b‘z E _ 6‘2 R’ _ k21 k‘zz
bN EN kNl sz

k1w
kan

kNN

The above linear system is the discretized version of equation (1). We could solve it using
other numerical algorithms and get an approximate solution for the projected radiosity

function 5.
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For wavelet radiosity, wavelets are used for the basis functions B;(xz). Note that for
3D scene, the variables @ and y are actually 2D surface points, so the kernel K(x,y) is a
4D function. Thus we need to project the kernel onto basis functions that are a product
of four 1D basis functions. This can be done in either the standard or non-standard ways
as described above.

If we compare image compression using wavelets and wavelet radiosity we can find
many similarities between them. The digital image is a discretized version of some
continous image. In otherwords, we can think we project the original continous image
into a set of basis functions and use the coefficients to represent the original image. In
both image compression and wavelet radiosity, we try to find a good basis so that we can
throw away many coefficients with sacrificing the quality.

The following compares the results of wavelet radiosity in flatland using different
bases:

Figure 1: The left column shows the matrix of the flatland kernel for two parallel line
segments in the finest level basis, the standard Haar basis and the standard F; basis(top to
bottom). The right column shows the matrix of the flatland kernel for two line segments
meeting at right angles in the same three bases.
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Figure 2: The kernel for two parallel lines  Figure 3: The kernel for two parallel lines
realized in the non-standard Haar basis. realized in the non-standard F, basis.

Figure 4: The kernel for two perpendicu-

Fi 5: The kernel for t dicul
lar lines realized in the non-standard Haar 1BHre € xernet fot bwo perpendiciiar

: lines realized in the non-standard £% basis.
basis.

Figure 1 compares Haar basis with F% basis for standard case. We can see I, gives
better result since the resulting matrix contains more small elements. Figure 2, 3,4, 5
show that for non-standard case, I, basis gives better result than Haar basis. Figure 6, 7
compares more different bases in wavelet radiosity.
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0.100

Relative error

0.010

Coefficients

Figure 6: Parallel segments: Relative L'
error plotted against number of coefficients
used with full matrices, non-standard haar,
standard haar, non-standard F3, and stan-
dard F3 bases (top to bottom).

Relative error

010+

.

Sl oL, ..
. : -’"E'v'-'»'o—»~|r——’<n)<—ufi;5:‘Ac
10 100 1000 1000C

Coefficients

Figure 7: Perpendicular segments: Rel-
ative L' error plotted against number
of coefficients used with full matrices,
non-standard haar, standard haar, non-
standard £}, and standard F, bases (top
to bottom).
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1 The Development of Monte Carlo Methods

Monte Carlo integration methods were first used on a computer, the ENIAC, just after
World War II. The ENIAC, completed in 1946, was the first electronic (as opposed to
electromechanical) computer in the United States, following the Colossus completed in
England in 1943. It was huge (24 meters long, 18,000 vacuum tubes), and could run at
a (then) phenomenal rate of 5000 operations per second.

At that time, scientists at the Los Alamos National Laboratory were working on
building an H-bomb, and were considering how the ENIAC could help them. Stanislaw
Ulam suggested that random sampling could be used to simulate the flight paths of
neutrons. John Von Neumann expanded on the idea, and came up with a detailed
proposal in 1947. He estimated that, following 100 neutrons, they could compute one
round of collisions in 3 minutes. This was fast enough so that a simulation of 100 collisions
could be completed in under 5 hours. Nick Metropolis named the new method “Monte
Carlo”, after the city in Monaco famous for its casinos.

In 1949, Metropolis and Ulam published a paper on Monte Carlo methods, which
sparked a lot of work on the methods in the 50’s. Unfortunately, the computers at that
time were only capable of handling trivial examples of many applications. Also, some
researchers tried to apply Monte Carlo methods to every problem in sight, even those that
were already well solved using previous techniques. These mis-applications gave Monte
Carlo methods a bad reputation for a while. However, things gradually improved over
the 60’s as people discovered more efficient Monte Carlo techniques, and they learned
which problems were and were not appropriate for the methods. Monte Carlo methods
are now an important tool for solving many numerical problems.

2 A Brief History of Random Sampling

In isolated instances, random sampling had been used much earlier to solve numerical
problems. For example, in 1777 the Comte de Buffon computed that, given parallel
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Id
{/\/ Needle

">~ (Touching aline) > Lines drawn on paper

Figure 1: Using a needle to estimate 7.

ruled lines separated by a distance d, and a needle of length L (where L < d) dropped
randomly, the probability of the needle touching a line would be:

2L
Ptouch — d .
He verified this experimentally. Laplace, 100 years later, noticed that you could actually
use this method to estimate 7. In the latter part of the 19th century, this became quite
a popular experiment (or party game).

Similarly, in 1900 Lord Kelvin was researching the kinetic theory of gasses, and used
random sampling to help with his calculations. His random number generator consisted
of writing numbers on slips of paper, putting them in a jar, and pulling them out one
at a time. He was quite concerned that they weren’'t getting mixed well enough, due to
such effects as static electricity.

As a final example, Student (an alias for W.S. Gosset) used random sampling in 1908
as an aid to deriving his famous ¢-distribution. He did not know the exact distribution,
so he did some experiments to help him guess the analytic form.

3 Numerical Quadrature

Suppose we want to calculate some integral,

I:/abf(x)da:.

(We will do this example in 1-D, to keep things simple.)
The best way to calculate this integral would be to solve it analytically, and get:

I= /abf(:c) dr = F(b) — F(a) .

However, there are many functions we would like to integrate that we cannot do an-
alytically. So people have developed methods for approximating the integral through
quadrature rules of the form:

j - iwlf(xl) )
=1
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which is essentially a weighted sum of samples of the function at various points. There
are many different quadrature rules, each with their own sampling patterns and weights.
A few common ones include:

3.1 Midpoint Rule:

Figure 2: The midpoint rule.

We divide up the interval into some fixed number n of intervals, each of size h = (b—a)/n.
We then choose one sample point at the midpoint of each interval:

I = hif(a+(i—%)h)
3h

= h|fat D+ flat D) b f - D)

3.2 Trapezoid Rule:

Figure 3: The trapezoid rule.

This is similar to the midpoint rule, except we sample the function at the ends of each
interval, and compute the area of a trapezoid for each interval.

P = ig[f(a+(i—1)h)+f(a+ih)]

3.3 Simpson’s Rule:

This is similar to the trapezoid rule, except we compute the area under a quadratic
polynomial approximation (instead of a linear approximation for the trapezoid). The
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equation is:

Fo= n[ZH@) + 5 f (a4 )+ 2 f(at 2h) 4 3 Fat 30)+ 2 flat4h)+

+§f(b—h)+%f(b) .

3.4 Convergence:

The Midpoint Rule is exact for constant or linear functions (f ~ 1,x). Its error is given
by
(b — a)g " -2
— =0(n

A 1O =0(n?)
where a < £ < b, provided that f has at least two continuous derivatives on [a, b]. For
the trapezoid rule, the error is

I —1=-—

(b —a)’
12n2

So, the midpoint and trapezoid rules have the same convergence rate, and their errors
have opposite signs if f” > 0 (i.e. the true answer is bounded between them).
Simpson’s Rule is exact for polynomial functions up to cubics (f ~ 1,2, 22, 23). The
error can be bounded by the fourth derivative:
(b—a)®

I—1|= wa(f) =0(n™).

[-1= f(€)=0(n).

This converges very quickly, assuming that f has a continuous fourth derivative. There
are higher-order rules called Newton-Cotes rules that can achieve even faster convergence,
but require the function to be even smoother. Another popular family of integration rules
are the Gauss-Legendre rules, which optimize the sample locations as well as the weights
to get better convergence.

3.5 Multi-Dimensional Integration:

Multi-dimensional integration is more complex. A common way to extend a one-dimensional
quadrature rule is to use a tensor product rule. These have the form

R n n n
I:Z Z”.Zwilwh"'wisf(xilaxiza---axis)7
11=112=1 is=1

where s is the dimension, and the w; and z; are the weights and sample locations for a
given one-dimensional quadrature rule. For example, if we needed to evaluate the 5-D

integral
1 1 1 1 1
I:/ / / / / f($1,l’2,l’3,334,$5) dl’l dl’g dl’g dl’4dl’5,
0 0 0 0 0
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we would compute a sum of the form

n n n n n
] = Z Z Z Z Z wi1w¢2wi3wi4wl—5f(xil,xh,xh,xu,x%) .

1 4 2 4 2 ... 4 1 1

4 16 8 16 8 --- 16 4

) 2 8 4 8 4 - 8 2
h2.Z.
9

4 16 8 16 8 ... 16 4

1 4 2 4 2 - 41|

However, this does not work very well in high dimensions. If we start with an n-point
quadrature rule in 1-D, we need N = n® sample points for an s-dimensional integral.
Thus we can see that when the dimensionality is large (say s = 20), the number of
required samples grows astronomically:

12 =1

220 = 1048576

320 = 3486784401
4% = 1099511627776

Furthermore, suppose that the 1-D rule has a convergence rate of O(n™"). The s-
dimensional rule doesn’t work any better than the one-dimensional rule along each axis,
so it converges at O(n~") as well. However, the total number of sample points used is
much larger (N = n), so that in terms of the total number of samples the convergence
is only O(N~"/*). For example, the rate of convergence for Simpson’s method is:

O(n*)
O(n?)
O(n')
O(n'/?)

So even with Simpson’s assumption of 4 continuous derivatives, the convergence is already
looking bad for high dimensions.
If we throw in a discontinuity in f, things get even worse. Consider the function

1 ife < X*
f(x)_{o if &> X*
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Xj

Figure 4: A discontinuous f.

and suppose that the quadrature points x; are evenly spaced.

0./0—41\ ‘“

We see that the value computed the quadrature rule does not change when X* is
anywhere between x; and x;,1. Thus the error of any fixed quadrature rule is directly
proportional to h = 1/n. So if f has a discontinuity, the convergence rate is O(n™1)
even in one dimension. Larger dimensions only compound this problem, leading to a

convergence rate of O(N~1/*).

3.6 Bakhvalov’s Theorem:

There is an important result which limits the convergence rate for any deterministic
quadrature rule, called Bakhvalov’s theorem. Essentially, it says that given any s-
dimensional quadrature rule, there is function f with r continuous, bounded derivatives,
for which the convergence rate of the chosen quadrature rule is only O(N~"/#).
Specifically, let C}, denote the set of function on [0, 1]* with r continuous, bounded

derivatives. That is, we require

87’

—fI<M
Ot -+ - Owls

f1<

for all ay,...,a, such that > a; = r.
Now consider any N-point quadrature rule, and let

j(f) = ;wif(xi)

be the approximation to the true integral

I(f):/[O’I}Sf(xlv"'v'rs)d'rl d'rs .

Then there exists a function f € Cj; such that the error is

I(f) = 1(f)| > k- N7/*,

where £ > 0 depends only on M and 7.
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4 Monte Carlo Integration

The basic Monte Carlo method (in 1-dimension, for simplicity) is:

b

b —a XN

| flayde ~ 223 F(X0) 1
@ i=1

where the points X; are chosen independently and uniformly at random on the interval
[a,b]. As we will see, this method has a convergence rate of O(N~1/?) in any dimension,
regardless of the smoothness of the function f. This is particularly useful in graphics,

where we often need to calculate multi-dimensional integrals of discontinuous functions,

where Simpson’s rule and Gaussian quadrature don’t do well.

4.1 A Bit of Probability Theory

First we review some terms from that probability course you took a long time ago.
A random wvariable X is simply a quantity that is chosen by some random process.
(This is good enough for our purposes; to define it more precisely involves a lot of math.)
Given a random variable X, its camulative distribution function P(x) is defined
by
P(z) = Pr{X; <z}

i.e. P(x) is the probability that the random variable is not greater than a given value x.
So, for example, the cumulative distribution function U[0, 1] is:

Figure 5: The cumulative distribution of U[0, 1].

Next, we define the probability density function p(z):
dP(x)
x) = ,
plz) = —
which is often just called a density function or pdf. From these definitions, we get the
important relationship

B
Pria <X <8} = [ pla)de = P(3) - Pla) .

«

Let Y = f(X) (note that Y is also a random variable). The expectation of Y is
defined as

Y] = [ f@)p(a)de,
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where p(x) is the density function for X. The variance of Y is defined as
VIY] = E[(Y - E[Y])?,

which is to say, the variance of Y is the expected squared value of the difference between
Y and its mean.
From these definitions, it is easy to see that

ElaY]=aE[Y] and  V[aY]=d*VI[Y]

for any constant a. Another important rule that always holds is
E [Zz—] =Y E[Y].

For example, we can use these rules to derive a simpler expression for the variance:

VY] = E[Y - E[Y])?
— E[Y?-2YE[Y]+E[Y]
= E[Y* - E[Y]

noting that the inner E[Y]’s are just constants.
The following rule, however, holds only when the Y; are independent:

v [z 3@»] -V
Two variables Y; and Y5 are defined to be independent if:

Pr{Yi <z;and Y; < ay} = Pr{Y; < a1} - Pr{Y, < a,}

for all values of x; and 5.

4.1.1 Basic Monte Carlo

Let’s return now to the basic Monte Carlo estimate (1), namely

_b—a N

Fyn = N ;f(XJ (2)

Our first task is to show that this gives the correct answer on average, i.e.

b

E[Fy] :/ fla)de =1 .

a

We have used the notation Fiy (rather than I) to emphasize that the result is a random
variable, and that its properties depend on how many sample points are chosen.
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Recall that th X; are independent samples from Ula, b] (the uniform distribution on
[a,b]). The density function for each X; is

| 1/(b—a) whena<uxz<b,
p(z) _{ 0 otherwise .

We can now compute the expected value of Fy:

bl = £ |t

which is what we wanted.

It is actually not necessary to choose the samples uniformly to make this work. Sup-
pose that rather than choosing the X; uniformly, we choose them according to some
arbitrary density function p(z) on the interval [a,b]. (We will discuss how to do this in
the next lecture.) Now consider the estimate

/ 1 ol
_N; (3)

i.e. we compute f/p at each sample point and average all of these values together. The
expected value of F} is
> [
— dx
oo P .T

/ff

E[Fy] =

Mz

1

.
Il

M=

1

-
Il

Tzl 2

This is an important generalization that is often used in practice. The only condition
we require on the density p(x) is that p(x) > 0 whenever f(z) # 0. The easiest way to
achieve this is to have p(x) > 0 on the whole interval [a,b]. (If p(x) = 0 for some interval
where f(x) # 0, then we will miss sampling some of the integral.)
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4.2 Convergence of Monte Carlo Methods:

From the previous discussion, we know that Fy gives the right answer on average. How-
ever, we would also like to know how large an error we can expect, and what the rate of
convergence is.

To simplify the notation, let ¥; = f(X;)/p(X;), so that the estimate Fyy becomes

1 N

We also let Y be a synonym for Y;. The value that we are trying to approximate is
ElY]=1.

First, we have the strong law of large numbers, which says that given enough
samples, the mean will converge to the expected value with probability 1:

Pr{ lim %i)fi:E[Y]} ~1

N—o00 i1

assuming that the Y; are i.i.d. (independent and identically distributed). This says that
if we take enough samples, Fly is guaranteed to converge to the correct answer.
To determine the rate of convergence, we need Chebychev’s inequality:

Pr{|F—E[F]| > (@)/} <5,

where F'is any random variable such that V[F] < co. We will apply this inequality to
F'y to get a bound on the error.
First, we compute the variance of Fy is terms of the variance of ¥ (a single sample):

VIEN] = Vl%éyl
ey
- %évm]
- V)

N

where we have used V[aY] = a®*V[Y] and the fact that the Y; are independent samples.
Thus, the variance decreases linearly with V.
Plugging this into Chebychev’s inequality, we get

1/2
Pr {|FN —I|> N2 <_VE5Y]> } <5
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Thus for any fixed threshold &, we see that the error decreases at the rate N /2,

It is possible to get much tighter bounds on the error using the Central Limit
Theorem, which states that Fly converges to a normal distribution as N — oo. It is
most conveniently stated in terms of the standard deviation op, of Fi, which is simply
the square root of the variance:

ory = (VIEN)Y? = N0y
The standard deviation itself is a common measurement of error (it is sometimes called
RMS error), and notice that it also converges at the O(N~/?) rate.
The central limit theorem then states that

1 N oy 1 t 2
lim Prqe—>» Y, — ElY|<t— :—/ e~ 2 de |
N—o0 {N; [ ]_ \/N} \/27'(' —00
where the expression on the right is the normal distribution (the integral of the familiar
“bell curve” or Gaussian).

This equation can be rearranged to give

2 o)
Pri|Fy —I| > top, } = \/;/t e d .

The integral on the right decreases very quickly with ¢; for example when t = 3 the
right-hand side is approximately 0.003. Thus, there is only about a 0.3% chance that
Fy will differ from its mean by more than three standard deviations, provided that NNV is
large enough for the central limit theorem to hold. Recall that the standard deviation is
ory = O(N7Y/2), so this also verifies the O(N~'/2) convergence.

4.3 Properties of Estimators:

The purpose of a Monte Carlo estimator is to approximate the value of some quantity of
interest (. Normally @ will be the value of an integral, although more general situations
are possible (e.g. @ could be the ratio of two integrals).

An estimator is now a function of the form

Fy = Fy(Xy,...,XnN) , (4)

where the X, are random variables. A particular numerical value of Fy is called an
estimate. So far, we have only considered estimators where the X; are independent and
identically distributed (i.i.d.). However, in general the X; can depend on each other, and
they can have different distributions.

An estimator Fly is called unbiased if

E[Fy]=Q for all values of N .
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The estimators (2) and (3) we have already discussed are unbiased.
Otherwise, the bias of the estimator is defined as

BlEN] = E[FN] - Q.

If the bias goes to zero as N increases, then the estimator is called consistent:

A BlEN] =0,
or equivalently

i ElF] = Q.
Such an estimator will ultimately converge to the right answer, but it may take many
samples.
4.3.1 Example: a biased, consistent estimator

Suppose we are attempting to do antialiased sampling on a (1-D) pixel. To determine
the pixel value, we need to evaluate an integral

r= [ w@) ) dr (5)

where f is the image function, and w is the filter function, which is assumed to integrate
to one:

1
/ w(z)der=1.
0

For example, w could be a tent filter:

tent-shaped filter

1-D pixel

Figure 6: Antialiasing samples in a 1-D pixel with a tent filter.

In graphics, a common way to evaluate this integral is

o w(X,) f(X5)

Fv =
N N w(Xy)

where the X; are uniformly distributed on [0, 1]. This is an example of a biased estimator,
since when N =1 we get

Emhdﬂﬂ%g§@]=Mﬂmn=47wwm
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This is not the same as the desired answer I given by (5), so the estimator is biased.
Similarly, when N = 2 we get

dCCl dCCQ s

E[FZ]:/UI/OI w(x1)£Ex1;+w(x2)f(x2)

x1) + w(ws)

which is difficult to evaluate but is certainly not equal to /. In general, this estimator is
biased for every value of N.
However, as N — oo the bias goes to zero. To see this, we rewrite Fly as

(1/N) £ty w(Xo) f(X5)
(1/N) i w(X)

and then evaluate

th%OO(l/N> Zzlil w(XZ>f(X1>

= ) B, w()
_ fol w(x) f(x)de
J) w(x) da
_ /0 w(@) fx) de
= TI.

Next time, we will look at some other important properties of estimators, including
the mean squared error and efficiency of an estimator.



CS448: Topics in Computer Graphics Lecture #7
Mathematical Models for Computer Graphics
Stanford University Tuesday, 4 November 1997

Sampling Random Variables

Lecture #7: Tuesday, 21 October 1997
Lecturer: Eric Veach

Scribe: Menelaos Karavelas
Reviewer: Lucas Pereira

1 Properties of Monte Carlo estimators

Recall from the previous lecture that the purpose of a Monte Carlo estimator is to
approximate the value of some quantity of interest (). Most commonly @ will be an
integral of the form

Q= [ flw)de 1)

where €2 is some arbitrary domain. An estimator is then defined to be a function of the

form
FN:FN(le"'vXN>

(where the X; are random variables), such that the mean of Fy is a usable approximation
of the quantity we want to estimate.
The estimator Fly is said to be unbiased if

E[Fy]=Q for all N.

For example, suppose that @ is given by (1), and let X be a random variable on 2 with
density p(x). Furthermore, suppose that p(z) > 0 whenever f(x) # 0. Then

oS
p(X)
is an unbiased estimator of @), since
()
EFF|=| —plr)de =1.
7= [, o @

Otherwise, the quantity
BlEN] = E[FN] - Q
is called the bias. If the bias goes to zero as the number of samples /V is increased, then
the estimator is called consistent:

Pr{ lim FN:Q} =1,
N—o0

i.e., Fy converges in probability to Q.
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1.1 Example: a biased, consistent estimator

Recall the example of antialiased sampling of a 1D pixel from the previous lecture. The
quantity to be estimated is the pixel value I, which is defined by an integral

I = /Olw(a:)f(a:) dx. (2)

Here f is the image function on the domain [0, 1], and w is the filter function, which
satisfies

/Olw(a:) de =1.

A common way to evaluate the integral (2) is to use the estimator:

s, w(Xa) f (X))
Ei]\; w(X;)
where the X; are independent uniformly distributed samples on [0, 1].

We first show that this estimator is in general biased. Suppose that just one sample
is taken (V. =1). Then

FN:

(3)

_ w(Xy) f(Xy)

Fy = w(Xl) :f(Xl)v

and
1

Eﬁﬂ:éﬁ@m@mx:Af@mﬁ

noting that p(x) = 1 is the density function for X; on the domain [0,1]. Since this
expected value is in general different from I (see (2)), the estimator Fj is biased.
However, the estimator Fl is consistent since by the law of large numbers

1 1
MWV;w@MQQ::Aw@ﬂ@m,

N —o0

) 1
lim N S w(X;) = /Qw(x)dx = L

N—o0 p

Thus we have .
hmEMﬂ:/w@ﬂ@w,
0

N—o0

i.e. we obtain the right answer as N becomes large.

A numerical example. To further understand how this estimator behaves, suppose
that we have an image composed of identical pixels, where the left half of each pixel is
white and the right half of is black. This corresponds to the image function
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where 1 represents white and 0 represents black. Suppose now that we use a filter w(x)
that puts a lot of weight on the right half of the each pixel, specifically:

2—2 z€[0,3)
w(z) = { 2e, cvell1] (4)

where € is a small number in the range 0 < ¢ < 1. Notice that this weighting function
integrates to one, as required.
Then it is easy to see that the correct value for the filtered pixel is:

I= [ flaywle) de = (1)) + 50)(2 - 20 =

and this is exactly the value that we want our Monte Carlo method to estimate (i.e.
() = I). However, if we use the biased estimator described above to evaluate the integral
I at each pixel, then using just one sample X; per pixel leads to

1 X1 €0,3)
FI_{o, X, e[b1]

This produces an image with a checkerboard appearance, where approximately half the
pixels are black and half are white (see Figure 1). The resulting image has a mean value
of 1/2, as opposed to the correct filtered image which has a mean value of € (a uniform
image of low gray-level).

(a) (b) (c)

Figure 1: (a) A 4 x 8-pixel image, each pixel of which is half white and half black. (b)
The filtered image using the filter w in (4), which has a mean value of €. (¢) The filtered
image using the Monte Carlo estimator (3) with N = 1, which has a mean value of 1/2.

1.2 Mean squared error

The main reason for preferring unbiased estimators is that it is easier to estimate the
error. Typically our goal is to minimize the mean squared error (MSE), defined by

MSE[F] = E[(F - Q)’] (5)

(where we have dropped the subscript V). We would like to find an estimator such that
the mean squared error is small, relative to Q*:

MSE[Fy] < Q.
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In general, the mean squared error can be rewritten as

MSE[F] = E[(F - Q)
= E[(F - E[F]+ E[F] - Q)’]
= E[(F = E[F)] +2E[F — E[FJ(E[F] - Q) + (E[F] - Q)
= VI[F]+p[F)*
(since E[F — E[F|] = 0). Thus, to estimate the error we must have an upper bound on

the possible bias. In general, this requires additional knowledge about the estimand @),
and it is often difficult to find a suitable bound.

On the other hand, for unbiased estimators we have E[F] = @, so that the mean
squared error is identical to the variance:

MSE[F| = V|F] = E[(F - E[F))? .

This makes it far easier to obtain error estimates, by simply taking several independent

samples. Letting Y7,..., Yy be independent samples of an unbiased estimator Y, and
letting
1 N
= —> Y
N =1

as before (which is also an unbiased estimator), then the quantity

VIFY] = 5o {% iy> : & iy”

is an unbiased estimator of the variance V|[Fy] (see Kalos and Whitlock). Thus, error
estimates are easy to obtain for unbiased estimators.

2 Sampling random variables

There are a variety of techniques for sampling random variables, including:
e the method of transformation of variables (also known as the inversion method),
e the rejection method, and
e the Metropolis method (which will be discussed in another lecture).

There are also a variety of tricks that are useful for sampling particular distributions,

such as the normal distribution. We give some simple examples of such tricks below.
With all of these methods, it is assumed that a supply of random variables Uy, Us, . ..

is available, where U; is independent and uniformly distributed on [0, 1] (U; ~ UJ0, 1]).
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2.1 Transformation of variables

Our goal is to generate a random variable Y that is distributed according to a given
density function p(y). Let P(y) be the cumulative distribution of Y, that is,

P(y) = Pr{Y <y}

The wnwversion method consists of first choosing a random variable U that is uniformly
distributed on [0, 1], and then finding a value of ¥ such that P(Y) = U. Equivalently,
we can write

Y = P_I(U)a

where P~! denotes the inverse function of P. This procedure is shown graphically in
Figure 2.

Figure 2: The inversion method.

It is easy to check that Y has the desired distribution, since

= Pr{U < P(y)}

where the first equality holds because P is a non-decreasing function, and the last equality
holds because U is uniform on [0, 1].

An example. To see how the method works, suppose we want to evaluate the integral

I= /OO e “g(x)da.
0
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Integrals of this type arise in volume rendering: w represents the distance along a ray,
g(x) represents the amount of light sent toward the viewer at the distance x, and e~
represents the attentuation of this light as it travels through a medium of constant opacity.

To evaluate this integral, we would like to sample a random distance X according to
the density

—CI

p(x) = ce

(the factor of ¢ is required so that p integrates to one). The cumulative distribution of
X is
o

P(.’L’U) :/0 Op(x) dur :/0 Oce_cgc dr = _Ee—cw — 1 — ¢—C@0.

c 0

Thus using the inversion method, we have

l—e“Y=U = —cX=In(l-0U)
= X =—(1/¢) In(1-0).

Equivalently, we could have started by setting P(X) = 1 — U, since if U is uniformly
distributed on [0, 1] then so is 1 — U. This yields the slightly simpler result

X=—(1/c) nU.

Note that using this strategy, there is a high probability of sampling small values of X
(due to the logarithm calculation). This corresponds to the fact that attenuation factor
¥ goes to zero rapidly with increasing values of x.
If we sample N different distances X; in this way, i.e.

Xl' = —(1/6) In Ul

for independent values of U; ~ U|0, 1], then corresponding Monte Carlo estimator for the
integral [ is

1 &~ “hg(X)
by = N Z ce—eXi
1

=1

= Nzg

=1

)

So, the whole technique is very easy to apply.

Note that the inversion technique can easily be extended to several dimensions, by
computing marginal and conditional distributions and inverting each dimension sepa-
rately. (Examples will be given in the next lecture.)
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Transformation of variables. There is a generalization of the inversion method called
transformation of variables. Suppose that we start with a random variable X, with a
known density function px(z). (The inversion method was a special case of this with
X =U.) Now let Y = y(X), where y is some known function. Then it is natural to ask,
what is the density function of Y, in terms of the density function of X7 (Note that Y
is also a random variable.)

Let Py be the cumulative distribution of Y, that is,

Py (y) = Pr{Y < y}.

We will assume that y(x) is a continuous, non-decreasing function of & (which implies
that y'(x) > 0). Then clearly we have

Pr{Y <y(z)} = Pr{X <z},

which implies that
Py (y) = Px(x)

where y = y(x). Differentiating with respect to x, we obtain the following expression
that relates the density function of X with that of Y:

py(y) (dy/dx) = px(x)

which implies that
py(y) = |dy/de|™" px (), (6)

where the absolute value signs allow for possibility that y is non-increasing rather than
non-decreasing. This relationship is often written as

Ipy (y) dy| = |px (x) dx|,

where as always, x and y are implicitly related by y = y(z).

To illustrate how this identity is used, suppose that X is distributed according to the
density px(x) = 2z over the domain [0, 1], and let Y = sin(X). What is the density
function for Y7 We have

py(y) = ldsin(x)/dz|""px ()
= |cos(x)| ‘22

= 2 arcsin(y)/cos(arcsin(y))
= 2 arcsin(y)/(l — y2)1/27

where we have used the facts that (a) cos(z) > 0 on [0,1], (b) y = sin(z) implies
o = arcsin(y), and (c) cos(z) = (1 — sin?(z))*/? on [0, 1].
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Deriving a transformation. Equation (6) suggests that given a random variable X,
we can sample from an arbitrary density py by finding an appropriate transformation
Y = y(X). In one dimension, there is a straightforward procedure for deriving such a
transformation: we simply find a value of Y such that

Py(Y) = Px(X),
or in other words we let y be the function

y(x) = Py (Px(2)).

(This assumes that we can find analytic expressions for the cumulative distributions Py
and Py.) The reason this works is that if X is any random variable, then the random
variable Z = Px(X) has the uniform distribution:

Pr{Z < a} = Pr{Px(X) < a} = Pr{X < Py'(v)} = Px(Py'(z)) =z,

for any o € [0,1]. Thus, setting Py (Y) = Px(X) is equivalent to setting Py (Y) = U.

In one dimension, the main benefit of the transformation method over the simpler
inversion method is that we can start with non-uniform samples. So for example, if
we already know to generate a sample X with a normal distribution, then we can apply
transformations to obtain various other distributions py. In higher dimensions, the trans-
formation method can be used to map random points from one domain to another (e.g.
from a disc to a hemisphere). In this case, the factor |dy/dz| in equation (6) becomes
the Jacobian determinant, as we will see in the next lecture.

The main advantage of the inversion/transformation technique compared to the meth-
ods below is that it allows samples to be stratified easily (see the next lecture). This is
done by stratifying the canonical parameter space [0,1]°, and then mapping these sam-
ples into the given domain {2 with the desired density py. Another advantage is that
the technique has a fixed cost per sample, which can easily be estimated. The main dis-
advantage is that the density p(z) must be integrated analytically, which is not always
possible. It is also preferable for the cumulative distribution to have an analytic inverse,
since numerical inversion is typically slow.

2.2 The rejection method

The idea behind the rejection method is to propose a trial value for the random variable
that we want to sample. The value is then subjected to a test, and it may be either
accepted or rejected. If rejection takes place, another trial value is chosen and tested,
and this procedure goes on until an acceptable value is chosen.

Specifically, let p(x) be the desired density function. Suppose that we can find another
density ¢(z) that we know how to sample, and such that

p(r) < Mq(x)

for some constant M. Then the rejection method consists of the following algorithm:
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Figure 3: The rejection method.

Algorithm Reject;
for i =1 to co do begin
draw X; ~ ¢;
draw U; ~ U[0, 1];
if U; < & then return X;;
M q(X;)
end;
end.

This is illustrated graphically in Figure 3. A pair of random variables (X;, U;) is
sampled, and if the point (X;, U; - Mq(X;)) lies under the curve p(x), then it is accepted
(by returning X;). Otherwise, we choose a new pair (X;, U;) and try again.

Here is why the method works: on each iteration, the density of generating a sample
at X; is ¢(X;). This sample is returned if

p(Xi>

Ui S )
M(I(Xi)

which happens with probability p(X;)/(Mq(X;)). So, the probability density of returning
a sample at x on a particular iteration is

/() plr)  px)

Mq(x) M’

which integrates to 1/M. Thus, when a sample is returned (with probability 1/M), then
X is distributed according to p(x).

On the other hand, there is a 1 — 1/M probability that the sample will be rejected.
Thus the average number of samples required until acceptance is the sum of a geometric

series, _
5 (1 ! ) - M
M - ’

1=0
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where the term (1 —1/M)" is the probability that at least 7 4+ 1 samples will be required.

The main advantage of rejection sampling is that it can be used with any density
function, even those that cannot be integrated analytically. However, if it is applied
naively then it can be very inefficient, since we may iterate a lot of times until we find
an acceptable value. Clearly, the efficiency depends on the size of the constant M, i.e.
how tightly Mq(x) bounds p(x). The goal is to find a density ¢(x) that we know how to
sample from, and that is also a reasonably good match for p(z). Another disadvantage
of the rejection method is that it is difficult to apply with stratification.

An important special case. Let p(z) be defined on the domain [0, 1], and suppose
that p(x) < M for all z. In this case we can let ¢(x) = 1 (that is, X; is drawn from the
uniform distribution U|0,1]). The acceptance probability for X; then becomes

p(Xi) _ p(Xi)

Mq(X;) M
Graphically, the acceptance probability is simply the ratio of the heights of the curves
p(x) and Mq(x) = M at the given point X; (see Figure 4). It is clear that the accepted
samples have a density proportional to p(z).

Figure 4: Each sample is accepted with probability p(X;)/M, and rejected otherwise.

A geometric example. The rejection method can also be applied in geometric settings
that do not correspond exactly to the general framework above. For example, suppose
that we want to sample uniformly from a unit disc centered at the origin (see Figure 5).

Letting U; and U, be independent samples from UJ0, 1], the rejection method consists
of the following:

Algorithm Reject-Circle;
do forever

X =2U, -1,

Y =20, -1;

if X? +Y? <1 then return (X,Y);
end;

end.
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______ _— -

Figure 5: Sampling from a unit disc.

This can be considered a method for sampling the two-dimensional density function

[ 1m a4yt <,
p(z.y) = { 0 otherwise,

by drawing samples from the uniform density ¢(x) on [—1, 1] x [—1,1]. We do not need an
extra random variable Uz to decide whether to accept the samples, since the acceptance
probability is always 0 or 1.

2.3 Tricks

There are a variety of tricks for sampling from specific distributions, usually by mapping
several uniform random variables into a single output variable Y.
For example, let Uy, ..., U be independent samples from U[0, 1], and let

Y = maX{Ul, UQ, e Uk}
Then the cumulative distribution of Y is:
k
Py(x) = Pr{Y <a} =[[ Pr{U; < a} = 2",
i=1
and thus the density function of Y is
py(x) = P (2) = ka* L.

Therefore if we want to sample from a density proportional to x*, we can do this by
choosing k+1 random variables uniformly distributed on [0, 1] and taking their maximum.

As another example, consider the random variable Y = U; + Uy;. We can find the
cumulative distribution of Y graphically, by thinking of U; and U, as the x and y coor-
dinates of a unit square (see Figure 6). Specifically, we have

Py(z) = Pr{Y <z} = Pr{U; + U, < z},

which is simply the area below the line U; + U, = 2. Using this fact we can easily derive
the density function of Y, which is
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1
Us
A
0 U\ 1
U, + U2 <ux

Figure 6: The density of a sum of two uniform random variables.

3 Sampling uniformly over a hemisphere

In graphics we often want to sample functions f(w) which depend on a direction w. We
will represent w as a unit vector (x,y, z), so that the set of all possible directions is the
unit sphere

S*={(z,y,2) | 2* +y* +2* =1}.
Normally we are only interested in directions on one side of a given surface, which form
a unit hemisphere centered around the surface normal N. Such a hemisphere will be
denoted (2.

As a simple example, suppose that we want to sample a direction w uniformly with
respect to solid angle. Recall that the solid angle of a set of directions is simply the area
of the corresponding set of points on the unit sphere. For example, the solid angle of a
hemisphere is 27.

For convenience, suppose that the hemisphere €2 is centered around the normal N =
(0,0,1). A direction w = (x,y, z) can then be parameterized by its spherical coordinates
(0, ¢), where

x = sinfcos ¢.
= sinfsin @,
z = cosé.

With these coordinates, an element of area (solid angle) on the hemisphere is
dw = sin 0 do do.

A cap of the hemisphere is defined as the set of directions where 0 < 6 < 6y, for some
given value of 6. The area A(6y) of this cap is:

A(0y) = /()%/()oosin(Q)dQCkb

( /0 2” d¢> ( /0 " in(0) d9>

o
=27 (1 — cos by).
0

= 27 (—cosb)
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Figure 7. Sampling a cap of the hemisphere.

Recall that our goal is to sample a direction w uniformly with respect to solid angle (i.e.
area). Thus, we want the probability of sampling an angle 6 to obey

Thus we can obtain the desired cumulative distribution for § by normalizing A(#):

_A@0) 2m(1 —cosf)
PO =T ="  ~'7*

recalling that z = cos(#). This result implies that area on the hemisphere is uniformly
distributed with respect to z, i.e. if we look at any two horizontal slices with vertical
thickness dz, then both slices have the same surface area.

Using the inversion method, we can now sample uniformly on the hemisphere by
setting P(0) = Uy, or equivalently z = U; (since 1 — Uj is also uniform). If we then
choose ¢ uniformly, we get

Z Uy
X = Rcos(2rly),
Y = Rsin(27U,)

where U; and U, are uniform, and R = /1 — UZ. This will generate a uniform distribu-
tion of points on the hemisphere with respect to solid angle.

We can also use this technique to sample uniformly on a cap of the hemisphere (i.e. the
set of directions lying with some infinite cone). Let 6,,,, be the cap angle (see Figure 7),
so that 6 € [0,60,4.] and ¢ € [0,27]. To sample this cap uniformly, we only need to
change the way that z is evaluated:

Z = 1-U(1—cosbua)

X = Recos(2nUy),
Y = Rsin(27U,)

where as before R = /1 — UZ. This technique can also be used to generate a random
point on the entire sphere, by letting 6,,,. = 7.
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1 Transformation of variables in several dimensions

Last lecture we talked about methods to sample random variables according to a given
density function. Omne such method is transformation of variables. We discussed this
method in a single dimension previously. Now let us generalize to the multidimensional
case.

First, we examine how density functions are affected by transformations. Suppose we
have a random variable X = (Xj,..., X,,) on some domain Qx C R", and let px(x) be
the density function of X (where x = (21,...,x,) denotes an n-dimensional point). Now
let Y = T(X) be another random variable, where T is a bijective, differentiable function
from Qx to some other domain y. Then we can ask, what is the density function of
Y?

Similar to the single variable case, we know that

Pr{Y € T(D)} = Pr{X € D}

(since T' is a bijection). We can write this in terms of the density function px and py as

/T(D)py(y) dy = /Dpx(x) dx . (1)

Now we apply the change of variables y = T'(x) to the left hand side, which yields

[ oy (@) 1) dx = [ px(x)d @)
where Jp(x) is the Jacobian of the transformation y = 7T'(x),

a?Jl/aﬂfl a?Jl/al"n
Jr = : :
Oyp/0xy --- 0y,/0x,

and | - | denotes the determinant of a matrix.
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Finally, since equation (2) holds for any region D, the quantities being integrated
must be the same:

py(T(x)) - [Jr(x)] = px(x) -
This tells us how the density functions of X and Y are related. We can rewrite this as

1

py(y) = ml)X(X) (3)

where x = T !(y). This identity is useful for figuring out what happens to densities
when points are mapped from one coordinate representation to another.

1.1 Example: polar coordinates

Often it is convenient to choose points on the plane using polar coordinates (for exam-
ple, when the density function we want to sample from is radially symmetric). Polar
coordinates are defined by the mapping

(x,y) = T(r0)
where r = rcost

= rsind .

So, suppose that we choose points according to some density p(r,#). What is the
corresponding density p(z,y)?
The Jacobian of the transformation (z,y) = (rcosf,rsin0) is

Jr(r,0) = dx/dr Ox/00 | | cosf —rsind
Y= ay/or 0y/oo | T | sin®  rcosd

and the corresponding determinant is
|Jr(r,0)| = rcos® 0 +rsin®f =r.

So according to (3), the densities are related by

ple,y) = = p(r,6)

Most often we apply this the other way around: we are given a density function p(x, y)
that is measured with respect to surface area (dA = dx dy), and we want to convert it
into polar coordinates to make the sampling easier. In this case we get

p(T‘, 9) = rp(a:,y) ) (4>

in other words we need to add a factor of r to the given density p(x,y). A special case
of this is sampling uniformly with respect to area: to do this in polar coordinates, we
sample according to a density that is proportional to r.
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An easy way to handle this kind of manipulation is with differentials. We start with
the fundamental identity

py(y) dy = px(x) dx

(which corresponds to equation (1)), and write the relationship between the differential
volumes dy and dx as

dy = |Jp(x)|dx .
So for polar coordinates we have
p(x,y) dvdy = p(r,0) dr do

and
dA = dxdy = rdrdf

(where dA is an element of area). These equations can be manipulated to give the same
result (4) between the densities.

1.2 Example: spherical coordinates

Similarly, for sampling in three dimensions we often use spherical coordinates:

xr = rsinfcos ¢
= rsin#sin ¢
2 = rcosb.

The transformation (x,y, z) = T'(r,0, ¢) has a Jacobian determinant of
|Jr| = r?sind
which is often written as the relationship
dV =dxdydz = r*sin 0 dr df do

where dV' is an element of volume.
We can also use spherical coordinates to represent points on the surface of a unit
sphere, by setting r = 1:

xr = sinfcos¢
= sinfsing
z = cosf.

The reason that this is important in graphics is that a direction w can be represented
as a unit vector (x,y, z). The solid angle of a set of directions is given by the area of the
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corresponding set of points on the unit sphere. In spherical coordinates, solid angle is
measured by!
dw =sinfdfdo .

So, if we are given a density function p(w) that is measured with respect to solid angle,
which simply means that

/Dp(w) dw

is the probability of selecting a direction w € D, then the corresponding density with
respect to (6, ¢) satisfies

p(0,¢)dodp = pw)dw
= p(0,¢) = sin(0)p(w) .

In other words, we need to add an extra factor of sin € in order to sample a density p(w)
that is given with respect to solid angle.

2 Sampling by transformation in two dimensions

We now give several examples of sampling two-dimensional densities: uniform points on
a hemisphere, uniform points in a disc, and cosine-weighted points on a hemisphere. The
first two examples use the inversion method (recall that this is a special case of trans-
formation, where we start with uniform random variables U;), while the third example
uses a more general transformation (it starts with uniformly distributed points in a unit

disc).

2.1 Marginal and conditional densities

Suppose that we have some joint density function p(x,y). To draw a sample (X,Y)
from this density using the inversion method, we need to introduce the idea some new
concepts. The marginal density function p(x) is defined by

p(x) = /p(l:y) dy ,

which is simply the density function for X alone, while the conditional density function

p(y | ) is defined by

p(z,y)
p(x)

which gives the density function for Y once we have fixed a particular value of x.

ply|x) =

?

!Note that this identity cannot be derived using a Jacobian determinant, since we have a mapping
from R? to a surface in R®. It can be derived from a similar formula for integration on a surface with
respect to a particular parameterization.
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These are the tools we need to sample from a joint probability distribution, since
we can use the marginal density to isolate a single variable’s distribution. Then we can
determine the value of the other variable according to the conditional density. Examples
will be given below.

Another useful concept which we will need later is conditional expectation of a random
variable F' = f(X,Y), which is defined by

Ev[F] = [ f(a.y)ply | @)dy.

This is just the usual expression for the expected value, except that x is treated as a
parameter (i.e. the result is a function of x).
It is easy to see that the expected value obeys

E[F] = Ex[Ey|[F]]

where E[F| is the ordinary expected value

EIF) = [ (e, 9)ple,y) dedy

and Ey denotes the expected value with respect to X (using the marginal density p(x)).

2.2 Example: uniform sampling of a hemisphere

Recall the example from last time of sampling a hemisphere uniformly with respect to
solid angle. We show how to derive this using marginal and conditional densities (which
is really what we did last time, except that we didn’t say so explicitly).

To sample uniformly with respect to solid angle, the density function is

p(w) =1/(2m)

for w in the unit hemisphere centered around around the positive z-axis. (Recall that this
hemisphere has a solid angle (area) of 27.) The corresponding joint probability density
function with respect to (6, ¢) is

1

— "~ sing ogegg, 0<6<2r.

p(97 ¢) - o0

To sample according to this density we first find the marginal density p(6):

21
p(6) = [ p(6.¢)ds = sing

Supposing that we know how to sample a random variable € from this density, we then
need to sample ¢ from the conditional density

p,9) 1

p(0)  2n

p(e]0) =
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Since we now have density functions for each variable individually, we can use the
single variable methods introduced last lecture to find samples. To use the inversion
method, we first must find the cumulative distributions P(6y) and P(¢ | 0):

90 90
P(ty) = /0 p(9)d9=/0 sinfdf =1 — cos b

b0 1
R
0o 27 2

P(¢0|9) =

Now, applying inversion to 6, we set P(#) = 1 —Uj (recalling that U; and 1 — U, have
the same distribution). This gives

1—cos8 = 1-U;

cos = U,
0 = cos™'U;
Now applying inversion to ¢, we have

P (¢ | 9) = Uy
¢
< - U
27 2

Qb = 27TU2

So we can find a point uniformly on a hemisphere by picking two uniform random
variables Ujand U, and solving for (¢, 0).

2.3 Example: uniform samples in a disc

As a second example, suppose that we want to sample a point uniformly with respect to
area in a unit disc. This corresponds to the joint density function

1y oifat 4yt <1,
pla,y) = { 0 otherwise.

which in terms of polar coordinates (r,6) is

1
p(rv 9) = %T

where 7 € [0,1] and 6 € [0,27]. In order to sample r and 6, we first find the marginal
density for r:

2r 1
p(r) = / —rdf = 2r
0o

which is then integrated to find the cumulative distribution

T0 9
P(ry) = /0 2rdr =71y .



CS448: Lecture #8 7

Assuming now that » has already been chosen, the conditional density of € is

p(r,0) 1

p|r)=

p(r)  2m
and its cumulative distribution is

0o
Py | )= | Lt

27 27

Applying the inversion method, we first find rq by setting P(ry) = Us:

T’g = U1
o9 = \/Ul

We then apply the inversion method again, this time to 0, by setting P (6, | 79) = Us:

Oo
— = U
2T ’
90 = 27TU2

A couple of comments are in order. Since both of these examples are trivial, we
could easily have switched the order and found the marginal density of ¢ instead of r. In
general, however, the calculations may be easier one way than the other (with respect to
being able to do the integrations analytically). Also note that sometimes special tricks
can be helpful for sampling from the density functions. For instance, the distribution
P(ro) = r¢ can be sampled by letting R = max(Us, Uy), as we showed in the last lecture.

2.4 Example: cosine-weighted hemisphere

We would often like to evaluate an integral such as the reflectance equation:
Ly(w,) = /fr(w — wo) Li(w) cos B dw ,

where L,(w,) is the radiance reflected toward the viewer, L; is the incoming radiance,
fr is the bidirectional reflectance distribution function, and 6 is the angle between the
incident vector w and the surface normal N.

In the case of a diffuse surface f, = Ky, so the integral reduces to

Ly(w,) = /KdLi(w) cosf dw .

Since the function L;(w) is unknown, a reasonable importance sampling strategy is to
choose w according to a density proportional to cos#:

p(w) o< cosf .
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Converting this into a density with respect to (6, ¢) we get
p(0, @) x cosf sind

where as usual 6 € [0,7/2] and ¢ € [0, 27]. By integrating this density we find that the
normalization constant is 1/7, so that the desired joint density function is

p(0, ) = % cosf sind .

It turns out that we can sample from this density by picking a point uniformly at
random on the unit disc, and then projecting it vertically up onto the hemisphere.

heta

r phi

Let (r,¢) be the polar coordinates of a point in the unit disc (note that we have
switched from 6 to ¢). Recall that uniform sampling of the unit disc is represented by
the joint density function

p(r,¢) = %7‘

where r € [0,1] and ¢ € [0,27]. We map this into a point w on the hemisphere with
spherical coordinates (6, ¢), where the vertical projection implies that  and 6§ are related
by

sinf) =r.
(This can be verified by inspecting the diagram above, or by noting that sinf is the

distance of w from the z-axis.)
The Jacobian determinant of the transformation (r, ¢) = (sinf, ¢) is:

| or/o8 or/op | | cosf 0]
[Jr| = ‘ 96/90 06/0¢ | — | 0 1 ‘ = cosf
so the densities p(r, ¢) and p(0, ¢) are related by
1
p(T, ¢) = —p(97 ¢) .
|J7]
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This can be rearranged to give
1
p(0,0) = |Jr|p(r,¢) = cosf - = = sinf cos .
T s

So amazingly enough, this generates the desired distribution over the hemisphere. To
summarize, we can generate cosine-weighted samples on a hemisphere by first choosing
(X,Y) uniformly within the unit disc (such that X2 4+ Y2 < 1), and then letting

Z=\1-(X2+Y?).

Note that this works for any method of generating samples in the disc, e.g. rejection
sampling, or Shirley’s mapping from a square to the unit disc (as discussed below).

3 Variance Reduction

The goal of variance reduction is to improve the efficiency of our sampling. The efficiency
of a Monte Carlo estimator F' depends on both its variance V[F], and the time T[F] that

is required to evaluate it:
1

~ VIF|T[F]
According to this definition, £} is more efficient than F5 if it yields a smaller variance in
the same running time. (Similarly, an efficient estimator requires less time to achieve a
given fixed variance.)

This definition is motivated by the fact that when we take /N independent samples,

variance is reduced by a factor of N, but computation time is increased by a factor of
N. Letting

€[]

1 N
FN:N;Y;

where the Y; are independent and identically distributed samples, we have

VIFN] = VIR
TIF,] = NTI[F].

The definition of efficiency takes into account this tradeoff, by saying that Fy and F) are
equally efficient:

E[FN] = G[Fl] .
The main goal of unbiased Monte Carlo integration is to maximize efficiency: to find
estimators whose variance is small and which are fast to evaluate. Methods for doing
this are often simply called variance reduction methods.

Some of the most powerful variance reductions techniques are based on the idea of
analytically integrating a function that is similar to the integrand. There are several
ways to take advantage of this idea, of which the most important are the use of expected
values, importance sampling, and control variates.
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3.1 The use of expected values

Perhaps the most obvious way to reduce variance is to use analytic integration where
possible. This idea is commonly referred to as the use of expected values. Specifically, it
consists of replacing an estimator of the form

F = f(X,Y)/p(X,Y) (5)

with one of the form
Fro= f1(X)/p(X) (6)
where f'(z) and p(x) are defined by

Thus, to apply this technique we must be able to integrate both f and p with respect to
y. We also must be able to generate samples according to the marginal density p(x).

3.1.1 Example

Suppose that we want to integrate a function h(x) on the interval [a, b], such that 0 <
h(xz) < m for all x € [a, b].

a b

Perhaps the simplest technique for doing this is the hit-or-miss method. The idea is to
pick uniform random points inside the rectangle [a,b] x [0,m], and count how many fall
under the curve h(z). Formally, we can represent this strategy by the two-dimensional

function
_J 1 ifo<y <h(x),
fla,y) = { 0 otherwise,

and letting p(x,y) be the uniform density

1

pla,y) = m
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on the rectangle [a,b] x [0,m]. We can then estimate the integral

1= [ fla,y)dedy

by picking N sample points (X;,Y;) according to the density p(z,y), and using the
standard estimator

~>
Il

& F(XY)
NZ} (X))

N
S (XL Y,

=1

1
= m(b—a)-—
)N

which is simply the area of the rectangle multiplied by the fraction of the sample points
that lie under the curve h(x).

Now, suppose that we apply the expected values technique by integrating analytically
with respect to y. We have

:/f(x,y) dy:/oh(x)ldy:h(w)

and the marginal density of X is

m 1
= d —=
p(x) /0 pz,y)dy = 37—
This leads to the new estimator
2 fl i b —a N
I = h(X;
; p(X N ; (X

which is simply the standard Monte Carlo estimator for one-dimensional integration that
we have been using all along. (It is sometimes called the sample-mean method.)

m

a ' b

Below, we will show that the expected values method always reduces variance. So in
particular, this means that the sample-mean method always gives a lower variance than
the hit-or-miss method.
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3.1.2 Variance analysis

The name expected values comes from the fact that the estimator F” is simply the expected
value of F' with respect to Y:

EY[F] = Ey [ﬂX?Y)

p(X,Y)
f(X,y)

(X.0) ply | X)dy
f(X,y) p(X,y)
5w 5 @
(X y)dy

p(X)
= f(X)/p(X)

= F'.

To determine the variance of F' relative to F', we use the following identity (homework
problem #1), where Vy is the conditional variance with respect to Y, and FEy is the
conditional mean with respect to Y:

VIF] = Ex[Vy[F]] + Vx[Ey[F]] .

Using the fact that F' = Ey F, we immediately obtain

VIF] = Vx[Ey[F]] = ExVy[F]
VIFI-VI[F'] > 0
VIF] > VI[F']

To get from the first to the second line, we used the fact that ExVy[F]| is always non-
negative (since the variance of a random variable is always non-negative). Furthermore
Ey[F] is a function only of X, so V[F'] = Vx[F"].

So, we find that the variance of F” is always less than the variance of F'. This suggests
that we should always integrate those parts that we can, as we have done in the example
above.

3.2 Importance Sampling

Suppose we want to evaluate I = [ f(x)dx. As we have seen, one method is to choose
N random variables X; uniformly over the domain, and estimate I = (1/N) ¥ f(X,).
Suppose that instead, we choose the X; according to some other density function p(x),
and define a new random variable

1N
= —ZK— where Y;
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This is unbiased, since
py)= [1 o), (v)do = [ flw)d
p(x

provided that p(xz) > 0 whenever f(z) #

Now why would we want to do this? Suppose that p(x) were exactly proportional to
f(z). Then we would have:

plz) = cf()
GO
=) T

so that Y; always has the same value. This means that the variance of Y; (and F) is zero,
which is the best possible.
Unfortunately we can’t do this exactly, since it turns out that in order for p to be

normalized, we need
1

J 1) da
So if we could evaluate ¢, then we would already know the answer to our original problem,
and there would be no need for sampling.

However, if we can find a density p that is approximately proportional to f (and that
we can sample from), we can often reduce the variance of our estimator. This principle
is called ¢mportance sampling. 1t should be noted that the argument above assumes that
f(x) > 0, since p(x) can’t be negative. If f(x) is sometimes negative, it turns out that
the best thing is to make p(x) proportional to |f(x)|, but this does not give zero variance
even if we can sample this way exactly.

Importance sampling is a very useful technique in graphics. It is used to sample
functions that are non-uniform, e.g. a peaked specular lobe of a BRDF, or a solid angle
containing small light source. The cosine-weighted hemisphere was a simple example
of this, where we sampled according to the cosf factor that appears in the integral for
reflected radiance. Other examples are given in the homework problems.

CcC =

3.3 Control Variates

Again suppose we want to evaluate I = [ f(z)dx. The idea of control variates is find
some function f similar to f that we can integrate analytically, and then subtract it.
This is done by rewriting the integral as

1= [f@de+ [ fla) -

where the integral on the left can be evaluated exactly. This leads to a new estimator of
the form

/fd+2 J;(>

=1



14 CS448: Lecture #8

where p(x) is the density that the X; are sampled from.
The new estimator F’ will have a lower variance than the basic estimator F' whenever

P

Notice that given some analytic approximation f , we also have the option of using it
for importance sampling. This is done by letting p(x) be the density function
_ [
p(.T) — i/ N g 0
[ f(x)da
assuming that we can find a way to generate samples with this density.

However, it doesn’t make sense to use f for control variates and importance sampling
at the same time, since if f is proportional to p, then the two estimators in equation (7)
differ by a constant and their variance is the same. Thus if f is already being used for
importance sampling, it is not helpful to use it as a control variate as well.

So if we have found a function f that is similar to f, which should we use: importance
sampling, or control variates? The answer depends on the exact functions involved, but
in general, if f — f is a nearly constant function, then it is better to use control variates.
If instead the ratio f/f is nearly constant, then it is better to use importance sampling.

Another consideration is that with control variates, f needs to be an approximation to
the entire integrand. For example, if we wanted to apply control variates to the integral

(7)

/er(w — w,) Li(w) cos@dw ,

then we would need to approximate both the BRDF and incident light. It would not
make sense to use the BRDF alone as a control variate, since it is scaled by an arbitrary
factor L; in the integral. (Subtracting the BRDF effectively replaces L;(w) by L;(w) — 1,
and with no knowledge of the magnitude of L; there is no reason to think that this is
an improvement.) With importance sampling, on the other hand, using the BRDF as a
sampling density would be perfectly reasonable.

3.3.1 Example

In ray tracing, biased results can be avoided by choosing the recursion depth randomly.
Typically this is done by defining a probability 1 — ¢ that the recursion will stop at each
depth, and increasing the sample weight by a factor of 1/¢ in the event that the recursion
continues. (This technique is called Russian roulette.)

Typically, when the recursion stops we just return a value of 0. But suppose that we
had some estimate L* of the ambient light in the scene. In this case, we could apply the
control variates technique, by returning the value

/fr(w — W) L* cos B dw
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instead. We compensate for this by rewriting the integral as

Lo(w,) = / Fulw = wy) Li(w) cosf dw

= /fr(w — w,) L* cos B dw —l—/fr(w — wo) (Li(w) — L*) cosfdw ,

i.e. if the recursion continues, we subtract L* from the actual radiance samples L;(w).

One needs to be careful of course, since L;(w) — L* could produce a negative value,
and some systems may be unhappy with the concept of negative radiance. Another
consequence is that control variates can lead to large relative errors when estimating
values close to zero, for instance pixels in a dark region of the image.

4 Stratified Sampling

Stratified sampling is another way to reduce variance. We only introduce the basic idea
here, and discuss its variance reduction properties in the next lecture.

Given a domain €2, the idea of stratified sampling is to split the domain into non-
overlapping subregions Sy, ..., Sy called strata such that

=1

We then take a fixed number of samples n; to estimate the integral in each region, and
add up the results. For example in graphics we often supersample a pixel, by breaking
it into a k& x k grid and choosing a random point in each of these strata. This is better
than choosing k? points completely at random within the pixel, as we will see next time.

For now, let’s consider how to pick a good set of strata. For instance, we found earlier
that we could sample a disc uniformly with the mapping

0

= 27TU2

We can see that this results in some long thin regions. As we will show next time, it
is better for the strata to have compact shapes, since this tends to result in the integrand
having a more constant value over each stratum.
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Peter Shirley proposed the following alternative mapping from a square to the unit
disc, which results in more uniform strata. This mapping takes concentric squares into
concentric circles, while preserving their relative area.

Mathematically, the mapping takes a point (u,v) in the square [—1,1] x [—=1,1] to a
point (7, ) in the unit disc. It is defined as

|

} when |u| > |v],

u

w otherwise.
2-3%) }

S S
I T
PR S NS

This certainly looks like a better stratification of a disc, but how do we know that
these strata have uniform area? We start with a sample (U, V') whose density function is

p(u,v) =1/4,

since (U, V) is chosen uniformly on [—1, 1] x [—1, 1]. We then transform this to a sample
(R,0) in polar coordinates using the mapping defined above. If we consider just the case
|u| > |v], the Jacobian determinant for the transformation (r,0) = T'(u,v) is

| = or/ou Or/ov | 1 0 T
V=1 00/ou 00/ov | — | irrelevant w/(4u) |~ 4r
So, the density p(r,0) in terms of p(u,v) is
1 4r 1 1
p(r,0) = mp(%@ L4 ;7“7

which is the density for sampling uniformly on a unit disc, as we saw in Section 2.3. If
we take this one step further and map (r, ) to a point (z,y), the corresponding density

function is ) )
| Yr ifat 4y <1,
pla,y) = { 0 otherwise.

So, Shirley’s mapping sends strata of equal area in (u,v)-space into strata of equal
area in (x,y)-space. This is called a constant Jacobian mapping, since the Jacobian
determinant of the combined transformation (x,y) =T (u,v) is |Jr| = 7/4.
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1 Transformation of the Unit Square into the Unit
Disk

Often it is useful to be able to sample a circular domain with uniform density. For
instance, a cosine-weighted sampling of the hemisphere can be obtained by first generating
samples uniformly within a unit disc, and then projecting them vertically up onto the
hemisphere (as we saw in the last lecture). This is useful for sampling reflections from
diffuse surfaces.

To achieve uniform sampling on the unit disk, one might use a simple parameterization

such as
r=u
0 = 27v

and sample (u,v) on a regular grid in the unit square. But the strata produced by this
method do not have uniform (or even similar) areas, as figure 1 shows.

Figure 1: Image of the unit square under the mapping (r,0) = (u, 27v)

One way to correct this problem is to re-parameterize as

r= i

0 = 27v
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which produces strata of equal area (figure 2). But these strata are less and less compact
away from the center of the disk.

Figure 2: Image of the unit square under the mapping (r,0) = (\/u, 27v)

There is a better mapping that transforms compact areas of the square of side 2
([-1,1] x [-1,1]) into compact areas of the unit disk and also preserves their area (or
rather, their fractional area, since the area of the unit disk is 7/4 times that of the
side-2 square). The triangular region below v = u and above v = 0 maps to the region

6 € [0, 7/4] using the map

r=u
N
0= 4u
as shown in figure 3.
A
P v ™
1: z
—— » 0
e Lr

Figure 3: Transformation of part of the first quadrant by the mapping (r,0) = (u, %)

The mapping can then be reflected and rotated to cover the remaining 7 regions of
the disk as in figure 4. The fact that this transformation preserves areas can be verified
by computing its Jacobian determinant, as we did in the previous lecture.
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Figure 4: Completion of the (r,0) = (u, 77) mapping by rotation and reflection

2 Why (and when) Stratified Sampling reduces vari-
ance

Since mappings like the above are readily available for specific domains, most discussion
of stratified sampling assumes that the domain is an s-dimensional unit cube. This
domain is split into strata labeled S ...S,; which are disjoint and completely cover the
domain:

SiS; = 0 for all 7 # j,
k

Us = [01]°.

i=1

In general there are no other shape restrictions on the strata, but in practice they are
most often rectangular regions. We denote the volume of a stratum as v;, and clearly
>;v; = 1. There will be a certain number of samples within each stratum, and we denote
this number as n;. Also, the samples are uniformly distributed, so

pitt) = 0 otherwise

By taking n; samples in stratum S;, we get an estimated average value of

R L
Ii=—3% f(Xi;)
n; i
for the integrand in S;, where X;; is the jth sample in that stratum (which has the
density function p; defined above). The overall estimate will be the sum of the averages,
each weighted by the volume of its stratum:

k
j = Zvi
i=1

~
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The actual average value of the integrand within each stratum is

= EIf(X)) = - [ fa)do

Uy

and this is the expected value of the estimator for the stratum, so E[l;] = ;. The
variance of the function within each stratum is

7 = VX)) = o [ (fla) = o

Uy
so the variance of the estimator for a stratum with n; averaged samples is

and the variance of the overall stratified estimator is

. k R k R k N k U202
V] =V [Z vifi] =2 Vlwl] =3 viVIL] =3 ——
i=1 i=1 =1 =t

If we assume that the number of samples in each stratum is proportional to its volume,
that is, n; = v; N where NN in the total number of samples, then this simplifies to

. 1k )
V[[s] = N ZUiO'l- (1)
=1

(We have added the subscript s to indicate that this estimator is stratified.)

If the same number of samples is taken without stratification (i.e. where each sample
is chosen independently and uniformly over [0,1])*), what would the variance be? We
have already defined the mean and variance within each stratum. The variance across
the entire domain can be expressed as the mean of the individual variances plus the
variance of the means, or'

VIF(X)] = ;vﬂ? + ;vi(ui — 1) (2)

where X is uniformly distributed on [0,1]*, and where I is the expected value of the
means, which is the sought-after integral

I = /[0)1]5 f(x)de .

! This formula can be proven by expanding the right-hand side directly, or observing that an unstrat-
ified sample X is equivalent to first choosing a random stratum I according to the discrete probabilities
v;, and then choosing choosing X uniformly within S;. From this point of view, X is chosen condition-
ally on I, and we can obtain the given formula using the standard identity V[F] = E;Vx, F + ViEx, F
where F' = f(X/).
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Figure 5: In both strata of this 2-dimensional function, the mean is 0.5

Ss
Sy

52 56

Ss .
s, !

.

Figure 6: Well chosen strata can have widely varying means

Then the variance of the non-stratified estimator that averages N samples is

R 1 k k
V[]ns] = N ZUiUiZ + Zvl(,ul — I)Z (3)
1=1 =1

From equations 1 and 3 we can see that the non-stratified estimator’s variance is larger
than that of the stratified estimator by £ Y | v;(; — I)?. Thus we only get a reduction
in variance when the means p; of the strata differ from the overall mean /. For example,
in figure 5, the mean in both strata is 0.5, so the variance of the mean is zero and there
is no advantage in stratification (at least when the number of samples in each stratum is
proportional to its volume). But in figure 6, the means vary widely between strata, so
the variance reduction will be large if stratified sampling is used.

The need for widely varying means explains why compact strata are more desirable
when little is known of the underlying function to be integrated. If the strata have
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¢ b d a P A
a d b ¢ A
b|c | a]|d A
d | a c b P N R A

Figure 7: A single symbol from a 4 x4 Latin square stratifies both the 2 and y coordinates

wide support in any direction, there is likely to be more variation within the strata
and therefore less variation of the means between strata. By using compact strata, the
variance of the means is likely to be increased, thereby increasing the variance reduction
achieved by stratified sampling.

3 Latin Hypercube Sampling

In graphics, a typical application of stratified sampling is the selection of ray directions
for ray tracing. For example, when there are multiple light sources or area light sources,
the strata can be chosen to direct rays toward the light. Similarly, anti-aliasing can be
performed by subdividing each pixel into several strata. Depth of field effects are achieved
by sampling over the area of the aperture. Surface reflections are handled by sampling
a hemisphere of directions according to a bidirectional reflectance distribution function,
and motion blur by sampling over time. A ray tracer that includes all of these effects will
be sampling in at least 9 dimensions (2 for pixels, 2 for the aperture, 2 for the reflected
direction, 2 for the direction to the light source, and 1 for time). If each dimension is
split into just 2 strata, there are 512 samples required per pixel! As the dimensionality
of the space increases, the rate of convergence of the estimator decreases with respect to
any particular dimension, just as in numerical integration. One technique to circumvent
this problem of dimensionality is Latin Hypercube Sampling.

A “Latin square” is an n x n array of symbols — drawn from an alphabet of size n —
in which each symbol appears exactly once in each row and once in each column. Figure
7 shows a 4 x 4 example. If we consider this a square 2-dimensional domain divided into
16 square strata, we could take a sample in each square. But we could also take samples
just in those squares labeled “a”. With only 4 samples, we would still have a sample in
each row and a sample in each column.

This sampling strategy is easy to extend to s dimensions without the need to construct
a full Latin hypercube. In each dimension the range [0,1] is divided into N intervals,
resulting in a domain with N* subcubes. By choosing s permutations II; of the integer
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range {1,..., N} and using the ith number in II; as the jth coordinate of sample X
(where 1 < i < N), we guarantee that in each dimension we have sampled all N intervals
of [0, 1] — in other words, the samples are stratified on each of the dimensions individually.
We write the jth coordinate of the ith sample as

XJ:M
! N

where Uj; is a uniform random number in [0, 1], making the probability distribution
uniform in each one-dimensional interval and therefore in each s-dimensional subcube.
So in the right side of figure 7, we have II; = {1,2,3,4} and II, = {3, 1,2, 4}.

To analyze the convergence of this method, let us first suppose that f(z) is an additive
function, i.e. a function of the form

f0) = 3 () @

where 27 denotes the jth coordinate of x. In other words, an additive function is a sum
of functions f; that each depend on only one coordinate of the vector x. To get an idea
of how Latin hypercube sample converges for this type of function, let

A 1
[:N;f(Xi>

and suppose that we fix every sample at the center of its cell by setting U;; = 1/2. This
yields

. 51 N Z—%
I ”

noting that under summation over ¢ we can replace I1;(¢) with i. Equation (5) is simply
the sum of s midpoint integration rules, one for each f;, which has an error of O(N?)
provided that the f; are smooth. It is also possible to show that if U;; is a uniform
random number in [0, 1] (rather than being fixed at 1/2), the error is O(N~*/2) with high
probability (for smooth functions). In either case, the convergence is better than that of
standard Monte Carlo,which is O(N~1/2).

To generalize this result, suppose that f is decomposed into a sum

f(@) = faaa(x) + fres(2)

where f,4q(x) is an additive function, and f,.s(z) is the “residual” which is orthogonal
to all additive functions, i.e.

[ @) gusala) de = 0
[0,1]°
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for any additive function guqq¢(x). This decomposition is unique, and we will give an
explicit formula for f,qq(2z) in terms of f(x) below.
Given this decomposition, the variance of Latin hypercube sampling is

= oo )

for any square-integrable function f(z). The second term is a function that decreases
more rapidly that ¢/N for any constant c¢. Thus, Latin hypercube sampling increases the
rate of convergence on the components of the function that depend on just one coordinate
at a time. The closer that f is to being a purely additive function (i.e. the smaller the
residual part f,.,(x) is), the better Latin hypercube sampling will do.

3.1 Analysis of variance decompositions

We can determine an explicit formula for decomposing f into its components f,q4q and
fres, using an analysis of variance decomposition (usually abbreviated anova). Let S be
the set {1,...,s} of all coordinate indices, and consider all the possible subsets U C S
of these coordinates (there are 2° possible subsets in all). In the anova framework, an
arbitrary function f is expressed as a sum

fla)=3_ fu(a")

Ucs

where each function fi; depends only on the coordinates 2V, and all the f;; are orthogonal.
The function when U = () does not depend on any variables, and is called the grand mean:

p=to=[ s

The other 2°—1 subsets of U are called sources of variation. For example, the components
of f that depend on just one variable are called the main effects and are defined as

fi(@) = [(f(x) = ) J] da’
i#i
Notice that all of these functions are orthogonal to the constant function fy = p. The
best additive approximation to f can then be written as

fadd(x) =u+ i fj(‘rj) )

where the residual f,..; = f — f.aq is orthogonal to all additive functions.
Similarly, one can define the functions

fir@?) = [ (@) = 0= fi(2") = file®)) T] do’

i#5,k
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which represent the parts of f that depend on two particular variables together (the
two-factor interactions). These functions are orthogonal to fy and to all the f;.
In general, fy is defined by

et = [ (160 = X fulet)) et )

Vcu

where the sum is over all proper subsets of U (V' # U). This yields a set of function fy
that are all orthogonal, i.e.

/fU(xU)fV(xV)dx — 0

whenever U # V. This implies that

[ F@de = ¥ [ 26" de

ucs

so that the variance of f can be written as

JU@ - wrar = ¥ [ 6" de

|U|>0

With Latin hypercube sampling, the components of the variance where |U| = 1 converge
at a rate faster than 1/N, leaving only the residual component

[r@d = ¥ [ ) de

|U|>1

4 Orthogonal Arrays

This above analysis suggests that one might try to select samples that are stratified in
every pair of variables, in addition to every single variable. This is, in fact, possible using
a version of Latin hypercube sampling based on orthogonal arrays.

An orthogonal array is an /N x s matrix whose entries — from an alphabet of b symbols
— are such that every N x t submatrix contains exactly the same number of copies of
all b® possible rows.? If we let A be the number of times that each row appears in this
submatrix, then clearly the total number of rows is N = Ab'. The parameter ¢ is called the
strength of the orthogonal array. The following table shows an example of an orthogonal
array A;; whose parameters are (N,s,b,t) = (9,4, 3,2).

2The submatrix is not necessarily contiguous; it can consist of any subset of the columns.
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0/0[0]0
Oj1]1]2
0121211
11011
1111210
112012
21022
211101
2121110
This array was constructed by the rule
An =
Ap =y
Aijy2y = x+Jy forj=1...0—1,

where i = br+y-+1, and 0 < x,y < b—1. This technique works in general for constructing
an orthogonal array with N = 0%, s = b+ 1, t = 2, and b symbols, for any prime number
b. There are a variety of other techniques known for constructing such arrays.

So, how do we use such an array for sampling? Suppose that we divide the domain
into 0° cells, by splitting each axis into b intervals of equal size. Also, assume that the
symbols in the orthogonal array are {0,1,...,b — 1}. Then each 1 x s row of the array
can be considered an index that specifies one of the b° possible cells. The overall strategy
is to generate one sample in each of the NV cells specified by the rows of the orthogonal
array. Specifically, the j-th coordinate of sample X is given by

X/ = Aij + Uy
b
where U;; is a uniform random number in [0, 1].

Next, consider the projection of these samples onto any set of ¢ coordinates. (There are
(;) possible projections in all.) Then from the orthogonal array property, these samples
will be uniformly distributed among the 0! cells obtained by stratifying these axes into b
equal-sized intervals. To see this, observe that the coordinates of the projected samples
are specified by the rows of a particular N x t submatrix. That is, each 1 x t row specifies
one of the 0' cells in the ¢-dimensional projection of the domain. By the definition of
orthogonal arrays, every possible 1 x ¢ row appears A times in this submatrix, so each of
the b cells occurs exactly A times.

Therefore, orthogonal array sampling produces samples that are stratified with respect
to every possible subset of ¢ coordinates. We should note here that given an orthogonal
array, one can create another with the same parameters simply by permuting the columns,
or by permuting the alphabet within each column. This is significant because we don’t

want to always sample the same set of /V cells out of the ((]’V) sets that are possible.
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The variance of orthogonal array sampling can be written as

V(] :% > [ fiat)de + o (%) .

|U|>t

Thus, it improves the rate of convergence with respect to all components of the integrand
that depend on t coordinates or less. The case ¢t = 2 is particularly interesting for graph-
ics. For example, if we apply this technique to distribution ray tracing, it ensures that
all the two dimensional projections are well stratified (e.g. over the pixel, lens aperture,
light source, etc.) This also includes combinations of dimensions such as the z-coordinate
of the current pixel and the z-coordinate of the lens aperture.

4.1 Orthogonal array-based Latin hypercube sampling

Notice that because we get such good stratification with respect to ¢-dimensional pro-
jections, we also get some stratification with respect to w-dimensional projections for
w < t. For simplicity, assume A = 1. Then in a w-dimensional projection, each cell
receives 0% samples. For example, this says that in each one-dimensional interval of
width 1/b along any axis j, there are exactly b'~! samples. Notice that this is not as good
as Latin hypercube sampling, which places one sample in each interval of width 1/b".

There is a simple modification to orthogonal array sampling that yields the same one-
dimensional stratification properties as Latin hypercube sampling. (The result, logically
enough, is called orthogonal array-based Latin hypercube sampling.) Again assume that
A =1, so that the array has b' rows. Then observe that within each column, the values
{0,...,b—1} each appear b'~! times. The technique works by remapping these symbols
into a single sequence {0, ...,b" — 1}, by letting the b~! identical copies of each value m
map to the sequence (b' tm, ..., 0" 1(m+1)—1) according to some random permutation.
This process is repeated for each column separately. Calling the modified array fl, we
then change the coordinate assignment to

; Aij—l-Ui'
X =St

This will ensure that the samples are maximally stratified for each one-dimensional pro-
jection, as well as for each ¢-dimensional projection.
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1 Overview

For Monte Carlo integration to be effective, we want to use sample points that are
uniformly distributed across the domain of integration. The last lecture introduced Latin
hypercube sampling, which gives samples that are well-stratfied with respect to any one
dimension, and orthogonal array sampling, which gives samples that are well-distributed
with respect to any combination of two, three, or more dimensions.

Quasi Monte Carlo (QMC) is based on the approach of removing randomness from
the generation of sampling sequences; instead, the idea is to look for fixed sequences of
points that perform better than random sequences, at least for certain classes of functions.
Techniques have been developed to generate both finite and infinite sequences of well
distributed quasi-random points; in general, slightly better distributions are possible if
the number of sample points needed is known in advance.

2 Discrepancy

The first question we have to answer is, given a sequence of samples, how well distributed
are the samples (and thus, how effective will they be in estimating the values of the
integrals we want to compute.) Discrepancy is a measure of irregularity of distribution
which is used to evaluate the quality of QMC sampling sequences. The basic idea is
to look at various regions of the domain and compare the volume of these regions to
the number of sample points inside them. In general, one fourth of the volume should
correspond to one fourth of the sample points, etc.

2.1 Definition

Assume we're evaluating a set of points defined over [0,1]°. To compute the discrepancy
of the points, we first pick a family of shapes B which are subsets of [0, 1]°. For example,
boxes with one corner at the origin are often used. This corresponds to:

B = {B=[0,v1] x[0,v3] X -+-x[0,05] |0 <w; <1 forall i} .
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Given a sequence of sample points P = xy,...,xy, the discrepancy of P with respect to
B is

Dx(B, P) = sup | EBY

BeEB N

where A\(B) is the volume of B. In other words, we're finding the maximum difference

between the fraction of points inside one of the shapes and the volume of the shape.

When the set of shapes B is the set of boxes with a corner at the origin (described
above), this is called the star discrepancy D3 (P).

Other popular sets of shapes to use to compute discrepancy include arbitrary axis

aligned boxes, hyperplanes that cut the domain into two pieces, etc.

2.2 Some Examples

Consider the set of points in one dimension

=i/N.
We can see that the star discrepancy of x; is
. 1
Dy(x1,...,2,) = N

For example, take the interval B = [0, +). Then A(B) & +, but #{z; € B} = 0. This
is the interval (along with the intervals [0, %), etc.) with the largest difference between
volume and the fraction of points contained.

We can improve on the star discrepancy of this sequence by modifying it slightly:

L
>N
)

7 —

N

N[

xT; —
Then

1
2N’
A theorem due to H. Niederreiter (one of the main pioneers of QMC) provides some
bounds for the star discrepancy of a sequence of points in 1D:

Dy (zi) =

. 1
Dy(w) = 5 + max o

2t — 1
2N ‘

And thus, the second example’s sequence has the lowest possible discrepancy for a
sequence in 1D. In general, it is much easier to analyze and compute bounds for the
discrepancy of sequences in 1D than in higher dimensions.

Another often used type of discrepancy is the extreme discrepancy, which uses ar-
bitrary axis-aligned boxes for the set of shapes. The extreme discrepancies of the 1D
examples given above are both %
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3 Theoretical Performance of QMC

The Koksma-Hlawka theorem gives an upper bound for the error in QMC evaluation of
integrals, as a product of two factors: one factor depends on the discrepancy of the point
set used, while the other depends on the function being integrated. Given an integral

]:/ flxy, ... x) doy -+ day,
[0,1]*

and a set of sample points P = (p,...,py), consider an estimate of the form

f:%Zf(pz‘)-

=1
The Koksma-Hlawka theorem says that

1= 1| < V(f) Dy(P). (1)

Thus, the error is split into a component V(f) that depends only on the function
being integrated and a component D3} (P) that depends only on the point sequence.
Therefore, so long as V(f) is bounded (and it isn’t always bounded), the lower we can
make the discrepancy of the points, the lower the maximum error will be.

In s dimensions, it is possible to get sequences such that

e =o (W),

In particular, note that for s =1,

1
DL(P) =0 (N) .

As the number of dimensions increases, we can’t do as well as we can in 1D, but it’s
nearly as good. Note that this convergence rate is much better than the O(N_%) that
standard Monte Carlo gives. However, in higher dimensions the (log N)*! factor can be
quite large. For example if s = 6, then (log N)*~'/N > N~'/2 for all N < 10'5. So, this
error bound is not always very useful in practice.

V(f) is called the variation of f in the sense of Hardy and Krause. It’s easy to define
in one dimension:

v = [ 1@l

as long as the derivative f'(x) is continuous. Basically, it’s the sum of the heights of all
the monotonic segments of f (see Figure 1).

In two or more dimensions, if f is discontinuous, the variation is infinite and the
bounds 1 are meaningless. In three or more dimensions, if f’ is discontinuous, the vari-
ation is infinite. In general, in s dimensions, the first s — 2 derivatives of f must be
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d2
d4

Figure 1: V(f)~dl+d2+...

continuous for V(f) to be bounded. In spite of the lack of theoretical bounds when V'( f)
is unbounded, however, QMC can still do better than standard MC in practice.

4 Constructing Low Discrepancy Sequences

4.1 1D: Radical inverse sequences

One of the simplest low discrepancy sequences to construct is the radical inverse sequence.
The idea is to write down an integer in a given base b, and then reflect the digits around
the decimal point. When the base used is b = 2, this is called the van der Corput

Sequence:
1] 1]1/2
10| 01| 1/4
11| 11| 3/4
100 | .001 | 3/8
101 | .101 | 5/8

It recursively splits the intervals of the 1D line in half. The discrepancy of this

sequence is

Dy(P) = o(

log N
N )

This matches the best discrepancy that has been attained for infinite sequences in s

dimensions:

Di(P) = o(

(log N)*

).
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For finite sequences, better discrepancy is possible; the bound is

b0 ()

In terms of theoretical bounds on discrepancy, it is believed that these attained bounds
are as good as it gets, but the best proven lower bound for sequences (in an arbitrary
dimension s) is

Lmuv=9<ﬁégi>

while for a finite point set it is

) (log N)*7"
DMH:Q(—TV—).

Thus, most of the continuing work in constructing low-discrepancy sequences centers
around reducing the constant factor & (in one dimension):

log N log N
Dy(P)=0 <k
K(P) =0 (BN ) < k%

for N > 2. The best k that has been attained so far is 0.224; it has been proven that
k = 0.06 is unattainable.

4.2 Two and more dimensions
4.2.1 Halton Sequences

Halton sequences build on the radical inverse used in Van Der Corput sequences and
introduce ¢y (i), the radical inverse of i in base b. To generate an n dimensional sequence,
we use the radical inverse base b, with a different base for each dimension:

€T = (¢2(Z)7 ¢3(i)7 ¢5(i)7 ey (bps(l))

The first s prime numbers, pq,...,p, are used as the bases for the s dimensions. The
discrepancy of these sequences is good:

Do - (5.

Note that in each dimension, the Halton sequence fills in the sample points from left
to right as the unit digit increases from 0 to b — 1. Permutations of the sequence can
improve their performance in practice.
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4.2.2 Hammersley Points

If you know the number of samples to be taken in advance, discrepancy can be improved
slightly. Hammersley point sets are defined by:

50 = (50 02(0), 850, 641(0),

where NV is the total number of samples to be taken. See “Ray Tracing and Irregularities of
Distribution”, by Don Mitchell, in the proceedings of the Third Eurographics Rendering
Workshop for more on the uses of Hammersley points in graphics (more precisely, the
Hammersley-Zaremba points, which use permutations as mentioned above).

4.2.3 (t,s)-sequences and (t,m, s)-nets

A family of low discrepancy sequences called (¢, s)-sequences and (¢, m, s)-nets has been
constructed based on looking at the distributions of points with respect to b-ary boxes:
these are axis aligned boxes, coincident with the lines of (%)l They are defined by:

E = [Jlaib™%, (a; + 1)b™%],
i=1
where d; > 0, 0 < a; < b%, and [] denotes a product of intervals over all dimensions.

For example, with b = 5 and s = 3, valid boxes include those of size 1 x é X %,
% X % x 1, etc., where the box is aligned on each axis to an integer multiple of its
dimension on that axis.

(t, s)-sequences are infinite sequences with low discrepancy with respect to b-ary boxes,
and (t,m, s)-nets are finite sequences with similarly good discrepancy; details of the
construction of these sequences was beyond the scope of the lecture.

(t,m, s)-nets have some particularly nice properties. By definition, s is the number of
dimensions we are integrating over, 0 < t < m, and the total number of points N = b"™.

(t,m, s)-nets are constructed so that if F is a b-ary box with volume A(E) = b'~™, then

#{.Tl < E} =

The best case of this is when t = 0; then any b-ary box of size b~™ will have exactly
one point in it—exactly what we’d want!

5 Summary

QMC can be a big win when doing numerical integration; keep in mind, though, that
discontinuities in the integrand prevent it from being as powerful as one might expect
from theoretical bounds in the presence of smooth integrands. Another complication is
that classic estimates of variance can’t be computed when using QMC, since computing
an estimate again will always give the same result.



CS448: Topics in Computer Graphics Lecture #11
Mathematical Models for Computer Graphics
Stanford University Tuesday, 18 November 1997

The Metropolis Sampling Algorithm

Lecture #11: Tuesday, 4 November 1997
Lecturer: Eric Veach
Scribe: Homan Igehy

1 Applications of Monte Carlo Methods

Monte Carlo methods were developed in order to solve difficult integration problems of
high dimensionality. The techniques created came out of practical needs rather than the-
oretical exercises. Before going into the details of the Metropolis Sampling Algorithm, we
shall first look at a few typical problems that require the use of Monte Carlo techniques.
Monte Carlo is definitely not a solution in wait of a problem.

1.1 Computer Graphics

A large part of computer graphics deals with rendering and the transport of light. The
light transport problem is a high dimensional problem: light leaving an emitter makes
its way through several bounces on several surfaces (each with its own surface reflectance
properties) before hitting the image plane. To make matters more complicated, discon-
tinuities show up in a variety of ways. Within a BRDF, a singularity is present in the
case of mirror reflections. A discontinuity in the surface normal of an object causes a
discontinuous change in the amount of light reaching the object (e.g. along the edge of
a cube). Even if all the BRDF’s and surface normals are smooth, object boundaries
form discontinuities. On the image plane, these discontinuities manifest themselves as
silhouette edges. On a surface, these discontinuities form shadow boundaries. In the
case of point light sources, the shadows are discontinuous in value, whereas in the case
of area light sources, the shadows are discontinuous in their first or second derivatives.
The presence of discontinuities in such a high dimensional problem accentuates the need
for Monte Carlo techniques. Let us take a look at the dimensions involved in typical
rendering methods.

1.1.1 Distribution Ray Tracing

Distribution ray tracing is similar to standard ray tracing in the sense that rays are traced
from the eye towards the light source. The difference is that at each step of the light
transport problem, an integral is evaluated. As illustrated in Figure 1, distribution ray
tracing can be thought of as a simultaneous integration over:
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Variable Dimensions
time 1
pixel area 2
lens aperture 2
area light source 2
surface reflections 2 each

Thus, in distribution ray tracing we must evaluate a (7 + 2r)-dimensional integral,
where 7 is the number of surface reflections considered.

1.1.2 Path Tracing

Path tracing is a generalization of distribution ray tracing in that it includes light trans-
port paths of all lengths. A path can be started in any direction and can be represented as
a sequence of points xg, x1,...,x, on the scene surfaces. Each x; can be either be chosen
directly on a surface (e.g. sampling a point on a light source), or by choosing a random
direction and casting a ray. In either case, each x; has two degrees of freedom. If we
include an integration over time as well, we get a problem of dimensionality 2(k +1) +1
for a path of length k. In path tracing, % is not bounded, and we need to integrate over
an infinite-dimensional space.

image plane

.\

arealight source

—_— - ==

moving surface

Figure 1: Distribution Ray Tracing.
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1.1.3 Radiosity

The form factor computation of radiosity seeks to derive the fraction of light leaving
patch A that falls onto patch B, assuming a Lambertian reflectance model. Although
an analytic expression has been derived for two arbitrary polygonal patches, this model
is slow to evaluate and does not take into account effects of visibility. Thus, this dis-
continuous 4-dimensional integration problem is amenable to Monte Carlo techniques.
Similarly, finite element-based techniques for radiance (rather than radiosity) need to
evaluate coefficients that represent the fraction of light that leaves patch A, falls onto
patch B, and then gets reflected onto patch C. This is a 6-dimensional integral.

1.2 Finance

Monte Carlo techniques are widely used in the financial world for valuing securities. One
class of securities traded is mortgage-backed securities. The mortgages backing these
securities have a fixed or variable interest rate and typically have a maturity period of
30 years. The value of a mortgage-backed security depends on a complicated mix of
the prime interest rate, the default rate, the remortgaging rate, and a variety of other
interdependent factors that vary over time. By modeling these factors over time, a basis
for valuation is provided. Solutions to these models involve integrating functions of 20
or 30 or even 360 dimensions. Since these functions are typically smooth, quasi-Monte
Carlo techniques work well.

1.3 Physics and Chemistry

The proliferation of Monte Carlo techniques was due to the invention of electronic com-
puters and their application to problems of physics and chemistry. Monte Carlo tech-
niques have been used to solve problems in neutron transport (i.e., bombs), radiation
shielding (i.e., reactors), and particle transport (e.g., electron beam lithography).

Another area where Monte Carlo methods are used is to predict the properties of
materials. This is the application that originally led to the Metropolis Sampling Algo-
rithm. Problems in this field include the calculation of the density of a liquid at a given
temperature, the magnetic properties of alloys, and the modeling phenomena such as
superfluidity.

2 A Typical Physics Problem

Before getting into the Metropolis Sampling Algorithm, let us motivate it with a typical
physics problem. Imagine a bunch of particles inside a wrap-around box which is at
thermal equilibrium, as illustrated in Figure 2. The state of this system can be described
by a vector

X = (X1,X2, -+, Xm)
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Figure 2: A Typical Physics Problem: Particles with extent o.

where x; is the position of particle 7, and we let €2 represent the space of all possible
particle configurations X. (The momenta of the particles are sometimes also required, but
we will ignore them in this formulation.) If ®(X) represents the energy of the system, then
the probability p(X) that the system will be in state X obeys the Boltzmann distribution:

_ X
P = LX) ax
where f(X) = e~ ®X)/(KT)

Here T is the temperature, and £ is Boltzmann’s constant. Note that f(X) is just the
unnormalized p(X).
One model for the energy ®(X) is to sum up all possible pair potentials:

X)= > V(xix)

1<i<gj<m

The hard sphere potential model treats the particles as solid balls of diameter ¢ that
cannot interpenetrate, and any configuration which satisfies this requirement is equally
likely. This can be achieved by setting V' as follows:

. 0 Tij >0
Vixi x;) = { oo otherwise
where r;; is distance between particles ¢ and j:

rij = |xi — xj]

Alternatively one could use the Lennard-Jones potential model (illustrated in Figure 3):

Vi(xi,x;) = 4e { (%‘)12 ) <%>6}
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Vs

Figure 3: The Lennard-Jones Potential.

In any case, suppose there is some function ¢g(X) in which we are interested. We want
to find the expected value of ¢(X) where X is distributed proportionally to f(X). In
other words, the quantity of interest G is:

G = Elg(X)] = [ g(X)p(X)ax

If we choose Xy, X, ..., Xy according to the distribution specified by p(X), an estimator
for GG is given by:

A 1
G == Z 9(X4)
N t=1
Since f(X) (and consequently p(X)) is a complicated function of a huge number of vari-
ables (in our case proportional to number of particles), finding an appropriate collection
of samples Xy, Xy, ..., Xy poses a formidable task. The Metropolis Sampling Algorithm
solves precisely this problem.

3 The Metropolis Sampling Algorithm

The Metropolis Sampling Algorithm was developed in 1953 by Metropolis, Rosenbluth,
Rosenbluth, Teller, and Teller (it is also called the M(RT)? algorithm for obvious reasons).
The algorithm takes a random walk to generate a set of samples that are distributed
according to some arbitrary given function. Specifically, suppose want have a domain
Q such that X € Q. Furthermore, let f(X) be some some scalar function. The goal of
the M(RT)? is to provide a series of samples Xy, Xy, ..., Xy which have a probability
density function proportional to f(X). In other words:
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Given: A function f(X) where X € Q.
Goal:  Generate X; ~ p(X) where p(X) o f(X) and [qp(X)dX = 1.

3.1 Random Walks

M(RT)? generates a set of samples by taking a random walk across . A random walk
is simply a sequence of samples X, X5, ... Xy where each X; is chosen with some prob-
ability distribution p,(X). Furthermore, the random walk generated by M(RT)? is a
Markov chain, meaning that the choice of X; depends only on X; ;. If the random walk
is independent of the actual value of t, it is called a time-homogeneous Markov chain,
which can be characterized by a single transition function for all ¢:

K(Y — X) = {density that X, = X given that X, ; =Y}

In other words, K(Y — X) is the probability density of going from state Y to state X.
Since it is a pdf, it satisfies:

/ K(Y 5X)dX=1 foral Y
Q

Thus, for a random walk, we choose an initial state X; according to some initial distri-
bution p;(X). Then po(X | X;) is set to K(X; — X), and X, is chosen according to
that distribution. By repeating this process, pi(X | X;_1) is set to K(X;_; — X) and
X; is chosen according to that distribution. Now since each X, is a random variable, we
get the the following distributions for each step of the random walk:

p1(X) = initial distribution
p(X) = /Qpl(Y)K(Y—>X)dY

nX) = [ pY)KY - X)aY

n(X) = /th_l(Y)K(Y—>X)dY

Now if our random walk, which is embodied by K(Y — X), is ergodic, then there exists
a stationary distribution p(X) such that:

p(X) = [ p(Y)K(Y = X)dY (1)

That means that for some p(X), the application of a step in our random walk will give
back the exact same distribution. Furthermore, ergodicity guarantees that the random
walk will converge to p(X) for any initial distribution p; (X):

fim p(X) = p(X)
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Figure 4: A Random Walk Across a Grid

M(RT)? constructs a K (X — Y) so that its stationary distribution p(X) is proportional
to the desired f(X). Thus, the samples X, X, ..., Xy taken along a random walk will
eventually obey the desired distribution p(X) no matter what initial distribution p;(X)
is used to pick X;. Although we will not get into the details of ergodicity, it is a relatively
weak condition: there must exist a possibility of getting to any state from any other state
in a finite number of steps in non-periodic fashion.

Before getting into the M(RT)? construction of K(Y — X), we will first give an
example of an ergodic random walk for clarity. Imagine a wrap-around grid of size
M x M, as illustrated in Figure 4. Each node on the grid represents a distinct point in
the space €2:

Q = {X=[ij]l1<ij<Mp={L1],....[M M]}
Q = M’

We want to generate samples for €2 with a uniform distribution:

flig) = 1
. 1

p([i,j]) = e

We propose a transition function K(Y — X) that will keep us at the current node or

move us to an adjacent node with equal probability:

R N A e e 1|
K7 = i) = { (5) otherwise
Figure 4 shows what happens with our random walk after a few steps, assuming an
initial distribution p;([7,j]) which puts X; at the center. The intensity of a location
corresponds to the value of the density function p.([7, j]) at step t of the random walk.
By observation, we can see that p([i, j]) converges to p([7, j]), and that p([¢, j]) is indeed
a static distribution.
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Note that if € is a discrete domain as in the above example, then p(X) may be
replaced by a column vector p with height equal to |€2|. Each entry represents the
discrete probability of being in a given state of €2. Similarly, p;(X) may be replaced with
a column vector pg. Furthermore, K(Y — X) may be replaced by a matrix K of size
12| x |€2]. Each entry (I, k) represents the probability of the random walk moving from
state [ to state k, and the sum of any row is equal to 1. Given this matrix notation, the
distribution for our random walk becomes:

pe = Kpe-1 = K" 'py
Now if K is ergodic, then for any p; we get:
Jim K'pr =
And the equation satisfied by the stationary distribution becomes:
p=Kp

Thus p is an eigenvector of K with eigenvalue 1. Thus in discrete domains, finding a
transition function whose stationary distribution is proportional to an arbitrary function
is thus equivalent to constructing a matrix with a specific eigenvector (modulo ergodicity).

3.2 The Tentative Transition Function

In order to construct K (Y — X), we will break it up into two parts. A tentative transition
is first used to propose a transition from the current state into some other state according
to some chosen distribution. For example, in the aforementioned m-particle problem, a
tentative transition could be to move a single particle by some small random distance.
The pdf of this tentative transition function is denoted by T(Y — X). Now, once this
transition is proposed, we either choose to move to this new state for the next step of
the random walk, or else we stay in the same state for the next step of the random walk.
This acceptance probability, whose pdf is denoted by A(Y — X), is chosen in a manner
such that the combination of T(Y — X) and A(Y — X) form a K(Y — X) whose
stationary distribution is the desired function p(X).

3.3 Detailed Balance

The question we ask ourselves at this point is as follows: what is the relationship between
T(Y — X), A(Y — X), and p(X)? To answer this, we borrow an idea from physical
equilibria. Imagine a box filled with a gas and another box that contains nothing. A
clamped tube connects the two boxes. Once the tube is unclamped, gas begins to flow
from the first box into the second box. However, once the second box starts holding some
gas, some of that gas flows back into the first box. After some time, the two boxes reach
a state of equilibrium. Even though gas flows back and forth between the two boxes and
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the state of the system is not static, the amount that goes in each direction is equal, and
thus the system is at equilibrium.
Let us examine what happens when we apply the notion of detailed balance to our
problem:
PX)TX=Y)AX =Y)=p(Y)T(Y —- X)A(Y — X) (2)

This equation says that once a stationary distribution p(X) is reached, then the chance
of being in state X and then taking a proposed transition into state Y is equal to the
chance of being in state Y and then taking a proposed transition into state X. To see
how this provides a solution to stationary distribution, we rewrite Equation (1) in terms
of T(Y — X) and A(Y — X):

Wm=:MﬂWﬂY%EMY%Em4+
P@M?iLﬂX%YMQ+WWNﬂ

The first term of the above equation expresses the chance of starting in state Y and
taking a transition into X. The second term expresses the chance of starting in state X
and rejecting a transition into another state Y. These are all the ways that one can end
up in state X after a step of the random walk. Rearranging the terms and moving p(X)
into the integral (since it is constant with respect to Y), we get:

P(X) = pX)+
/ p(Y)T(Y - X)A(Y - X) —pX)T(X > Y)AX = Y)dY
Q
Thus in order to get a stationary distribution, the integral in the above equation must

evaluate to zero. One easy way to do this is to enforce the detailed balance of Equation
(2) in our choice of T(Y — X) and A(Y — X). Thus, we are left with:

3.4 The Acceptance Probability

Since p(X) is given to us (by way of f(X)), and T(Y — X) is some guess for transitions,
then our only choice is to set A(Y — X) appropriately in order to meet the condition of
detailed balance. From Equation (2), we know that we must have:
AY = X) pX)T(X—=Y) 3)
AX =Y) p(Y)T(Y = X)

)

One way to achieve this is:

o X T(X—=Y
A(Y — X) =min (1, Y)T(Y = X

=
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Noting that f(X)/f(Y) = p(X)/p(Y) since p(X) oc f(X), it is clear from substitution
that Equation (4) satisfies Equation (3). Note that all of the above scalar values can
be readily evaluated for any pair of points. Thus we are now ready for the M(RT)?
algorithm.

3.5 The M(RT)? Algorithm

Assuming we have a way of evaluating f(X) at a point, and a way of evaluating T(Y —
X), then the algorithm for generating samples with a pdf proportional to f(X) is as
follows:

X ~p (X)
fort=2to N
Xient ~ T(Xt—l — X)
if (random() < A(X¢ 1 — Xeent))

Xt - Xtent
else
X = X1

Note that one may want to reject the first several samples since it takes a while for the
random walk to reach the stationary distribution.
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In this lecture we will review some simple facts about splines and introduce subdivi-
sion. Next few lectures will be about subdivision.

1 The Idea of Subdivision.

Splines and subdivision are closely related. Splines use piecewise polynomials to inter-
polate curves. There are many ways to evaluate splines. One such method is the de
Casteljau algorithm; for quadratic splines it is especially simple. Start with the control
polygon of a spline curve; insert two new control points on each edge connecting two old
control points. Each new control point divides the edge in the ratio 3:1. Connect the
new control points and discard the old.

This algorithm can be generalized: note that each new control point is a linear com-
bination of old control points with weights 1/4 and 3/4. Rather then using these specific
weights, we can use other weights. This is the idea of subdivision: use algorithms similar
to those that are used for spline evaluation, but modify these algorithms so that they
generate curves with different properties (which becomes apparent in the one-dimensional
case) and so that they handle arbitrary control meshes for surfaces (which becomes an
issue in the two-dimensional case).

2 Subdivision and other modeling methods.

We briefly compare subdivision to several free-form surface and curve representations
used in geometric modeling: splines, implicit surfaces, and variational surfaces. All of
these representations are primarily used for smooth surfaces.

We can compare these representations from a number of points of view.

1. Efficiency.  Computational cost is an important aspect of a modeling method.
Subdivision is easy to implement and is computationally efficient; the efficiency
is a property inherited from splines since the algorithms for evaluation are essen-
tially the same. From the point of view of efficiency, implicit surfaces are not so
good. An algorithm such as marching cubes is required to generated the polygonal
approximation needed for rendering. Variational surfaces are even worse: a global
optimization problem has to be solved each time a control of the surface is changed.
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Figure 1: A mesh with an extraordinary vertex: number of faces meeting at A is not 4.
Special efforts are required to guarantee smoothness between spline patches meeting at
the extraordinary point; subdivision handles such situations in a natural way.

2. Arbitrary topology. It is important to be able to produce smooth surfaces with
control meshes of arbitrary topology. “Arbitrary topology” means two things: first,
the topological genus of the mesh and associated surface can be arbitrary. Second,
the structure of the graph formed by the edges and vertices of the mesh can be
arbitrary; specifically, each vertex may have an arbitrary degree.

These two aspects are related: for example, any control mesh for a sphere (topo-
logical genus 0) necessarily has vertices of different degrees. Only closed surfaces of
genus 1 can be represented using a mesh with all vertices having the same degree.

From a practical point of view arbitrary control meshes have a considerable advan-
tage: a user of a modeling system would not want to worry about degrees of control
vertices when defining a shape.

When rectangular spline patches are adapted for arbitrary control meshes, enforcing
smoothness at extraordinary vertices becomes difficult and considerably increases
the complexity of the representation. Implicit surfaces can be of arbitrary topo-
logical genus, but the genus, precise location, and even connectivity of a surface
are difficult to control typically. Variational surfaces can handle arbitrary topology
better than any other representation, but the computational cost has been thus
far prohibitive. Subdivision canhandle arbitrary topology quite well without losing
efficiency; this is one of its key advantages.

3. Surface features. Subdivision allows more flexible controls than is possible with
splines. In addition to choosing locations of control points, one can manipulate
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the coefficients of subdivision to achieve such effects such as the the sharpness of
creases or the control behavior of the boundary curves. Implicit surfaces, on the
other hand, are very difficult to control. Variational surface, however, are the best
for creating features.

4. Complex geometry.

For interactive applications, efficiency is crucial. Subdivision-based representations
for complex geometry are very efficient and have an advantage in situations when
the geometry has to be modified (editing, animation). For applications that only
require the visualization of the geometry, other representations, such as H. Hoppe’s
progressive meshes, are likely to be more suitable.

3 Review of Splines

3.1 Piecewise-Polynomial Curves

Splines are piecewise polynomial curves. In the case of quadratic splines, each polynomial
segment of a curve can be written as

z(t) = aot® + art + ao
y(t) = bgtz + blt + bo

Where ay, ay, ag, by, by, and by are constant coefficients. Spline curves are typically
specified by control points rather then by the coefficients. The curve can be modified by
moving the control points. Moving a control point has the greatest effect on the part of
the curve near that control point. For B-splines, the effect of changing the position of a
single control point is actually local: only a finite portion of the curve is affected.

Specifying the curve with control points amounts to rewriting the equations above in
the following form.

e(t) = Y CiBi1)
y(t) = Y CIBi(1)

B;(1) are called the basis functions. The collection of basis functions for« = 0,1,2,....n
is the basis for the space of all curves that we can represent. For uniform splines, the
basis functions satisfy

Bi(t) = B(t —i)

We choose the basis function B;(t) in such a way that the resulting curves are smooth
and that the influence of the control points is local. One way to ensure smoothness is
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1 Since polynomials themselves are inifinitely smooth,

to use smooth basis functions.
we only have to make sure that derivatives match at the points where two polynomial
segments meet. The higher the degree of the polynomial, the more derivatives we are
able to match. We also want the influence of a control point to be maximal at regions of
the curve close to it, and for this influence to decrease as we move away along the curve,
and for it to disappear completely at some distance. Finally, we would like the basis
functions to be piecewise polynomial, and we should be able to represent any piecewise-
polynomial curve of a given degree with the apropriate basis. In a moment, we will show
how to construct basis functions satisfying all these requirements for polynomial curves
of arbitrary degree.

When we talk about curves, it is important to distinguish the curve itself and the
graphs of the coordinate functions of the curve (which also can be thought of as curves).
For example, a curve can be described by equations x(t) = sin(t), y(t) = cos(t). The
curve itself is a circle, but the coordinate functions are sinusoids. For the moment, we
are going to concentrate on representing the coordinate functions.

3.2 B-Splines Basis Functions

We start with the simplest case: piecewise constant coordinate functions. Any piecewise
constant function can be written as

= cUit)
where U;(1) is the box function defined as

Uty = 1 if 0<t<l

= 0 otherwise

The functions U;(t) = U(t — i) are translates of U(t). Furthermore, let us represent The
continuous convolution of two functions f(t)and ¢g(¢) with

(F@g)) = [ fs)glt = 5)d

Now a B-spline basis function of degree n can be obtained by convolving the basis
function of degree n — 1 with the box U(t). For example, the B-spline basis function of
degree 1 is defined as the convolution U(#) with itself. We need to compute

/U Ut — s)ds

Graphically, this convolution can be evaluated by sliding one box function along the
coordinate axis from minus to plus infinity while keeping the second box fixed. The value

!The smoothness of the basis functions guarantees the smoothness of the coordinate functions of the
curve. However, it does not guarantee the geometric smoothness of the curve. We will return to this
distinction in our discussion of subdivision surfaces.
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u(t)

NL(t)

Figure 2: The definition of degree 1 B-Spline basis function through convolution of U(t)
with itself.

of the convolution for a given position of the moving box is the area under the product of
the boxes, which is just the length of the interval where both boxes are non-zero. At first
the two graphs do not have common support. Once the moving box reaches 0, there is a
growing overlap between the supports of the graphs. The value of the convolution grows
with ¢ until £ = 1. Then the overlap starts decreasing, and the value of the convolution
decreases down to zero at t = 2. The function Ni(¢) = [U(s)U(t — s)ds is the linear hat
function as shown in Figure 2.

We can compute the B-spline basis function of degree 2 convolving Ni(¢) with the
box U(t) again.

Na(t) = /Nl(s)U(t —s)ds

In this case, the resulting curve consists out of three quadratic segments defined on
intervals (0,1), (1,2) and (2,3). This is illustrated in Figure 3.
In general, by convolving j times, we can get a B-spline basis function of degree j

Ni(t) = /Nj_l(s)U(t — 5)ds
Now convolution has a remarkable property
Theorem 1. If f(t) is C*-continuous, then U(t) @ f(t) is C*-continuous.

It follows from this theorem that the B-spline basis function of degree n is C"~! continuous
because the basis function of degree 1 is C%-continuous. Defining B-spline basis functions
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N2(t)

> 4 | 3

Figure 3: Ny(t) as convolution of Ny(t) with U(t).

through convolution leads us to a scaling equation for splines similar to the dilation
equation that we had for scaling functions of wavelet bases. Recall that U(¢) is Haar
scaling function and that it satisfies the dilation (scaling) equation

Ut)y=U(2t)+ U2t — 1) (1)
We have defined the B-spline basis function of degree j as
Nj(t) = @loU(t) (2)

We can obtain a scaling equation for the basis function N;(¢), which is actually a special
case of deBoor’s formula. Observe that convolution is a linear operation

f@g+h) = fRg+f2h
f@(ag) = a(f@g)
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where f and ¢ are functions and «a is a constant. By substituting Equation 1 into
Equation 2 and expanding, we obtain an expression of the form

N]‘(t) = ZSkN]‘(Qt — k)

where s, are some constants. Next time we will show that the coeflicients s, allow us to
compute successive piecewise-linear approximations to the limit curve starting with the
control polygon.
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1 Introduction

As we saw in the last lecture, the basis functions used for generating a B-spline of degree
n is derived from the convolving the box function with itself n times:

zwwzéwm

where
1 fo<t<l1

0 otherwise

U(t) = {

and @ denotes convolution. These basis functions all have local support and are piecewise
polynomial with degree n. However, more importantly, they also satisfy the dilation
equation, which we first encountered in the context of wavelets. The dilation equation
for the B-spline basis is simply:

N(t) =Y s N(2t — k) (1)

From before we also know that if a set of basis functions satisfy the dilation equation
multiresolution techniques such as successive refinement can be applied to functions in
the spaces these basis functions span. We set out to find s so that we can apply these
techniques to the representation of our curves. If you are familiar with DeBoor’s knot
insertion algorithm, the above formula can be interpreted as a special case of DeBoor’s
formula.

2 The Derivation

Recall the following properties of convolution for functions f(¢), ¢(¢), and h(t), given
that (1) = (1) @ g(1):
F(t)®(g(t) + h(t)) FH)®g(t) + f(1) & (1) linearity
ft—1)QRg(t — k) m(t—i—k) time shift
f2H®g(2t) = 1m(2t) time scaling
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Also, recall from last time that the box function can be written in terms of its own
dilates
Uty =U(2t) + U2t — 1)

Now, looking at the first degree basis and using the above observation we have

N(it) = U)QU(t) first degree basis function
Uty = U2+ U2t —1)
N(it) = (U2H)+U2t-1)@U2t)+ U2t — 1))

Rewriting the above using the convolution properties presented we get

Nty = URHQUEH+URHRQU2t—1)+URHQQUERt—1)+ U2t —1)QQ U2t — 1)
= %N(gtH%N(zt—m+%N(2t—1)+%zv(2t—1—1)

- %N(Qt) +N(2E—1) + %N(Zt - 2)

Comparing the above derivation to Equation 1 we arrive at the coefficients sq = %,
s1 = 1, and s, = 1. We have managed to rewrite the basis function for a first degree
B-spline in terms of its own dilates as well. The above derivation generalizes to B-spline
basis functions of higher degrees. Now we compute the coefficients s; for degree n — 1

splines splines

Noa() = @U)

With the derivation of the coefficients of the first degree spline, we make the following
observation. The coefficients of the translates of the dilate of N(t) in equation 1 are simply
the elements of the matrix 5. Recall that the binomial expansion derives the coefficients
for each term of the exponentiation:

n

(4 9)" =Y awy

where

Similarly, because the convolution operator is linear, just like multiplication, we can
derive our coefficients simply through the binomial expansion by rewriting the above
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equation.

N(t) = (UH+URt—1)QURH) + Ut —1) QU2 + U2t —1))...

n

= > siU2)QUEHR) ..U+ 1) QUL+ 1)(X). ..

=0

7 n—1i

From the above it is easily seen that the sp coefficients are none other than the
coefficients of the binomial expansion for (x + y)" divided by 2.
3 Representing Curves
Consider a point in the plane
c
c

to be the i control point of a curve we would like to represent. The curve, ¥(t), is thus

represented as

@ oy e

BN EION . ¢ :
0=|50] =2 § s
As we saw in the last lecture, each of the translates of N(¢) has a maximum value at
some point during the interval it is nonzero. Writing our curve in this manner ensures
that each control point influences the curve as well as guaranteeing that such influence
is limited, due to the local support of translates of N(¢).
We can rewrite the above more compactly as

1) = S Nt =)

Now consider ¢, the vector of control points of a given curve:

and the vector N(¢), which has as its elements the translates of the function N, the
desired basis function, defined above:
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N=[... Nt+2) N(t+1) N(t) Nit—1) Nt-2) ...]

In this notation we can denote our curve as Ne. Since we know that each of the elements
of N can be represented in terms of its dilates we rewrite the whole vector as such

N(@2t)=|... N@2t+2) N2t+1) N2t) N2t—1) N2t—2) ... ]
Where we relate the two vectors with the matrix S as follows:
N(t) = N(2t)5
Rewriting () based on the above representation yields:
y(t) = N(2t)Sc

We can think of N(2¢) as our new basis and Sc as our new control points. Since
each successive rewriting of the function N uses basis functions that are twice as narrow
as the functions on the previous step, they are shifted by one half of the shift on the
previous step. The new control points correspond to values of ¢ which are twice as dense
as on the previous level. As we will see below, the new control points are simply linear
combination of the old points since they are related through the matrix S. The elements
of S are related to the coefficients s; in Equation 1 by

S%ithi = Sk

Representing our curve, using the above, at each degree gives us a set of successive
refinements of the curve:

y(t) = N(t)c° Zeroth degree
= N(2t)e! =N(£)Sc®  First degree
= N(2/t)dd =N(#)57c®  J degree
from which we can see the relationship between control points at different levels:
=S¢

where S is our infinite subdivision matrix. Looking more closely at one component, ¢, of
our control points we see that:
J+1l _ J
CZ' = Z Si,lcl
]

To find out exactly which s; is affecting which term, we can divide the above into
odd and even entries. For the odd entries we have:
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céj’_l_ll = SumlSQH_Llc{ = Sumlsz(i_l)_l_lc{
and for the even entries we have
c‘%jl = SumlSQMC{ = SumISQ(i_l)c{
From which we essentially get two different subdivision rules one for the new even
points of the curve and one for the new odd points. As examples of all of the above,

let us consider a couple of concrete cases. For piecewise linear subdivision, the basis
1
2
For second degree splines, the odd coefficients turn out to be i and

the even ones.

functions are hat functions. The odd coefficients are % and =, and 1 for the even point.

3 3 1
7, and 7 and 3 for

4 Discrete Convolution

The coefficients s can also be derived from another perspective, namely discrete convo-
lution. More explicitly, using generating functions for a sequence x; we can consider a

polynomial
X(z) = Z 22"
k
where X (z) is the z-transform of the sequence xy; for the case of two coefficients we have
(Cl ® b)k = Z ak—nbn
Suppose we have two functions that satisfy the dilation equation:

ft) = Zk:ho(k)-f(% — k)
g(t) = ijhl(k)-g(% — k)
Then f ® g also satisfies the dilation equation with coefficients (k) = 1/2hoxh, where
W(k) = % > ho(k — ) (i)
Since U(t) satisfies the dilation equation U(t) = U(2t)+U(2t — 1), N(t) = X' U(¢t)
satisfies a dilation equation N(t) = Y2 s, N (2t — k) with

s = (1/2)[...0110...]x(1/2)[...0110...}a...x(1/2)[...0110...] (n times).
The z-transform of [... 0 1 1 0 ...] is 14z.

We obtain the following generating function for splines:

S(z) = 7(1;_?)71

Again, the values s; become apparent: they are simply the coefficients of each of the
terms in the generating function above.
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5 Interpolation vs. Approximation

Splines are not interpolating, that is, they do not pass through their control points.
We can generate interpolating curves by choosing the even rows of the S matrix to be
...0,0,1,0,..., so that the control points, once added are never moved. Then we choose
the coefficients for the odd points in such a way that the generated curves are smooth.
One such choice is the four point scheme, first introduced by Dyn, Levin, and Gregory),
which has generating function

S(z) = %(—2—3 FAe (]

Recall that convolving with a box increases smoothness and convolution with U(t)
means multiplication of the generating function by (1 4 z)/2. We have four factors
(1 4+ 2)/2 in the generating function above, but three of them are required just to get
subdivision to converge. One extra term (1 + z)/2 ensures that the curve is smooth.

In general, the difficult part is to find a set of coefficients for which subdivision con-
verges. There is no general method to achieve this; once we have a convergent subdivision
scheme, we can obtained desired smoothness by convolving with the box.

6 Subdivision vs. Splines

The subdivision coefficients s;.’s need not be fixed as we presented them so far. We can
vary them, both between levels of subdivision and within one level, between points to
obtain different curves. In this regard, splines are just a special case of the more general
class of curves, subdivision curves.

There is no sufficiently strong reason for using subdivision in one dimension (in fact
none of the commercial line drawing packages do) but the argument becomes much more
compelling in higher dimensions.
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In this lecture we discuss the basic ideas of the analysis of subdivision, using subdi-
vision curves as an example, and introduce the a simple subdivision scheme for surfaces
— Loop scheme.

1 Subdivision of Curves near Extraordinary Points

Last time we have shown that the uniform B-spline curves can be thought of as a special
case of subdivision curves. So far, we have seen only examples for which we use a fixed
set of coefficients to compute the control points everywhere. The coefficients define the
appearance of the curve, for example, whether it is smooth or has sharp corners. It is
possible to control the appearance of the curve by modifying the subdivision coefficients
locally.

Consider the four-point curve interpolation algorithm from the previous lecture. Mark
a single control point of the curve. Suppose that we change the coefficients that are used
to compute new control points near a marked control point on the coarsest level. For ex-
ample, we can replace the coefficients —1/16, 9/16, 9/16, —1/16 of the four-point scheme
by the coefficients 0, 1/2, 1/2, 0, whenever we compute a new control point adjacent to
the marked point. As a result, we introduce a corner into the limit curve at the marked
point.

Changing the coefficients of subdivision for computing a fixed number of neighbors
of a marked point on each level does not affect the smoothness of the curve outside of a
arbitrarily small neighborhood of the control point.

To determine local properties of a subdivision curve, we do not need the whole infinite
vector of control points or the infinite matrix describing subdivision of the entire curve.
Smoothness is a local property of a curve, which means that we can consider an arbitrarily
small piece of the curve around a given point, and still be able to determine if the curve
is smooth at that point or not.

It turns out that for the four-point algorithm, we need to consider only 7 control
points; these 7 points completely define the piece of the curve around a control point.
We can consider a set of 7 control points on any subdivision level, as we do not care how
small our piece of the curve is. Note that we can compute the positions of the seven
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control points on level j + 1 from the positions of similar seven control points on level j,
using a 7 x 7 submatrix S of the infinite subdivision matrix.
The local subdivision matrix for the four-point scheme is:

J+1 J
-3 - = = —= -3
¢ 116 196 196 116 0 0 0 ¢
J+1 J
Ccy 0 0 1 0 0 0 0 C_g
J+1 1 9 9 1 J
Cj_—l}l 0 ~ 16 16 16 —1s6 0 0 C_jl
cy = 0 0 0 1 0 0 0 co
J+1 _1 9 R J
5l 0 0 16 16 16 T 5l
cé"'l 0 0 0 0 1 0 0 c
i1 _1 8 9 _1 i
s 0 0 0 16 16 16 16 s

As we iteratively apply the subdivision S to the initial vector for control points, we
see that each of the 7 control points becomes closer to the central control point ¢p.

Some properties of the curves generated by subdivision can be inferred from the
properties of the subdivision matrix. In particular, smoothness properties of the curve
are related to the eigenstructure of the subdivision matrix.

2 Properties of the Subdivision Matrix

2.1 Preliminaries

Recall from linear algebra that an eigenvector x of the matrix M is a non-zero vector
such that Mx = Ax, where A is a scalar; A is the eigenvalue corresponding to x.

Assume S has real eigenvectors zg, 1, ..., xs which form a basis, with corresponding
real eigenvalues \g > Ay > ... > Xg. We can then write any vector x of length 7 as a
linear combination of eigenvectors:

n
T = E a;x;
=0

Similarly, we can write a decomposition of this type for a vector ¢ of 7 2-D points
rather than single numbers. In this case each “coefficient” a; is a single 2-D point.
The eigenvectors X, ...,Xg are simply vectors of 7 real numbers. The expression ¢ =
9, a;ix;, where ¢ is a vector of 2D-points can be written more explicitly as

T a;

T a;

R )

2

6

c=) | a?a
=0 :z;fai
:z;?ai

6
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where :L'f € R represents the j-th component of eigenvector x;.

In the basis of eigenvectors we can easily compute the result of application of the
subdivision matrix to a vector of control points, that is, the control points on the next
level:

6
SCO = SZazxz
=0

6
= Z a;Sx; by linearity of S
=0
= Z az)\zxz
=0
Applying S n times, we obtain

6
Snco = Zal)\f:pl
=0

2.2 Convergence of Subdivision

If A; > 1 for some ¢, S"¢q clearly would diverge as n got larger and larger.

Hence, we can see that in order for the sequence S™¢q to converge at all, it is necessary
that all eigenvalues are at most 1. It is also possible to show that only a single eigenvalue
may have magnitude 1.

2.3 Invariance under Affine Transformations

If we moved all the control points simultaneously by the same amount, we would expect
the curve defined by these control points to move in the same way as a rigid object. In
other words, the curve should be invariant under distance-preserving transformations,
such as translation and rotation. It follows from linearity of subdivision that if sub-
division is invariant with respect to distance-preserving transformations, it also should
be invariant under any affine transformations. The family of affine transformations in
addition to distance-preserving transformations, contains shears.

Let 1T = [1111111]7 Then 1 - a represents a displacement of our seven points by a
vector a.

Applying subdivision to the transformed points, we get

S(c¢’ +1-a) S(c’) +S(I-a) by linearity of S
1.

T+ S(1-a)
We see that for translational invariance we need

S(l-a)=1-a
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Figure 1: Invariance under translation
Therefore, 1 should be the eigenvector of S with eigenvalue Ay = 1.

2.4 Geometric Behavior of Repeated Subdivision

If we assume that Ag is 1, and all other eigenvalues are less than 1, we can choose our
coordinate system in such a way that ag is a zero vector; then we have:

6
¢’ = Z aZAfo
=1

Dividing both sides by A}, we obtain:

c” 6 )\Z "
ﬁ =ajr; + ZZ:;CM ()\—1) i

Assume that Ay, ..., Ag < A;. In this case we see that the sum on the right approaches
zero as n — 0o. In other words the term corresponding to A; will “dominate” the behavior
of the vector of control points (decrease much slower than the other ones).

In the limit, we get a set of 7 points arranged along the vector a;. Geometrically, this
is the tangent vector of our curve at our center point.

If there were two equal eigenvalues, say Ay = A, as n increases, the points in the
limit configuration will be linear combinations of two vectors a; and a,, and in general
would not be on the same line. This indicates that there will be no tangent vector at
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Figure 2: Repeatedly applying the subdivision matrix to our set of seven control points
results in the control points converging to a configuration aligned with the tangent vector.
The various subdivision levels have been offset vertically for clarity.

the central point. This leads us to the following condition, that, under some additional
assumptions, is necessary for existence of the tangent:

All eigenvalues of S except \g = 1 should be less than A;.

2.5 Summary

For our subdivision matrix S we desire the following characteristics:
e The eigenvectors should form a basis.
e The first eigenvalue Ag should be 1.
o The second eigenvalue A; should be less than 1.

o All other eigenvalues should be less than ;.

3 Schemes for Subdivision Surfaces

We now focus our attention on the 2-D extension of curves, subdivision surfaces. There
are a variety of subdivision schemes for surfaces, including

e Loop
o Catmull-Clark

e Doo-Sabin
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Figure 3: A tensor product B-spline.

e Butterfly

In this lecture, we focus on the Loop scheme.

3.1 Representation of Surfaces with Splines

In the 2-D case, we use a polyhedral surface as a control mesh analogous to the control
points in the curve case. Additional restrictions may be imposed on the mesh. As an
example, consider a uniform tensor product B-spline where all points not on the boundary
of the control mesh are restricted to having exactly 4 neighbors.

While B-splines may seem like a good general solution at first as a control mesh for
surfaces, what if we wanted to represent, say, a sphere? Unlike our B-spline, it is a closed
surface with no boundary, and it is topologically impossible to represent it using such a
mesh. For a mesh in which each vertex has 4 neighbors, the quantity f — e+ v (known as
the Fuler characteristic), where f is the number of faces, e is the number of edges, and
v is the number of vertices, is 0. On the other hand, for a polyhedral mesh topologically
equivalent to a sphere the Euler characteristic has to be 2.

3.2 3-Directional Quartic Splines

The Loop scheme is based on three-directional quartic Box splines, which are defined over
regular triangular meshes (each face is a triangle, each vertex has 6 neighbors.) Other
schemes are based on other types of splines: tensor product of quadratic B-splines for
the Doo-Sabin scheme, and tensor product of cubic B-splines for Catmull-Clark.

The generating function for 3-directional Box spline is

1
flar,za) = 7o (1+ 21) (14 22)%(1 + 2122)"
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Figure 4: Part of a 3-directional quartic spline, with the three directions of symmetry

highlighted.

4

o

ey

Etc...

16

Figure 5: Loop subdivision rules for vertex (left) and edge (right) points at a regular
vertex of degree 6.

3.3 Rules for Subdivision

Similar to the one-dimensional case, for the Loop scheme we need 2 rules, a “even” one
(for adding new control points) and a “odd” one (for modifying existing ones.) Consider
the case where each vertex has six neighbors (has degree 6).

New vertices are created by splitting the edges of the old mesh. Each old edge gives
rise to two new edges and three more edges per triangle are created by connecting the
new vertices. Each old triangle is subdivided in four.

Our challenge is to make the scheme work for arbitrary triangular meshes. We cannot
simply use the spline rules, because they assume that each vertex has 6 neighbors. How
do we update the position of vertices with degree other than 6 (known as extraordinary
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Figure 6: At an extraordinary point, we need to alter our vertex subdivision rule.

vertices)?
Observe that the rule for the spline is

where ¢ is the vertex that we recompute, and ¢;, 1 = 1...6 are the immediate neighbors.
This rule can be naturally generalized to the case of n neighbors as

6
At =(1—an)c) + . !
i=1

We need to set the coefficient of our center point to be (1 —na) in order for the sum
of the coefficients to add up to 1 which is required for affine invariance of the scheme.
Note that changing a rule at an extraordinary point will only change the characteristics
of the generated surface locally, so the analysis in this case is similar to the analysis that
we did for subdivision curves with special rules near a point.

The choice of the parameter a in the formula above is not unique, and different
considerations can be used to pick an appropriate value. The original value chosen by

Loop was
1[5 (3 1 27r)2
a=—|<-—1|=-+ —-cos—
n \8 8 4 n

We can easily verify that in the case n = 6, « is 11—6 as we would expect. However,

the exact value of o does not matter too much: the generated surfaces are smooth for
a range of a. For example, for n > 3, we can choose « to be simply %; the resulting

surfaces will be quite similar to those obtained using the original Loop’s rules.
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In the previous lecture, we discussed the Loop subdivision scheme which works for
triangular meshes. In this lecture we will look at several other subdivision schemes.

1 Background

Each subdivision scheme can be thought of as two rules: the topological refinement rule
that describes how the refined mesh is created from the original mesh, and the subdivision
rule, that is used to compute the locations of the vertices of the new mesh. The first rule,
which we will call simply the refinement rule, describes how many new vertices are added
to the mesh and which vertices in the new mesh are connected by edges. For example,
the Loop scheme replaces a triangle at subdivision level j with 4 triangles at level j+1.
The new mesh at subdivision level j+1 is created by splitting each edge and connecting
the inserted vertices as shown in Figure 1.

Figure 1: Connecting the 3 new vertices creates 4 new level j+1 triangles.

Two of the schemes that we consider in this lecture are defined for quadrilateral rather
then triangular meshes. For such meshes we have two main options for refinement rules.

The first refinement rule, used by the Doo-Sabin subdivision scheme, first builds a
level j+1 quadrilateral in the center of each existing level j face quadrilateral. The new
mesh is obtained by connecting each vertex of the level j+1 quadrilateral with its three
neighbors to produce 3 more level j+1 quadrilaterals. This refinement rule is illustrated
in Figure 2.

The second refinement rule, which is used by the Catmull-Clark subdivision scheme
subdivides a level j quadrilateral into 4 level j+1 quadrilaterals. New vertices are created
by splitting each edge into two and creating a new vertex for each face. This method is
illustrated in Figure 3.
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Figure 2: Refinement rule used by Doo-Sabin subdivision scheme. Step 1: New vertices
are added to create level j+1 quadrilaterals in the center of level j quadrilaterals. Step
2: The vertices of the center face quadrilaterals are connected to their neighbors. Fach
level j quadrilateral is covered by parts of 9 level j+1 quadrilaterals, but there are only 4
level j+1 quadrilaterals created for each level j quadrilateral. The vertices of the level j
quadrilaterals are discarded. This refinement rule works for even degree tensor-product

splines.
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Figure 3: Refinement rule used by Catmull-Clark subdivision scheme. New vertices are
added on each edge and in the center. When connected, 4 new level j+1 quadrilaterals
are produced from the single level j quadrilateral. This refinement rule works for odd
degree tensor product splines.

2 Doo-Sabin

2.1 Quadrilaterals

The Doo-Sabin subdivision scheme is based on quadratic splines. Recall that a generating
function for one-dimensional quadratic splines is (z + 1)*/4. For a tensor product spline



(S448: Lecture #15 3

of total degree 4 the generating function is

(L4 21)°(1 + 2)°

f(Zlv 22) — 22 . 92

If we multiply this out we end up with:

(14321 + 32 + 27)(1 + 329 + 323 + 23)
16

f(ZhZ?) =

The coefficients of the monomials of f(z1,22) are the coefficients of the subdivision
scheme.
We can arrange the coefficients into a table, with the coefficient of z!{zj in position

(,):

1 3 3 1
1 [3 9 9 3
6 13 9 9 3

1 3 3 1

For quartic (that is, of total degree 4) tensor-product splines we have 4 rules for
determining the positions on the vertices on the next subdivision level. They are the
Even-Even, Even-Odd, Odd-Even and Odd-Odd rules. Each rule uses 4 coefficients from
the above table. The name of each rule determines which 2 rows (Even or Odd) and
which two columns (Even or Odd) of the table are selected. The Even-Even rule, for

example selects from the even column and even row giving the coefficients X, 2,2 and

167 16°16°
%. Geometrically, this results in a point EE that is %Co + %Cl + %02 + %03 as shown

in Figure 4.

2.2 Doo-Sabin subdivision: N-gons

Doo-Sabin subdivision extends the rules for quartic splines described above to general
polygonal meshes. For each N-gon at level j, we create a level j+1 N-gon. This is
similar to dealing with extraordinary points in the Loop scheme, but now we cannot
use symmetry to compute all coefficients once one of them is known. The rules for the
vertices of the new N-gon can be derived using the eigenstructure of the subdivision
matrix. Suppose we are computing a new vertex of the N-gon on level 57+ 1. This vertex
is a linear combination of the vertices of the old N-gon. Suppose these vertices are
numbed from 0 to N — 1 starting with the vertex nearest to the vertex on level j+1 that

%7]{:1]\[_1

we are computing. Then the coefficients are ag = i—l— %, ap = N

where k is the vertexes number.



4 CS448: Lecture #15

EO 00

EE OE

.C3 ® C2

Figure 4: The level j+1 point determined by the Even-Even rule is at 11—600 + %Cl +
%02 + %03. The other points are determined in a similar manner. All rules are the
same up to a renumbering of the points.

3 Catmull-Clark

3.1 Quadrilateral Rules

The Catmull-Clark subdivision scheme is based on cubic splines.
[ts generating function is:

(1 —|— 21)4 . (1 —|— 22)4
64

f(ZhZZ) =

In this case, there are three different rules called the vertex rule, the edge rule and the
face rule for computing point positions. These rules also correspond to various choices of
columns and rows of the table of coefficients of the generating function: Even-Even, Odd-
Even etc. The vertex rule computes a new position of an existing vertex using the vertex
itself and 8 immediate neighbors. The edge rule computes the position for a new vertex
inserted on an edge between two existing vertices. It uses the closest 6 existing vertices.
The simplest rule, the face rule, creates a new point in the middle of a quadrilateral face.
All rules are shown in Figure 5.

3.2 Extraordinary Vertices

For extraordinary vertices, Catmull-Clark scheme uses modified rule similar to Loop’s
scheme. Since there are quadrilaterals meeting at the extraordinary point instead of
triangles, we have two sets of vertices that should have equal coefficients by symmetry.
We call them inner and outer vertices (Figure 6). This leaves us two degrees of freedom.
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Vertex Rule Edge Rule Face Rule

Figure 5: Each black circle represents a vertex at level j; we compute the position of the
vertex at level 7 + 1 marked by by the black square. Note that for the vertex rule, the
control vertex with weight 19—6 and the new vertex aren’t necessarily aligned as they are
in the figure.

= |nner Vertex
e Outer Vertex

Figure 6: Inner and outer vertices surrounding an extraordinary point in a quadrilateral
mesh.

If the coeflicients of inner vertices are % and the coeflicients of all outer vertices are be

+» where N is number of inner vertices. The coefficient of the central vertexis 1 — 3 —~
affine invariance. The values for § and v which Catmull an ark came up with are
by affine i i The values f d v which Catmull and Clark p with

3
b= 35

1
T T OUN

Note that for N = 4, we do get the coefficients for the spline vertex rule. Also, note
that the weight on an inner or outer point is proportional to % - we do divide by N
twice. These coefficients are by no means unique: there is a range of 3 and ~ that leads
to smooth surfaces.
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3.3 Arbitrary Meshes

We have defined Catmull-Clark scheme on quadrilaterals; it can be extended to handle
arbitrary polygonal meshes. Observe that if we do one step of refinement, splitting each
edge into two and inserting a new vertex for each face (Figure 7), we get a mesh which
has only quadrilateral faces. Special rules described in Catmull and Clark’s paper are
used for this first step. On all other steps of subdivision standard rules described above
can be applied.

Figure 7: Splitting a hexagon into quadrilaterals.

4 Butterfly Rule : Interpolation on a Triangular Grid

The Butterfly subdivision scheme is similar to the Loop scheme, but it creates an inter-
polated surface which contains the vertices of the original triangular mesh. The Loop
scheme had two rules, one for changing positions of old vertices and one for computing
positions of new vertices. Since the Butterfly scheme is interpolating, we don’t need a
rule for changing the positions of old vertices. If we want the scheme to generate smooth
surfaces, we do need wider support for the rule that adds a vertex. To add a new vertex
we use the coefficients shown in Figure 8.

a1 Y8 6

1/2 1/2

-1/16 18  -U16

Figure 8: Each black circle is a control point with the corresponding weight. The black
square is the new vertex.

This scheme is based on the one-dimensional four-point interpolating scheme with
coefficients I—é, %, %, I—é. This subdivision scheme generates smooth interpolating sur-
faces only for regular meshes. Smoothness, however, is not guaranteed at extraordinary

points. A modification of this scheme with special coefficients for computing new vertices
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adjacent to the extraordinary vertices generates surfaces that are smooth everywhere for
almost all configurations of control vertices. The coefficients of the scheme are given by

4_1<1+ 27r_|_1 2#) _ 0 1
8; = 1 cosn QCOSn ,7=0...n

if the extraordinary vertex has degree n > 5. The coefficients are 5/12, —1/12, —1/12
for n = 3 and 3/8,0,—1/8,0 for n = 4.

Figure 9: Rule for inserting a new vertex next to an extraordinary vertex for the Modified
Butterfly scheme.

5 Creases

The Loop scheme can be modified in such a way that a path of control vertices on the
coarsest level can be "marked” meaning the regular Loop scheme rule is replaced with
an alternative scheme. To create a crease, the normal weights of é, %, %,é are replaced
with weights 0, %, %, 0 for adding new points on the crease. For changing the position of
old points on the crease we weight the current position with 2 and its two neighbors on
the crease edge with £. This rule replaces the normal Loop scheme rule for changing the
position of old vertices. The effect is that any vertex on the path won’t be influenced
by the rest of the surface, it will only be influenced by points already on the path. The
downside of this approach is that the surface may behave badly as it approaches this

independently defined curve.
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Last time, we talked about various subdivision schemes for two-dimensional surfaces.
We will now clear up the mystery of where the coefficients in those methods came from,
by examining how those coefficients influence the smoothness of subdivision surfaces.

1 What Is a Smooth Surface?

We shall start with an exact definition of a smooth surface. Informally, we would like to
express the concept that a smooth surface is “a smooth two-dimensional subset of space.”
In other words, we need to define some subset of (three-dimensional) space that has a
non-degenerate two-variable parameterization that is continuous and differentiable. To
make this concept rigorous requires a somewhat complicated definition:

Definition 1. A stmple smooth surface in three-dimensional space is defined as a
subset A of space, such that the intersection of A and a neighborhood of a point X in
A has a reqular parameterization p from the unit disc. Thus, if A C R3, By is the
neighborhood of some X € A, and D C R? is the unit disc, A is a simple smooth surface
if and only if D X+ AN Bx. A regular parameterization p is one that is continuously
differentiable, one-to-one, and has a Jacobt matriz of mazimum rank.

This definition corresponds directly to the intuition above. We pick a point X on our
candidate surface A and examine its immediate neighborhood. This will be some region
of space that intersects A. We claim that we have a simple smooth surface only if that
region of intersection (which will be some patch of A) has a continuously differentiable

one-to-one mapping onto a disc.
/ A%{\\
[\ A B |

()

Figure 1: Definition of a simple smooth surface.
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The condition that the Jacobi matrix of p have maximum rank is necessary to make
sure we have no degeneracies (i.e. that we really do have a surface, not a curve or point).
If p = (p1,p2,p3) and the disc is parameterized by x; and x4, the condition is that the
matrix

9p1 Op1
81’1 81’2
Op2  Opz
81’1 81’2
dpa  Opa
81’1 81’2

have maximal rank, i.e. two.

Although the above definition is certainly adequate for some applications, it is conve-
nient to have a slightly different definition. The problem arises when we consider surfaces
that intersect themselves — no self-intersecting surface can be a simple smooth surface.
This becomes obvious when we consider a point on the line of intersection, since its
neighborhood in three-dimensional space consists of pieces of two smooth surfaces.

Figure 2: Self-intersecting surface - it is not simply smooth at A.

We would prefer to have a definition of smoothness that is more local, and independent
of global properties such as self-intersection. If we perform some topological deformation
on a smooth surface, we would like the surface to continue to be classified as smooth,
even though the deformation might cause it to intersect itself. Therefore, we introduce
a modified definition:

Definition 2. A surface A C R? is smooth (i.e. C') if and only if
o There exists a mapping f from a parametric domain M C R* onto A.

o For every point X € M there exists a reqular parameterization of the unit dise onto

f(U), where U is the neighborhood in M of X.

We add an extra mapping f into the definition to provide a way of defining neigh-
borhoods on the surface itself.

This definition is convenient when working with subdivision surfaces, since it can
be shown that the mapping f always exists as we subdivide. In particular, consider a
triangular mesh in the vicinity of an (ordinary or extraordinary) vertex of degree k. In
the original mesh, we just let f be the mapping from a regular k-gon to a portion of
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Figure 3: Definition of a C'' (i.e. smooth) surface.

the mesh. As we subdivide the mesh, we subdivide the k-gon using the midpoint rule.
We see that each added vertex in M corresponds exactly to a vertex added to the mesh.
Note that although the mapping f defined in this way need not be smooth, this is not a
requirement for the definition of a smooth surface — the only requirements are existence
and smoothness p.

There is yet another definition of smoothness encountered from time to time. This is
the notion of geometric smoothness:

Definition 3. A surface A is geometrically smooth at X € A if and only if surface
normals are defined in a neighborhood around X and there exists a limit of normals at

X.

This is a useful definition, since it is easier to prove surfaces geometrically smooth
(all that is required is to show the existence of a limit), and also since the definition is
very intuitive (it captures the notion that a surface is smooth if there exists a tangent
plane). Geometric smoothness, however, is weaker than C' smoothness. Geometric
smoothness at X implies the existence of a parameterization from the unit disc that is
regular everywhere except at X. This contrasts with the regular definition of smoothness,
which requires the parameterization to be regular everywhere.

As a simple example of a surface that is geometrically smooth but not C*, consider
the shape in Figure 4. Points in the vicinity of the central point are “wrapped around
twice”, so while there exists a tangent plane at that point, the surface does not “locally
look like a plane”. Formally, there does not exist a regular parameterization from the
unit disc onto the neighborhood of the center point, even though that parameterization
is regular in the neighborhood of that point.

From the previous example, we see how the definition of geometric smoothness must
be strengthened to become C'*:

Lemma 4. [If a surface is geometrically smooth at a point and the projection of the
surface onto the tangent plane atl that point is one-to-one, the surface is C*.
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Figure 4: Example of a surface that is geometrically smooth but not C.

2 Smoothness of Subdivision Surfaces

We now turn to an examination of the smoothness properties of a subdivision surface.
We will first examine the Loop scheme, and show how the eigenvalues of the subdivision
matrix determine how smooth the limiting surface will be.

6

Figure 5: The Loop subdivision scheme near a vertex of degree 3. Note that 3(3)+1 = 10
points in two rings are required.

Recall that in the Loop scheme only two “rings” of triangles around a vertex that
define the surface patch surounding the vertex. So, if we let ¥ be the coordinate of the
point ¢; at subdivision iteration k, we can represent the effect of subdivision on a point
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by
k+1 k
Ch Cy
: = S :
k+1 k
C?m c?m

In this equation, n is the degree of the vertex, so two rings of triangles around it require
3n+1 points. S is the local portion of the subdivision matrix. Note that the coordinates
5 are themselves vectors in three-space.

C.
k3
We can now rewrite each of the coordinate vectors in terms of the eigenvectors of the

matrix S. Thus,

0 .
c = : = E a;T;,
B

and

&= (9" = Y (),

7

where the z; are the eigenvectors of S, and the A; are the corresponding eigenvalues,
arranged in nonincreasing order. As stated in an earlier lecture, we require Ay to be 1
for all subdivision schemes, in order to guarantee invariance with respect to translations
and rotations. Furthermore, all stable, converging subdivision schemes will have all the
remaining A; less than 1.

It is clear that as we subdivide, the behavior of ¢, which determines the behavior
of the surface in the immediate vicinity of our point of interest, will depend only on the
largest eigenvalues of 5. In the limit as £ — oo, we care only about Ay and Ay for curves;
for surfaces, we also care about A,.

To proceed with the derivation, we will assume for simplicity that Ay > Ay > As.
Furthermore, we let ap = 0 — recall that this corresponds to choosing the origin of our
coordinate system in the limit position of the vertex of interest. Then we can write

Ck )\2 F
L = ar; + N azxy + -,

where the higher-order terms disappear in the limit.
We now have two cases to consider — we will first consider what happens if Ay = A,.
In this case

lim

a1 + aoT2.
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This means that, up to a scaling by (A;)*, the control points approach a fixed con-
figuration. This configuration is determined by x; and x5, which depend only on the
subdivision scheme chosen, and on a; and ag, which are determined by the initial con-
ditions. Note, however, that given any non-degenerate initial conditions, the result will
be the same up to an affine transform. Therefore, in some sense, all surfaces subdivided
using a given rule “look the same” in the limit, and the limiting configuration depends
on the eigenvectors x; and x5 of the subdivision matrix.

Now recall that a; and a, are just vectors in R?, while z; and x5 are 3n -+ 1-component
vectors, one component per control point. Therefore, we see that the expression a;x; +
asxy must represent a set of control points that all lie in one plane. So in the limit a
subdivision rule with Ag > A\; = Ay > A3 leads to smooth surfaces.

Now consider what happens when A; > A;. In this case, the control points still
approach a plane, but they “stretch” in one direction more than another. Therefore we
still get smooth surfaces. Note that we must be careful to consider both A; and Ay, and
not come to the erroneous conclusion that the control points might approach a line and
therefore form a crease.

In the next lecture we will formulate a sufficient condition for smoothness.
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In which Denis discusses the smoothness of subdivision surfaces, introduces multires-
olution surfaces and brings subdivision to its conclusion.

1 The Smoothness of Subdivision Surfaces

1.1 Introduction

The condition for smoothness of subdivision surfaces can be stated very simply. We could
just start by explaining everything at the beginning.

Reif’s sufficient condition for smoothness : Suppose the eigenvectors of a subdi-
vision matrix form a basis, the largest eigenvalues three eigenvalues are real and
satisfy

)\0:1>>\12)\2>|>\3|

If the characteristic map is regular and one-to-one, then almost all surfaces
generated by subdivision are smooth (C'-continuous.)

We need to define several concepts mentioned in this criterion.

1.2 Subdivision surfaces as mappings

We will discuss subdivision on triangular meshes; constructions for schemes defined on
quadrilateral meshes are similar. Suppose the initial control mesh for the surface has one
extraordinary vertex of degree n and the rest of the vertices are regular (degree 6.) If we
are interested only in local properties of subdivision surfaces, in fact this is the only kind
of mesh we have to consider — any initial mesh after sufficient number of subdivision
steps locally is identical to the mesh with one or none extraordinary vertices.

Consider a triangulation of the plane R? which has similar structure: one vertex of
degree n in the center, and all other vertices of degree 6. We can establish a one-to-one
correspondence between the vertices of the triangulation of R? and the vertices of the
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mesh R?; this defines a mapping from the set of vertices of the triangulation, which is a
subset of the points of the plane, to the control vertices of the surface.

Suppose each time we apply the subdivision rules to compute the finer control mesh,
we also apply midpoint subdivision to the triangulation of the plane. This means that
we leave the old vertices where they are, and insert new vertices in the middle of each
edge of the triangulation. Note that each control vertex that we insert in the mesh in R?
corresponds to a new vertex of the midpoint-subdivided triangulation.

As we repeat this process, we get a mapping from a denser and denser subset of the
plane to the vertices of the finer and finer control mesh. In the limit we get a map from
an everywhere dense set on the plane to the surface, which can be extended by continuity
to the whole plane. As a result, we get a natural parameterization of the subdivision
surface over the plane: f:R? — R3.

To analyze smoothness, we need to consider arbitrarily small piece of the surface
around the extraordinary point. In particular, we can take the part of the surface defined
over a n-gon U that consists out of triangles adjacent to the extraordinary vertex: f :
U — R3. Note that the n-gon can be chosen on any level of subdivision; let U’ be the
n-gon after j subdivision steps.

We can construct the map f for n = 6; in this case, initially we have a regular
triangulation on the plane. It is easy to show that for splines—based subdivision the
mapping f in this case will be just the standard piecewise-polynomial mapping defining
the spline.

In general, subdivision schemes are typically constructed in such way that the map-
ping f that we get for a regular initial mesh (with all vertices of degree 6) is C'-continuous.

An important observation about the mapping f is that after sufficient number of
subdivision steps in a neighborhood of any point inside the triangles of the initial trian-
gulation of the plane, the map coincides with the map generated from a suitably chosen
regular mesh (this is not true on the boundaries of triangles!)

In particular, f is C'-continuous inside each triangle of the n-gon UY and we can
compute the derivatives. To ensure smoothness of the surface, f should have Jacobi
matrix of maximal rank.

It turns out that we need not consider all possible maps f to establish smoothness of
subdivision. In most cases it is sufficient to consider a single map called the characteristic
map which is completely defined by the subdivision scheme. To define this map, we need
to discuss eigenvalues and eigenvectors of the subdivision matrix.

1.3 Characteristic Map

The part of the subdivision surface on U is completely defined by a set of the control
vertices near the extraordinary vertex v. For example, for Loop’s scheme the surface is
defined by two rings of control vertices around v. For a vertex of degree n these rings
contain 3n + 1 vertices, including the extraordinary vertex itself. Let ¢; = (x;,y;) be the
control vertices for the two rings, forming a vector ¢ of length 3n + 1:
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Ci = (33@'7 yi) (1)
_ " -
6]
c=| C (2)
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c is the initial vector of control vertices and ¢’ is the vector after j subdivisions. If
we define S to be the subdivision matrix, then the act of subdividing can be represented
as repeated multiplication of ¢ by S, exactly as in the case of the curves.

¢/t =S¢ (3)

oI+l — gitlco (4)

After each subdivision the 3n + 1 control vertices defining the surface on the n-gon
U7 are becoming closer and closer to the central vertex. One more remarkable thing
happens: if we scale the control vertices ¢/, we will see that the configuration of the
control vertices converges to a limit. To describe this more precisely, we have to look at
the eigenvalues and eigenvectors of the subdivision matrix.

Suppose A; are the eigenvalues of S, and they are numbered in nonincreasing order:
Aol > [A1] = |A2| > |A3] = -+ > |A3,|. For simplicity we assume that there is a basis of
eigenvectors of S. \g, as usual, must be 1. For convergence we need A\; < 1. In addition,
we assume that A\j, Ag are real and |A\3| < Asg.

Then similar to the one-dimensional case that we have considered before,

Cj-i_1 = )\?all'l + )\3&21’2. (5)

where A\; and A\, are the eigenvalues of S, xy and x5 are corresponding eigenvectors,
and a; and as are vectors in R? defining the tangent plane.

We have used the usual trick of moving the origin of our coordinate system to the
central point of the subdivision, so that ag is 0, and there are no terms containing A\g. In
this expression only a; and as depend on the initial control vertices; the eigenvectors x
and x5 depend only on the choice of the subdivision scheme.

Now we are ready to define the characteristic map. Note that when we described
subdivision as a function from the plane to R?, we could have use control vertices not
from R3 but from R?; clearly, subdivision rules can be applied in the plane rather then in
space. Then in the limit we obtain a map from the plane into the plane. The characteristic
map is the map of this type.

As we have seen, the configuration of control points near an extraordinary vertex
approaches ajx1 + asxs, up to a scaling transformation. This means that the part of the
surface defined on the n-gon U7 as j — oo approaches the surface defined by the vector of
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control points a1x1 + asxo. Up to an affine transform which does not affect smoothness,
in the limit all surfaces generated by subdivision are identical to the surface generated
by the control vertices ¢;, such that ¢; = ([x1];, [22];,0), that is, the first two coordinates
are corresponding coordinates of the eigenvectors x; and x,. The control vertices ¢; are
obtained from a;[z;]; + az[z2]; applying the affine transform taking a; to e; and ay to
es, where ey, es, ez are the basis vectors. By throwing away the last zero coordinate, we
obtain a vector of control points in R? completely defined by the eigenvectors of S. This
is a map from the n-gon U° to R2.

As we have discussed, inside each triangle of the n-gon U° the map is C'. Moreover,
the map has one-sided derivatives on the boundaries of the triangles, except at the
extraordinary vertex, so we can define one-sided Jacobians on the boundaries of triangles
too. Moreover, it is possible to show that the Jacobian actually has to be continuous
away from the extraordinary vertex despite the fact that the derivatives may be not
continuous. We will say that the characteristic map is regular if its Jacobian is not zero
anywhere away from the extraordinary vertex (including the boundaries!)

Now we have all of the tools that we need to understand the condition given at the
beginning;:

Reif’s sufficient condition for smoothness : Suppose the eigenvectors of a subdi-
vision matrix form a basis, the largest eigenvalues three eigenvalues are real and
satisfy

)\0:1>)\12)\2>|>\3|

If the characteristic map is regular and one-to-one, then almost all surfaces
generated by subdivision are smooth (C*-continuous.)

2 Multiresolution Surfaces based on Subdivision

2.1 Problems With Subdivision

Subdivision is great, but there are some problems with it. One problem is that it’s often
easier to generate or manipulate a model with different levels of detail. For example,
when manipulating a model of an armadillo, it’s much easier to move an ear as a single
object than to move each point that makes up the ear.

One solution for this problem (the one we will be considering) is multiresolution
surfaces based on subdivision, We discuss how to use multiresolution surfaces, but will
discuss how to generate these surfaces from arbitrary meshes. That is a separate and
complicated topic.
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2.2 Wavelet-Like Multiresolution Surfaces
2.2.1 Wavelets A Blast From the Past

As you recall, wavelets separated low-frequency and high-frequency components of an
image. Another way of looking at this is that wavelets generate a signal of averages, and
a signal of details.

We will now apply the same strategy to subdivision surfaces.

2.2.2 Comparison of Wavelets and Subdivision

The following figure is a diagram of a wavelet filter. The boxed section is analogous to
subdivision, adding more points.

Figure 1: A wavelet filter bank.

If Hy is known, it is typically possible to choose Hy, in such a way that they form a
filter pair.

2.2.3 Another Strategy

If we are doing a hierarchical wavelet transform and we do not subsample the detail part
of a signal, the resulting signal is two times larger than if we has subsampled. However,
if we skip the subsampling in 2D, the resulting signal is only % times larger.

111

I+ttt =2 (6)
111 1

144 — 4 — 4=

MV RET RN 3 ()
CaOmmOn@

Figure 2: A filter bank that doesn’t subsample the detail.
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2.3 Performance of Multiresolution Surfaces

With full detail, the computer takes a long time to manipulate the model in the figure.
However, by taking out levels of detail and then manipulating the model, everything
becomes much faster.

Also, it is much easier to perform gross manipulations of the image when it has coarse
detail. For example, if we want to move the ear, we don’t have to move every control
point, we just have to go to lower detail, move a few points, and then go back to high
detail. The details follow the changes made at the coarse level.

Model manipulation is therefore improved in three different ways by using multires-
olution surfaces.

1. It is faster because there is much less load on the computer.
2. It is faster because the user needs to manipulate fewer control points.

3. It is more intuitive, because the user can manipulate large sections of the image
easily. For example, is is much more intuitive to “move the ear” than it is to “move
all of the control points that comprise the ear”.

See Figure 3, Figure 4, and Figure 5 for examples.

Figure 3: Armadillo Man

3 Improvements of Multiresolution Surfaces based
on Subdivision

3.1 Dynamic Subdivision

Another problem with subdivision is that it sometimes gives too much detail. We do
not always want the same resolution everywhere; we want more resolution only where
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Figure 5: Armadillo Man at high resolution, with his ear moved.

we want a finer representation. In Figure 6, Figure 7, and Figure 8, more resolution is
needed where the surface changes rapidly than where the surface remains fairly constant.

This problem can be solved by adaptively subdividing the surface. A triangle will
only be subdivided if more subdivision is necessary. A flat plane, for example, should not

be subdivided and given more detail, even if an adjacent jagged peak is being subdivided
and given more detail.

472?’;7’A ZPK =i %
A T AVARNANS
7 (()A(%AVAV <

Figure 6: A fairly smooth model.
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Figure 8: The same model with a large bump.

3.2 Adding Details Correctly

If a coarse version of an image is modified, care must be taken when adding back the
details. If they are added blindly, the results may not be what is intended, as in the

picture below.
A better strategy is to remember the normal of the surface where a detail is located,

and to add the details relative to this normal.

PAN

Figure 9: A figure with some detail.
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Figure 10: The figure was changed and the detail followed.

S e

Figure 11: The detail was changed to reflect the new normal.
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1 Plane Curve Review

We first finish up the previous lecture topic of plane curves. The ellipse is used to show
some of the properties of the evolute.

Figure 2: The evolute is the trace of wavefront singularities.

Figure 1 shows the normals to an ellipse drawn at uniform intervals. Recall that the
envelope of the normals is the evolute. The figure shows that this evolute is a well defined
curve which is the obviously traced out curved diamond shape. Notice that the evolute
has cusps. Although it’s not shown in the figure, if you think about it you can see that
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if you drew an osculating circle to the ellipse at any point, its center would fall on the
evolute. Another way to think about this is to consider that the differential section of
the surface around a point is a tiny arc of the circle centered on the evolute.

You may also recall from the previous lecture that the evolute is the trace of wavefront
singularities. Figure 2 shows the offset curves of an ellipse. Again, these curves are drawn
at uniform offset intervals. Note that they fold over, and their singularities and cusps lie
on the evolute.

These two figures illustrate caustics, a subject we will return to in the next lecture.
This one is devoted to curves in space and surfaces.

2 Space Curves

Figure 3: A space curve with a Frenet frame made from the tangent, normal, and binor-
mal. The radius of the osculating circle is proportional to the curvature.

The previous lecture dealt with curves in the plane. Figure 3 shows a curve in space.
A space curve can be parametrized by arc length with the function z(s). At every point
it has a well-defined tangent ¢ = 2'(s), which is the derivative of the curve with respect to
s. The derivative of the tangent is the curvature times the normal: ¢ = kn. We can once
again fit an osculating circle to the curve at the point, whose radius is the inverse of the
curvature. In the plane this osculating circle argument was straightforward. However,
the extra degree of freedom in space gives us a whole family of circles which fit the curve.
We pick the one whose center is pointed to by the normal vector n.

2.1 The Frenet Frame

We know that the tangent is perpendicular to the normal. We can define a coordinate

system with the addition of a third orthogonal vector, the binormal: b =t x n. This

triad of axes is uniquely determined by the curve and is known as the Frenet frame.
The Frenet frame has the following properties:

b-b=n-n=t-t=1 (1)
b-n=n-t=t-b=0 (2)
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Equation 1 expresses the fact that the axes have unit length, while equation 2 is a
consequence of their orthogonality. The Frenet coordinate frame changes as you move
along the curve or surface — it’s a function of space. We can express any vector or point
with respect to this frame. It’s often useful to express changes in this frame:

tl = Cit t + CipIN + Ctp b
n = cut + cpan + b
b = Cbtt + ¢y + Cbbb

where ¢;; means (t' - t). We already know that ¢ = kn, which takes care of the first
line:

t = 0t + kN + 0b
n = (n-t)t + (0 -nn + (n-b)b
b = -t + B -nn + (V- -b)b

To simplify b’, we start with the last term. We know from above that b-b = 1.
When we differentiate with the chain rule we find that £(b-b) = £b* = 2b - b’ = 0.
So b - b’ =0 and the last term drops away.

We attack the first term of b’ by noting from above that b -t = 0, which when
differentiated gives b’-t +b-t’ = 0 and thus b’ -t = —b - t’. Substituting the definition
of the tangent gives —b -t = —b - kn = —kb - n. Since we know that b-n = 0, we have
found that b’ -t = 0 and can drop the first term.

To find the middle term of b’ we use two of the results from the other terms: b’-b = 0
and b’ -t = 0. If the dot product of two vectors is 0 they are perpendicular, so b’ is
perpendicular to b and t. The same is true for n, so b’ must be some multiple of n. We
will define the torsion 7 of the curve by the equation b’ = —7n. Just as the curvature
k measures the rate of change of the tangent, the torsion 7 measures the rate of change
of the binormal.

Our remaining unknown is n’. We use the chain rule as above to find that n’ - n =0
and drop the middle term. For the first term, we differentiate (n-t) = 0 to find that
n-t+n-t' = 0. Substituting t' = kn and n-n = 1 shows that n’ -t = —n - t' =
—n-xn = —k(n-n) = —k - 1. Thus the middle term simplifies to —x. We find the last
term of n’ using the same process: n'-b=-n-b'=-n-(—mn)=7(n-n)=7-1=r.
We have thus found that n’ = —xt + 7b.

We have just derived what are known as the Frenet-Serret formulas:

t = KN
b = —Tn
n = —xt +7b
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These formulas are just a system of differential equations which tell us about the
motion of the Frenet frame. It is plausible that we can integrate them to recover infor-
mation about the curve itself. In fact, we can completely reconstruct a curve just from
curvature and torsion at every point. We state without proof the strong theorem which
states this result. It is one of the many theorems in different branches of mathematics
known as the Fundamental Theorem.

Theorem 1. The Fundamental Theorem of Curves
Given an arc length s, and two arbitrary functions k(s) and 7(s), we can uniquely
determine the shape of curve x(s).

2.2 The Darboux Vector

At the beginning of the last lecture we pointed out that there are many legitimate ways
to describe a curve: algebraic, parametric, and intrinsic. The previous section was an
example of the intrinsic approach.

Figure 4: Two geometric interpretations of the Frenet frame from Koenderink [1]. On
the left is the continuous case, while the right shows a less common piecewise linear view.
Reproduced without permission from [1], Figures 110,111.

Koenderink’s extremely readable book [1] builds up the ideas discussed in this lecture
by describing several different interpretations in both words and pictures. Figure 4, from
the book, shows two different geometrical interpretations of the Frenet frame.

On the left we can clearly see the coordinate frame defined by the normal, tangent, and
binormal at point P’. The normal lies in the shaded plane defined by the infinitesmally
close points P, P" and P”. At every point there is a well defined normal — it just changes
as you move.

The picture on the right shows a piecewise linear approximation to the smooth curve,
as might be constructed by a set of linked rods. The rods themselves show the tangents.
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The binormal for the point corresponding to P is drawn as an additional vertical rod.
The osculating planes formed by each two neighboring rods are also shown. As the
name implies, the osculating circles lie in these planes. This drawing shows that you can
consider the plane as determined by two vectors instead of by a circle.

The normals at each point lie in this osculating plane, and the binormal at that point
is perpendicular to this plane. The angle « is the amount of “turn” between the rods,
which is the curvature. The binormal is the axis of this rotation. The angle 3 is the
amount of turn around the tangent between two neighboring points — that is, the torsion.

Thus we can think of moving from one endpoint of a rod to the other by locally
rotating the curve a little bit around the binormal and a little bit around the tangent.
We thus see the motivation for defining the Darboux vector as that combined rotation:

d=kxrb+ Tt

We can use this quantity to rewrite the Fresnel-Serrat formulas concisely as

t'=dxt
b'=d xn
n=dxb

IAVENY

ol

Figure 5: The Darboux vector and coordinate frame on a cylindrical helix.

It is also useful to consider the geometric interpretation of the Darboux vector and the
coordinate frame on a cylindrical helix, as shown in Figure 5. The case of the cylindrical
helix is unique because both the rate of translation and of rotation are constant. The
Darboux vector is the axis of the cylinder, the normal points towards that axis, and the
binormal is on the surface of the cylinder. The coordinate frame travels in a screw motion
on a helix on the surface of the cylinder as it translates up the instantaneous tangent
and rotates around the axis d.
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3 Surfaces

We now move on from curves to surfaces. Consider a curve C passing through a point
P on a surface, represented by the parametric equations u=u(t), v=v(t), so the curve in
space is represented as x = x(u(t), v(t)). The tangent vector at a point is the derivative,
and can be determined via the chain rule:

o Bx_ Oxdu Oxdv
ST dt Qudt v dt

Thus the tangent to the curve at the point P has direction components

. v dv X
X = Xy— + Xy— = X, U + X, 0
dt dt
The tangent vector to C at P is a linear combination of the vectors x and v tangential
to the parametric curves at P. Thus, the tangent to C at P lies in the plane determined
by the tangents at P to the parametric curves. If we move in parameter space by (du, dv),

we will move by dx in position along the curve.

3.1 The First Fundamental Form

The differential arc is the magnitude of the change: ds = |x|. This differential arc ds is
the distance between two points. We can can compute ds? as follows:

ds* = (X, - xu)du® + 2(x, - X, )dudv + (%, - X, )dv?
= Edu® + 2Fdudv + Gdv®
= 1

This expression for ds? is known as the first fundamental form of the surface. Its
constituent elements F = x, - x,,, F' = x, - X,, and G = X, - X, characterize the surface
metrically. For instance, we can express the change in area as dA = (EG — F?)Y/2 and
the area of a surface patch is [ [(EG — F?)'2dudv.

The direction of the normal to the surface is x,, x x,,. We normalize by its magnitude

to find the unit normal:
X, X Xy

C|xe X X

We can also express the magnitude of the normal using E, F', and G:

(Xy X Xp) - (X X Xy) = (Xu - X)) (Xp - Xy) — (Xy - X))
= EG-F?
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resulting in

zuXxav
~ sqrt(BEG — F?)

3.2 The Second Fundamental Form

The first fundamental form allowed us to understand arc length and areas. We now move
onward to curvature. Recall that we are discussing a curve on a surface. We now need to
distinguish between the normal to the curve, which we have been writing as n, and the
normal to the surface, which we shall call N. These two quantities are often different.
An example is any circle on the sphere which is not a great circle: the normal to the
circle is different from the normal to the sphere.

surface tangent

surface normal

Figure 6: The total curvature can be decomposed into geodesic and normal components.

The tangent t is of course perpendicular to the normal and proportional to some
vector which we will call k. We can decompose k into two components:

k = k, + Kk,
= kN + K,T

These components are shown in Figure 6. The first component is proportional to
the surface normal and is the normal curvature k,. The second is known as the
geodesic curvature k, or tangential curvature, and is intrinsic — it depends on the
characteristics of the surface itself, not its embedding in three dimensional space. We
focus for now on the normal curvature.

Note that the normal curvature of a curve on a surface is not the same as the normal
curvature of a space curve. Here we discuss the former. The normal curvature vector k,,
of all curves on a surface through a given point which share a tangent vector is the same.
The normal curvature is the projection of k onto N: k, = N-k =N-t’. Since N-t = 0,
we can differentiate along the curve to find that (N -t)’ = N -t' = —N’.t. Thus

Nt Nt IN dx  —dN-dx I _ edu’+2fdudv + gdv®
n — o o ds ds N ds - ds o 1 o Edu? + 2Fdudv + Gdv?

Recall the ds? is I, the first fundamental form. The quantity —dIN - dx is the second
fundamental form, also called II or the shape operator. It describes how the tangent
(or normal) plane turns as you move around the surface. There are direct analogs to
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the elements E,F, and G found in first fundamental form, namely e = —N,, - x,,, 2f =
—(Ny,-x,)+N,-x,), and g = —N,,-x,. The properties of the shape operator are explored
in great detail in classical differential geometry.

3.3 Meusnier’s Theorem

family of vectorsk
with same kp

askg varies

(varies)

Figure 7: There is an entire family of curvature vectors which all share the same normal
component.

Above we discussed the decomposition of k into the geodesic and normal components,
as shown in Figure 6. Consider all the vectors k with the same normal component. These
can be thought of as the intersection between the surface and a normal plane. Figure
7 shows that there is a family of such vectors which result from changing the geodesic
component but leaving the normal component fixed. Thus all curves through the same
point have the same normal curvature vector.

Actually, there are two different but interesting ways to move a plane about a normal
vector: it can rock or roll. Figure 8 shows both cases. First, a family of planes which
share a tangent can rock around the normal. All osculating circles to curves with the
same tangent direction describe a sphere, sometimes known as Meusnier’s sphere.

We can roll around the tangent vector to gain other degree of freedom In this case
the osculating circles will change size as we rotate (unless the surface is a perfect sphere).
The above discussion has been an informal statement of Meusnier’s Theorem, which we
will not prove.

The family of osculating circles that result from rocking around the tangent vector
at a point has a well-defined minimum and maximum. The minimum and maximum
circles are perpendicular to each other. The radii k1 and ko of these two special circles
are called the principal radii of curvature of the surface. The tangents are called the
lines of curvature, and ¢, - t; = 0. At every point on the surface we can compute these
characteristic numbers which define the local curvature properties.

The radii of curvature are used to define the Gaussian and the mean curvature. The
Gaussian curvature K is defined as K = k; - k9. The motivation for this definition is
not immediately obvious, but we will discuss it in the next lecture.

li1—|—l12

H—
2

is the appropriately-named mean curvature.
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a) Rock around tangent axis: front view » tangent
b) Rock around tangent axis: side view @

surface tangent /_ﬂ ’

enclosing Meusnier sphere =

i tangent

osculating circles

one of the osculating circles

a) Roll around tangent axis /

» tangent

Figure 8: Meusnier’s “Rock and Roll” Theorem. a) Rocking around the tangent vector on
the normal plane: there are a whole family of circles which share the same tangent on the
surface. b) A side view of the rocking, looking down onto the tangent axis, showing the
rotating osculating circles which form Meusnier’s sphere. ¢) Rolling around the tangent
vector on the normal plane. The size of the osculating circle changes, and the maximum
and minimum sizes appear in perpendicular directions. The radii of curvature x; and ks
of these extremal circles are shown.

3.4 Ellipsoid

The curvature vectors on a surface are uniquely determined. Figure 9 shows the lines
of curvature on an ellipsoid. In this case k1 and Ky are both positive: that is, they are
both on the same side of the tangent plane. The lines of curvature form a net: they
always intersect at right angles, and thus form a nice natural parametrization for the
surface. These lines can be computed by starting at some point and integrating. The
dot in the figure is called an umbilic point and is the place where minimimum and
maximum curvatures are the same. At this point the local neighborhood of the surface
can be approximated by a perfect sphere.

We can also define a series of concentric ellipsoids. Consider the 3D net we could
define by connecting up the lines of curvature on these offset ellipsoids. These new
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Figure 9: Lines of curvature meet at right angles and form a net on an ellipsoid. The
minimimum and maximum curvatures are the same at the dot, which is an umbilic point.
Reproduced from [3], Figure 2.22

surfaces would all meet at right angles and thus form a nice 3D curvilinear coordinate
system.

3.5 Cuboid

Figure 10: A cuboid surface colored by Gaussian curvature. Reproduced from [2], Plate
1

Figure 10 shows a cuboid surface colored by Gaussian curvature. The figure is anno-
tated with a color legend since these notes are distributed in black and white. The red
parts at the “corners” of the cuboid are elliptic — they are locally convex and both the
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Gaussian curvature K and the principal radii k; and k9 are positive. The blue patches
in the center of the faces are concave: the Gauss curvature is still positive although the
radii k1 and ko are both negative. The center of curvature is on the opposite side of
the tangent plane. The green parts of the surface along the edges have negative Gauss
curvature. They are saddle points where the principle radii of curvature have different
signs. Two colors meet along parabolic lines. These lines of inflection separate the
positive and negative Gaussian curvature regions.

3.6 The Apollo of Belvedere

Figure 11: The Apollo of Belvedere with parabolic lines drawn in by Felix Klein. Repro-
duced from [1], Figure 440.

Figure 11 shows a reproduction of the Apollo of Belvedere. Parabolic lines were
hand-drawn on its surface at the behest of mathematician Felix Klein. He hoped that
decomposing a complex shape along parabolic lines would illustrate its fundamental aes-
thetics. Supposedly he abandoned this theory after seeing the resulting picture. Harvard
mathematics professor David Mumford has looked at the problem more recently. Find-
ing the true parabolic lines is tricky and is rather sensitive to noise. Stanford graphics
professor Marc Levoy will be scanning the real Apollo during his Digital Michelangelo
Project in Italy next year, at which time the parabolic lines could be computed directly
to satisfy the curiosity of any aspiring aestheticians among us.

All theories of aesthetics aside, parabolic lines have many nice properties. Some of
these pertain to caustics, which we will hear about in the next lecture.
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In this lecture, we discuss applications of differential geometry within the field of com-
puter graphics. We will see how concepts discussed in earlier lectures can be used to
solve problems involving the geometry of optics. Specifically, we will look at Fermat’s
Principle, rays and wavefronts, and caustics.

1 Fermat’s Principle

In geometrical optics, we assume that the wave-like behaviour of light is insignificant and
thus model the behaviour of light using rays. Light emitted from a point is assumed to
travel along such a ray through space. In an effort to explain the motion through space
taken by rays as they pass through various media, Fermat developed his Principle of
Least Action.

The path of a light ray connecting two points is the one for which the time
of transit, not the length, is a minimum.

At the time that Fermat developed this principle, his justification was more mystical than
scientific. His justification can be summarized by the statement that nature is essentially
lazy, and these rays are simply doing the least possible work.

We can however develop a more useful formulation of the principle. We know from earlier
lectures that the time along a curve through space can be calculated as

ds
ty= [ dt =
S(t) / ds/dt
We also know that ds/dt is velocity, which for light is know to be % = < where 7 is the
7

refractive index of the medium. Therefore, we have
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S(t) :/ Cfcj) = %/n(s)ds x /n(s)ds

We can thus define the optical path length from one point on a ray to another as the
geometric path length weighted by the refractive index of the media. Furthermore, we
can now restate Fermat’s Principle as

Light travels along paths of stationary optical path length, where the opti-
cal path length is a local maximum or minimum with respect to any small
variation in the path.

Determining the path taken by a light ray between two points then becomes a simple
matter of optimizing S(¢) between the points.

2 Applications of Fermat’s Principle

We can make several observations as a result of Fermat’s Principle which will prove useful
as we explore the realm of geometric optics:

1. In a homogenous medium, light rays are rectilinear. That is, within any medium
where the index of refraction is constant, light travels in a straight line.

2. The angle of reflection off of a surface is equal to the angle of incidence. This is

the Law of Reflection.

We can also make some interesting and useful observations about conic surfaces. Conic
surfaces are particulary useful in mirror optics - for example, the design of telescopes.
We consider two conjugate points - two points that are perfect images of each other.
A salient property of these conjugate points is that the optical path length of all rays
connecting them is equal.

Consider a conic surface such as an ellipse. An ellipse is defined as the locus of all
points such that the sum of the distances from each point to two fixed points (the foci)
is constant, as in Figure 1. The two foci of a mirrored ellipse must then be optically
conjugate points. A point source located at one focus must be imaged perfectly at the
other focus.
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Figure 1: An ellipse. The ellipse is defined as the locus of all points such that the sum
of the distances from each point to two fixed points is constant: d; + dy = c.

In the case of a parabola, one focus has become infinite. This can be interpreted by
saying that an aggregate of rays, parallel to one another and to the axis of a paraboloid
after being reflected by the paraboloid, will pass through the focus of the paraboloid.
The Newtonian telescope leverages this fact in its design to collect and focus light from
distant objects.

In general, a conic surface can be thought of as having two foci and these foci will be
optically conjugate points. Figures 2 and 3 illustrate how this property of conic surfaces
and geometrical optics has been applied in the design of the Cassegrainian telescope and
the Gregorian telescope.

As a side note, a construction called a “Cartesian Oval” is similar to an ellipse, but has
weighted distances. That is, rather than being constrained by the equation d; + dy = ¢,
as in Figure 1, the oval is constrained by the equation nidy 4+ nods = ¢. The resulting
non-elliptical shape will nevertheless have two points of perfect focus.

3 Virtual Light Sources

We now turn our focus to virtual light sources. In traditional ray tracing, a visual ray
that encounters a reflective surface is bounced off of that surface and cast in the direction
of reflection. Similarly, visual rays are refracted through volumes. Eventually these visual
rays reach a non-reflecting surface and the shading calculation is calculated at this point
of intersection. This traditional model is depicted in Figure 4.

Although this traditional ray tracing model does allow us to simulate the effect of seeing
a scene through a reflective or refractive surface, it does not extend to the simulation of
refracted or reflected illumination. In other words, the shading calculation at the point
of intersection is limited to the direct components of illumination.
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>

Hyperboloid

Paraboloid

Figure 2: The Cassegrainian telescope configuration Point A is where the focus of the
paraboloid and the virtual focus of the hyperboloid coincide. Point B is the real focus of
the hyperboloid.

We can utilize differential geometry to allow us to solve this more complex problem -
determining the reflected illumination at a point on a surface. To do this, we must cast
rays from light sources so that they will reflect off of the mirrored surfaces and intersect
the point being illuminated. When the light is reflected off the mirrored surfaces it is
possible that the light rays may diverge or converge depending on the curvature of the
reflective surface at the point of reflection. Thus there are two key problems that must
be solved - determining which light rays will intersect the point being illuminated and
calculating the proper irradiance at that point. The problem of reflected illumination is
depicted in Figure 5.

Finding the paths from the light source to the point P that reflect off of the mirrored
surface is not as complex as might be assumed. A possible path from the light source to
the point P is depicted in Figure 5. The optical path length is

d(x) = /(s = %) + /(p —x)*
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Ellipsoid

Paraboloid

Figure 3: The Gregorian telescope configuration Point A is where the focus of the
paraboloid and one of the foci of the ellipsoid coincide. Point B is the other focus
of the ellipsoid.

According to Fermat’s Principle, we want to optimize d(x) in order to determine the path
of the light rays. If the mirrored surface is defined by ¢g(x) = 0 then we can optimize d(x)
subject to the constraint that x lie on the surface defined by ¢g(x) using the technique of
Lagrange multipliers:

Solving these equations yields paths of locally extremal length.

Recall from our earlier discussion of conic figures that the two focal points of an ellipse
are perfect images of each other - the optical path lengths of all reflected rays connecting
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Figure 4: Reflected Visual Rays
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Figure 5: Reflected llumination

them are equal. If we select s and p as our foci of a family of ellipsoids and vary the
optical path length, we get a family of confocal ellipsoids.

The system of equations produced by the Lagrange multipliers have a simple geometric
interpretation. The extremal points must not only lie on the surface defined by g(x) = 0,
but they must also lie on the surface of one of these confocal ellipsoids and the ellipsoid
must be tangent to the surface at the point of contact. Figure 6 depicts this geometric
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Figure 6: Osculating Ellipsoid

interpretation.

4 Rays and Wavefronts

In order to be able to compute the proper irradiance at a point being illuminated, we will
need to determine if the rays of light from the light source are converging or diverging
at the point. A given light will be the source of many rays, and the paths of the rays
emitted are determined by the following equation:

S = /n(s)ds

We will define a wavefront W to be the surface defined by the points on each ray at
a constant s. Alternatively, the wavefront can be described as the locus of points at a
given optical path length. We will not go into the details of wavefront properties, but one
important property that should be noted is that the wavefront surfaces are orthogonal
to the rays. You can think of wavefronts as isosurfaces in space.

This section is focused on intuitive concepts rather than formal derivations. In this entire
discussion, light sources are assumed to be point light sources, although similar concepts
and methods can be extended to the area light source case. Figure 7 depicts three simple
types of wavefronts: those emitted by a single local point light, those emitted by an
infinitely distant point light and a set of converging wavefronts.
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wavefront

&

(a) (b) (c)

Figure 7: Three different wavefronts: (a) those emitted by a single local point light
source, (b) those emitted by an infintely distant point light and (c¢) a set of converging
wavefronts.

We are interested in the convergence and divergence of the rays because we need to be
able to calculate the intensity of the light at a point being illuminated, and the intensity
of the light can be shown to be equal to the radiant power of the light divided by the
wavefront area.

Intuitively, this makes sense. Consider a set of rays which represent light moving forward
over time, and two wavefronts defined by these rays at different points in time. Further-
more, consider the two patches of area on these wavefronts, shown in Figure 8, which are
defined by this set of rays. The situation in the figure is a divergent wavefront, so the
area dA’ is greater than the area of dA. If the wavefront were converging, the opposite

would hold.

We can think of these two patches of area as the ends of a tube containing the set of rays.
Although the area of the two patches is different, the total power transmitted through
the tube is a constant. Thus the intensity, which can be thought of as the number of
rays per unit area, decreases as it passes through the tube. Note again that the intensity
would increase in the case of a convergent wavefront.

We can formalize this intuition. We consider the general situation of the neighborhood
of a point on a rectilinear ray. There is some orientation of a cutting plane at this point
that will yield the maximum radius of curvature ry, and another orientation of a different
cutting plane which will yield the minimum radius of curvature ry. Furthermore, we know
the planes associated with these two radii of curvature are orthogonal from our earlier
lectures on differential geometry. These radii of curvature are depicted in Figure 8.

Let dA be this element of area on the wavefront. All rays passing through dA will
intersect some subsequent wavefront with area dA’. Let dfy, df; be the elements of angle
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dA’ Y

Figure 8: A ray and two small patches of area, dA and dA” on two wavefronts associated
with the ray. For small enough patches, the area of the patch is defined by the radi of
curvature and the angle subtended at the center of curvatures as dA = ridfrydf,.

subtended at the centers of curvature by these point areas. Because of the conservation
of energy, we must have

do = I'dA" = [dA

where d® is power and [ is intensity. Therefore

I dA B r1r2d01d02 B mra B /i/

I dA T Prhdfdo, v s

This illustrates the important point that the intensity is not only related to the area of
the wavefront, but also to the inverse of the Gaussian curvature of the wavefront.

We know also that as a wavefront evolves forward according to the principles of optics,
that the new wavefront will be an offset surface from the original wavefront. Thus, if the
wavefront is diverging we can express the new radii of curvature as

o= rm+d
ry, = ro+d
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Alternatively, if the wavefront is converging, we can express the radii of curvature as

r'2 ry —d

Since intensity is inversely proportional to the radi of curvature, this means that at some
point there must be infinite brightness. This point of infinite brightness is called a caustic,
from the dimunitive form of the Greek word for “burning iron”.

The caustic is thus the evolute, the locus of the centers of curvature. In the three dimen-
sional case, there will be two caustic surfaces, one for each of the principal directions of
curvature. What we colloqially call “caustics” are the curves formed by the intersections
of these surfaces with a ground plane or object.

5 Orthotomics

We have seen from above that when a wavefront converges, a caustic is created. We are
interested specifically in the case where a point light source shines upon a curved reflector,
and the reflected light converges to a caustic. The orthotomic curve is an intermediate
curve that we will use to find the caustics in this reflected case.

Because of the complexities of the three dimensional case, where the caustic is a curve
and there are two caustic surfaces, we will focus our discussion on the orthotomic in the
two dimensional case.

We will construct the orthotomic for an arbitrary light source and reflective surface. In
doing so, we will show that the orthotomic corresponds to the reflected wavefront.

We construct the orthotomic as follows. Given a source s and a curve ¢, pick a point x
on the curve and find its tangent. Then the locus of reflections of s about such tangents
form the orthotomic curve, also known as the secondary caustic. This construction is
depicted in Figure 9.

We now explain the construction of the orthotomic more rigorously. In this explanation,
let n be the normal to the curve at point x and t be the tangent. Let x be the vector
from s to the point x.

We know that if we reflect x about the tangent at x, this will define the point:
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Figure 9: Construction of the Orthotomic Curve

y =2[x-n|n

Looking at Figure 9 we can understand the formula for the point y. When we reflect the
vector X across the tangent to the curve at x, it defines this new point. We can then
note that the projection of x onto the normal n multiplied by 2 also gives us this same
point. We must multiply by two to account for the fact that we have reflected the vector
x across the tangent. To find y’ we simply differentiate:

y' = 2[x' nn+2[x-n'|n+ 2[x - n]n’
= 2[t-n]n — 2k[x - t|n — 2k[x - n]t
= —2k[(x-t)n+ (x-n)t]
x (x-t)n+ (x-n)t

We use identities from the previous lectures: t -n =0, n’ = —xt, x’' = t.

Consider the vector [y — x]. We would like to show that the normal to the orthotomic
curve at the point y lies in the same direction as this vector. The normal at the point y
must be perpendiculer to the tangent at y (which we will call t,)). If the vector r (which
is the reflection of x across the tangent to the curve at x) is in the same direction, it too
must be perpendiculer to t,. Since t, = y’, it is sufficient to show that [y — x] -y’ = 0:
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[y —x]-y" o [y—x]-[(x-t)n+(x n)t
— vl thn— (e m)t] —x- [(x- E)n — (x- )t
= (% t)(mey) = (xom)(E-y) — (x 60 m) + (% m)(E - x)
(x-t)(n-2(z-n)n)— (z-n)(t-2(x-n)n)
= 2(x-t)(n-n)(x-n)—2(x-t)(n-n)(x-n)
= 0

We know that the normal to the point y must be perpendicular to the tangent at y,
which we calculated above. Since the dot product of the vector [y — ] with this tangent
is zero, this vector must lie in the same direction as the normal at y. Furthermore, from
the figure and the law of congruent triangles, we can see that the reflected light ray r
from the source must also travel in the direction of [y — z].

Therefore the normal to the orthotomic at y is along the direction of r and passes through
x. In more detail, light from s is reflected by the curve at x, according to the the Law
of Reflection. Thus the incident ray and the reflected ray make equal angles on opposite
sides of the normal to x. By congruent triangles, the reflected ray is along the line from
y to x. From above, this is the normal to y.

It follows then that light rays having the orthotomic as their intial wavefront (i.e light
rays starting simultaneously at all points on the orthotomic and then propagating down
the normals) are the same as light incident from s and reflected by x. Thus the caustic
by reflection of s is the caustic of the orthotomic.

Now, let’s sum up intuitively what we have just formally explained. Given a light source
and a curved reflector, we want to be able to find the caustics that would be formed. An
easy way to compute these caustics is to use the orthotomic curve. The orthotomic curve
has the property that its wavefronts will evolve to the same caustics as the wavefronts
from the true light source will after being reflected.

6 The Gauss Map

Every point on a surface has some normal n(u,v). The Gauss map is a mapping of every
point on a surface to the point on the unit sphere with the same normal. This map is not
one-to-one. Figure 10 shows an intuitive sketch of this construction for a small portion
of the gauss map. The 3D case is too complicated to draw, so we show the 2D analog.
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Figure 10: Construction of the Gauss map: the multiple normals on the original surface
that are in the same direction as the vector N map to the single point on the unit sphere
with normal in the direction of N. When the multiplicty of points being mapped to a
single point on the unit sphere is greater than one, folds develop in the Gauss map.

The resulting Gauss map may have folds. These folds correspond to inflection points on
the original surface, that is, the bottom of a concave valley, the top of a convex hill or
a saddle point. At these points, the map which we are tracing out on the unit sphere
changes direction because of the change in curvature at the inflection point on the original
surface. If the original surface is smooth, the Gauss map will be continuous.

Consider a small patch of area S on the original surface. There will be a corresponding
area patch w on the Gauss map. The Gaussian curvature is the differential ratio of the
two areas: k¥ = limg_.g %

We can formally define the Gauss map:

G(l‘(u, U)) = f(uv U)

as a map (G : s = S? from the surface patch S to the unit sphere S2.

When we are dealing with infinitely distant point light sources, the Gauss map can be
used to tell how many virtual lights will be created by a reflective surface. Consider
Figure 11. For every position of the viewer and the light source there is a vector H:

L+ FE

H=—"
|L + F|
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Figure 11: Specularities The number of virtual lights is the multiplicity of the points on
the Gauss map with normal equal to H.

The number of virtual lights created by a reflective surface is the multiplicity of points
on the Gauss map with normal equal to H, that is how many layers exist on the Gauss
map.

We are thus interested in the folds created on the Gauss Sphere when the mapping is
performed. When the reflective object is deformed or moved, the virtual lights on its
surface move, and may be created or destroyed. This creation or destruction of virtual
lights occurs at the parabolic points on the Gauss map.

7 Implementation Issues

When trying to implement shading calculations using virtual lights, we can utilize some
of the properties we have learned to optimize our calculation. A brief overview of the
techniques that can be used when implementing virtual lights is provided here. For a
more detailed exposition, see [1].

Most importantly, we can leverage the observation made above that the intensity of light
is proportional to the Gaussian curvature of the wavefront associated with that point.
Thus, rather than keep track of all of the geometry associated with the wavefronts we
can simply track the Gaussian curvature as the wavefronts evolve forward.

Propogating curvature through free space is trivial - we just need to add distance to the
radius of curvature. The difficulty lies in efficiently calculating the change in curvature
that occurs when the wavefront is reflected off a curved reflector.
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We derive the equations necessary to calculate the reflected curvature. Recall the equa-
tion giving the directions of the reflected ray:

n™ = n® 42cosin®

In these equations, n{ and n®) are the normals to the incident wavefront and surface
respectively; n(") is the normal to the reflected wavefronts. 7 is the angle of incidence of
the rays.

We calculate the vector u = n() x n(®). This vector must be tangent to both the incident
wavefront and the surface since it is perpendicular to both normals. We can calculate
the curvatures of the incident wavefront in the direction of u by rotating the principal
curvatures using the angle between u and the line of curvatures and Euler’s Formula. The
curvatures of the surface in this direction can be computed using the curvature tensor of
the surface.

The curvatures of the new wavefronts are computed by taking the directional dervvatives
of n) in the direction u. These derivatives can be computed from the formulae for the
reflected vectors and the directional derivatives of the normals on the incident wavefront
and the surface.

For reflection:

/igf) = ligj) 4+ 2 cos i/igf)
) = —rl) =260

k= k0D 4 (2/ cos i)k

For refraction:

= el + 4Rl

(0
ligfg = 77/4;52 + v(cosi/ cos t)/igfv)
kD = e 4 ~(cosi/ cost)?x(?)

Remember that the curvature of a plane is 0. Therefore, the curvatures of an outgoing
wavefront reflected from a planar surface will be the same as the incoming wavefront
(the fact that x,, switches sign is a result of the change in orientation of the coordinate
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system due to reflection). This is as expected, since a perfectly reflected wave does
not change its shape. Note also that a planar wavefront incident onto a a reflecting
surface essentially inherits the curvature of the surface. Thus if the surface is convex,
the reflected wavefront will be diverging; whereas if the surface is concave, the wavefront
will be converging, eventually forming a caustic.
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