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“It is through science that we prove,
but through intuition that we discover.”
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Abstract

Mathematics plays an important role in computer graphics. These notes . . .
We don’t learn how to prove things.
Scientists approach: use mathematics to express ideas and model things . . . and

through this to solve the problems of interest.
What we do not talk about: - measure theory. - probabilistic techniques. - We

also only discuss groups and Lie groups in passing.
Reproducible science: like in other science also in computer science experiments

should be reproducible. Since we have only very few and highly standardized experi-
mental setups, known as programming languages or environments, this is simpler
than in any other science. For all experiments that are presented in the follow-
ing source code is provided and the reader is encouraged to experiment with the
experiments her self.1

1Source code is available at http://www.dgp.toronto.edu/people/lessig/teaching/
math_for_cg/. See (Donoho, Maleki, Rahman, Shahram, and Stodden, “Reproducible Re-
search in Computational Harmonic Analysis”) for a more detailed discussion on reproducible
computational science.

http://www.dgp.toronto.edu/people/lessig/teaching/math_for_cg/
http://www.dgp.toronto.edu/people/lessig/teaching/math_for_cg/
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Chapter 1

Linear Algebra

Linear algebra is an elementary pillar of computer graphics, as is evident by the
central place it takes in introductory computer graphics classes. In the following,
however, we will consider some aspects that are usually not emphasized in
computer graphics but that play important roles for us in subsequent chapters.

1.1 Linear Spaces

Definition 1.1.

1.2 Linear Spaces with Additional Structure

1.2.1 Norms

Banach space: Remark on separability.

1.2.2 Inner Products

Hilbert space: Remark on separability.

1.3 Linear Functionals

Theorem 1.1.

1.4 Bases for Linear Spaces

Define: - linear independence - span of a set of vectors. - dimension of a vector
space.

1.4.1 Biorthogonal Bases

- Schauder basis. - Hamel basis.

1
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1.4.2 Orthonormal Bases

1.4.3 Overcomplete Bases: Frames

Example 1. Mercedes Benz frame

Homework 1. Generalize the Mercedes Benz frame to a frame for R3. Choose
the normalization of the basis vectors such that one has a Parseval tight frame.

Solution: The frame vectors of the Mercedes Benz frame in two dimensions
are the vectors to the vertices of an equilateral triangle. The three dimensional
analogue of the equilateral triangle is the regular tetrahedron.

Figure of regular tetrahedron (draw such that vertex position can be read
off).

With the vectors to the vertices of the regular tetrahedron we obtain for
the basis matrix

B =


+1.0 0.0 −1.0/

√
2.0

−1.0 0.0 −1.0/
√

2.0

0.0 +1.0 1.0/
√

2.0

0.0 −1.0 1.0/
√

2.0

 . (1.1)

It is easily verified numerically that

2 Id = BT B. (1.2)

Hence, the Parceval tight frame is given by

BPTF =
1

2
B. (1.3)

That the vertices of the equilateral triangle and the regular tetrahedron yield
tight frames can be seen as a special case of a result by Benedetto and Fickus1
that characterizes tight frames as minimizer of a “force” that repels frame
vectors and hence maximizes the distance between them.

1.5 Linear Maps

So far we only studied the elements of linear spaces. However, we are also
interested in “transformations” of our vectors. The natural maps in a linear
space are linear maps.

1.5.1 Fundamental Concepts

Definition 1.2 (Linear Maps). Let V,W be linear spaces. Then a mapping

T : V →W

is a linear map when for u, v ∈ V and a ∈ R:
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i) T (u+ v) = T (u) + T (v);

ii) T (av) = aT (v) .

The domain of T is V and the target of T is W .

We hence see that linear maps are compatible with the essential linear
structure of vector spaces.

Example 2. Let V be a linear space. Then the identity map Id : V → V is

Id(v) = v , ∀v ∈ V.

Example 3. Let V = R2. The rotation operator R(θ) that rotates a vector by
an angle θ is a linear operator.

Example 4. Let AN be the space of sequences a = (a1, · · · , aN ) ∈ AN of
length N . Then the left right operator R : AN → AN is

R(a) = (aN , a1, · · · , aN−2, aN−1),

that is (Ra)i = amod(i+1,N).

Example 5. Let us also consider some nonlinear operators, more will be
provided in Chapter 2.5 when we consider linear maps on function spaces. The
simplest examples are “nontrivial” functions on the real line. For example sin (x)
and log (x) are nonlinear operators N : R→ R. On Rn, operators of the form

N =

n∑
i=1

aiv
ki
i (1.4)

acting on v ∈ Rn with coordinates vi for real valued coefficients ai and ki ≥ 2.
Another common example of nonlinear operators, and once that often occur in
physics, are

N =

n∑
i=1

ai(v)vkii (1.5)

where the coefficients ai(v) depend on the argument v and ki ≥ 1 now. Nonlinear
operators between vector spaces are very general and hence many more examples
could be constructed.

As is customary, we will often drop the brackets and write Tv ≡ T (v).

Definition 1.3. Let A : V → W and B : V → W be linear maps between
linear spaces V,W . Then the composition B ◦A : V →W is the linear map

(BA)(v) ≡ (B ◦A)(v) = B (A(v))

where v ∈ V .
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One often writes AB without specifying a vector. When it is unclear what this
means one should recall the definition in terms of the action on vectors. The
following two concepts are important in many applications.

Definition 1.4 (kernel,range,). Let V,W be linear spaces and T : V →W be
a linear map. Then the kernel ker(T ) of T is

ker(T ) = {v ∈ V | T (v) = 0} .

Then range ran(T ) (or image) is

ran(T ) = {w ∈W | ∃v ∈ V : T (v) = w} .

It is usually important to distinguish the target and range of an operator and
they coincide only in special cases.

Theorem 1.2 (Rank-Nullity Theorem). Let V,W be linear spaces and T : V →
W be a linear map. Then

dim(ker(T )) + dim(ran(T )) = dim (V ).

The dimension dim(ran(T )) of the range of T is the rank of T

rank(T ) = dim(ran(T )).

We have established the essential properties of linear maps on vector spaces
but not discussed how to work numerically with them. Without loss of generality,
let V be a Hilbert space and T : V → V be a linear map. Furthermore, let
{ei}Ni=1 be an orthonormal basis for V so that for any v ∈ V we have

v =

N∑
i=1

vi ei =

N∑
i=1

〈v, ei〉 . (1.6)

Then for the linear map T applied to v we have

T (v) = T

(
N∑
i=1

vi ei

)
(1.7a)

and by linearity of T with respect to vector addition this equals

T (v) =

N∑
i=1

T (vi ei). (1.7b)

Also using linearity with respect to scalar multiplication by the vi we obtain

T (v) =

N∑
i=1

vi T (ei). (1.7c)
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Hence, the action of T on v is fully determined by the action on the basis
vectors ei. This should not come as a surprise since the ei are, through their
linear superposition, equivalent to any vector v.

T (v) in the above form is not useful numerically. For this, we also need the
coordinate representation of the image v̄ = T (v). As we have seen before, we
have v̄j = 〈ej , v〉. Hence,

〈ej , T (v)〉 =

〈
ej ,

N∑
i=1

vi T (ei)

〉
(1.8a)

and by the linearity of the inner product we have

〈ej , T (v)〉 =
N∑
i=1

〈ej , vi T (ei)〉 (1.8b)

=

N∑
i=1

vi 〈ej , T (ei)〉 (1.8c)

By defining

〈ej , T (v)〉 =

N∑
i=1

vi 〈ej , T (ei)〉︸ ︷︷ ︸
Tji

(1.8d)

we obtain

〈ej , T (v)〉 =

N∑
i=1

Tjivi (1.8e)

If we collect the coefficients Tji in a two-dimensional “array” and the v̄j and vi
into one-dimensional ones then we obtain v̄1

...
v̄N

 =

 T11 · · · T1N

...
. . .

...
TN1 · · · TNN


 v1

...
vN

 . (1.9)

The foregoing derivation shows that matrices are the coordinate representation
of linear operators. In computer science, matrices are often said to be linear
operators. However, as we will see in the following it is useful, and at times
important, to distinguish linear operators and their representations as matrices.

Homework 2. Repeat the above derivation for the coordinate representation
of a linear map for a biorthogonal basis ({ei}Ni=1, {ẽi}Ni=1) for a Hilbert space.
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Exercise 1. Derive the matrix representation for a rotation by θ◦, counter-
clockwise, using the the above ansatz.

For the above example of a rotation, we can easily determine the linear map
that “inverts” the effect of the rotation, just use −θ◦ instead of θ◦ and it is
obvious that this is also a linear map. In general, the question when an inverse
of a linear map exists is more subtle.

Proposition 1.1. Let V,W be linear spaces and T : V →W be a linear map.
Then T is invertible when it is bijective (one-to-one) and surjective (onto)
onto W . T then has an inverse T−1 : W → V that is a linear operator and
satisfies

T−1T = Id TT−1 = Id.

An important and non-trivial fact in the above proposition is that the inverse
of a linear map T : V → W is also a linear map T−1 : W → V going in the
“opposite direction” from W to V . At least intuitively it is easy to see that
bijectivitiy (one-to-one) and surjectivity (onto) are necessary conditions for
the existence of such a map. For example, if bijectivity would not hold and
T (v) = T (v̄) = w ∈W then it would not be clear if T−1(w) should map to v or
v̄. Similarly, if surjectivity would not hold then would be T−1(w) for a w not
in the image of T . Unsurprisingly, the coordinate representation of the inverse
T−1 of a linear map T is the inverse of a matrix. This provides a practical
means to determine the inverse.2

Although an inverse in the above sense is commonly used, for an application
it might be irrelevant which v ∈ V we use as long as T (v) = w for w ∈ T .
Additionally, if multiple v ∈ V exist then we might be able to enforce additional
properties that are useful for an application at hand. The pseudo inverse
provides such a relaxed notion of the inverse.3

2In practice, only very rarely the inverse T−1 is needed explicitly but one typically seeks
for a given w ∈W a v ∈ V such that w = T (v). Then v should be determined by solving the
linear system associated with w = T (v).

3In the literature sometimes also the name ‘generalized inverse’ is used instead of ‘pseudo
inverse’.
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Definition 1.5. Let V,W be linear spaces and T : V →W be a linear map. A
left pseudo inverse T−1

L of T is a linear map T−1
L : W → V such that

T−1
L T = Id.

A right pseudo inverse T−1
R of T is a linear map T−1

R : W → V such that

TT−1
R = Id.

When T has an inverse in the sense of Proposition 1.1 then the left and right
pseudo inverse coincide and they are equal to the inverse T−1.

Note that in contrast to the inverse the pseudo inverse is in general not
unique. For example two different right pseudo inverses T−1

R and T̄−1
R can

yield v = T−1
L (w) and v̄ = T̄−1

L (w) and both are valid as long as T (T−1
L (w)) =

T (T̄−1
L (w)) = w.

Example 6. Let V,W be Hilbert spaces and T : V →W . Then the Moore-
Penrose pseudo inverse T+ of T is the linear operator T+ : W → V such
that v = T+(w) is the solution to w = T (v) that has minimum L2 norm.

We will see in Proposition 1.8 that the Moore-Penrose pseudo inverse can
also efficiently be determined numerically. Alternative characterizations of the
Moore-Penrose pseudo inverse exists. Those in Example 6 emphasizes one of
the properties of particular practical importance since it yields a vector v that
is most “regular”.4

When an inner product is available, then next to the inverse another linear
map is associated with a linear operator T .

Proposition 1.2. Let V,W be Hilbert spaces and T : V → W a linear map.
Then the adjoint T ∗ of T is a linear map T ∗ : W → V such that

〈T (v), w〉W = 〈v, T ∗(w)〉V

for all v ∈ V and w ∈W . A linear map A : V → V is self-adjoint when

〈T (u), v〉 = 〈u, T (v)〉

for all u, v ∈ V .

Similar to the inverse, the adjoint T ∗ to a linear map T is a map in the
opposite direction from W to V . However, for the adjoint only an equality in
terms of the inner product, for example measurements, has to hold. Adjoint
operators play an important role in physics, and in computer graphics they
have found applications for example for light transport.5

4The notion of L2 regularity that we used here is a weak. Nonetheless, as we will see in
the following it plays a central in linear least squares problems.

5Christensen, “Adjoints and Importance in Rendering: an Overview”.
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Example 7. Let At : V → V be the linear operator describing the time
evolution of a system by ft = Atf0 where ft is the system state at time t and f0

the state at the initial time t = 0. For example, the system can be a pendulum
for small time t, in which case At is a time dependent rotation matrix that
determines the rotation of the pendulum, or a fluid with ft being the fluid
density at time t, in which case At is infinite dimensional and will be discussed
in more detail in the next chapter. A measurement M of such a dynamical
system, yielding a value that in principle can be determined using a physical
measurement device, is then usually given by Mt = 〈ft,m〉. We hence have

Mt = 〈ft,m〉 (1.10a)

= 〈Atf0,m〉 (1.10b)

= 〈f0, A
∗
tm〉 (1.10c)

= 〈f0, A−tm〉 . (1.10d)

The last equality can be seen as a definition of A−t but for most physical
systems one can indeed show that A∗t is obtained by inverting the sign for time,
an immediate consequence of time reversibility.

Can one work this out for pendulum or
rotation?

Numerically, again the coordinate representation of the adjoint is needed.
Let V,W be Hilbert spaces and T : V →W be a linear map. From our previous
discussion we already know that it suffices to study the effect of T on basis
vector. Hence, let {ei}ni=1 be a basis for V and {fj}mj=1 a basis for W . Then

〈Tei, fj〉W = 〈ei, T ∗fj〉V (1.11a)

and by introducing the matrix representations, analogous to Eq. 1.8, we have

Tji = T ∗ij . (1.11b)

Hence, the coordinate representation of the adjoint T ∗ is given by swapping
the indices of T , that is by the transpose TT of T , providing a practical means
to obtain T ∗ numerically. The coordinate representation of a self-adjoint linear
map is hence given by a symmetric matrix.

A self-adjoint operator enforces equality of the inner product when it is
applied to one argument. A linear map that preserves the inner product when
applied to both arguments is orthogonal.

Definition 1.6. Let V be a Hilbert space and T : V → V be a linear operator.
Then T is unitary or orthogonal when for all v ∈ V :

〈T (u), T (v)〉 = 〈u, v〉 .

In the infinite dimensional case or when the linear space V is defined over the
complex numbers then a map satisfying the above condition is usually denoted
as unitary, in the real and finite dimensional case it is called orthogonal.
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Proposition 1.3. Let V be a finite dimensional Hilbert space. The coordinate
representation of an orthogonal linear map T : V → V is an orthogonal
matrix T̄ satisfying

T̄ T̄−1 = T̄−1T̄ = Id.

Exercise 2. Show that the above proposition holds.

We have by definition of an orthogonal operator for an orthonormal basis
{ei}ni=1 for V that

〈T (ei), T (ej)〉 = 〈ei, ej〉 (1.12a)

and by the orthonormality of the basis this equals

〈T (ei), T (ej)〉 = δij . (1.12b)

Writing the operators and the inner product in their coordinate representation
we have

n∑
a=1

(
n∑
b=1

Tab e
i
b

)(
n∑
c=1

Tac e
j
c

)
= δij (1.12c)

and taking the adjoint of Tab and reordering the summations yields

n∑
b=1

n∑
c=1

eib e
j
c

(
n∑
a=1

Tba Tac

)
= δij . (1.12d)

Since the last equation has to hold for all tupled (i, j) we have to have

n∑
a=1

Tab Tac = TT · T = Id. (1.13)

Since V is finite dimensional TT · T = Id also implies T · TT = Id.

Proposition 1.4. An orthogonal matrix T has rows and columns that are
orthonormal as vectors. For example, for the columns it holds

n∑
a=1

Tac Tbc = δab. (1.14)

Exercise 3. Show that the above proposition holds.

An alternative perspective on orthogonal matrices is as rotations. Indeed,
we have both in R2 and R3 that rotation matrices, for example

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
(1.15)
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are orthogonal by the Pythagorean trigonometric identity.6 The above definition
using either the orthonormality of columns or that the inverse is given by the
transpose are those that work for arbitrary dimensions, whereas formulas in
terms of the rotation angles are only available in two or three dimensions. We
will see yet another perspective on orthogonal matrices in the next section.

A classical example for linear maps, and one that is of considerable impor-
tance in practice, are change-of-basis maps. In fact, their matrix representation
are the bases matrices we already encountered in the foregoing. It might seem
that it does not make sense to abstractly talk about such maps without a coor-
dinate representation but we will see that this is not the case in the following
in Sec. 1.5.2.

Proposition 1.5. Let V be a Hilbert space with orthonormal basis {ei}ni=1,
and let {fi}mi=1 be an arbitrary frame for V . Then the basis matrix Bei(fj)
of {fi}mi=1 with respect to {ei}ni=1 given by

Be(f) =

 〈f1, e1〉 · · · 〈f1, e1〉
...

. . .
...

〈fm, en〉 · · · 〈fm, en〉

 ∈ Rm×n.

provides the change-of-basis from {ei}ni=1 to {fi}mi=1 so that v(f)1

...
v(f)m

 = Be(f)

 v(e)1

...
v(e)n


where the v(e)i are the coefficients of v ∈ V with respect to {ei}ni=1 and the
v(f)i are those with respect to {fi}mi=1.

We have already derived part of this result before and the reader should recall
how the matrix B can be derived. Proposition 1.5 shows that the basis matrix
provides on the one hand the numerical representation of the basis, since every
row is the basis expansion of one of the basis functions fi, and at the same time
a way to determine the expansion function coefficients for the basis or frame.
This viewpoint further strengthened by the next result.

Proposition 1.6. Under the assumptions of the foregoing proposition, the
columns of a right pseudo inverse B−1

R contain the basis expansion of the dual
frame functions f̃i with respect to {ei}ni=1 so that

v =

m∑
i=1

〈
v, f̃i

〉
fi.

6By Euler’s theorem, which states that every rotation in R3 can be expressed as a rotation
around a suitably chosen axis, it suffices to consider the two-dimensional case.
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Note that the role of the f̃i is fixed when the right pseudo inverse B−1
R is used

to obtain them. When the fi are used for analysis to obtain the coefficients vi,
that is

v =

m∑
i=1

〈v, fi〉 f̃i (1.16)

then a left pseudo inverse B−1
L has to be employed to obtain the f̃i. Also recall

from Proposition 1.1 that in the case B has a regular inverse then the pseudo
inverse coincides with the inverse. This is the case when {fi}mi=1 forms a basis
and m = n and the f̃i are then the biorthogonal dual basis functions. Since then
B−1B = BB−1 = Id for a biorthogonal basis the primary and dual functions
can both be used for projection and reconstruction.

This concludes our discussion of the fundamental properties of linear opera-
tors. Such operators will play a central role in all subsequent chapters.

Homework 3. Show that the space of linear maps T : V →W from a linear
space V to a linear space W has itself the structure of a vector space. Begin
by developing the linear structure for the space of m× n matrices.

1.5.2 Eigen and Singular Value Decomposition

Operators and their representation as matrix are often abstract and unintuitive.
The eigen and singular value decomposition provide important tools to analyze
and understand operators. Let us begin by recalling what we mean by an
eigenvector and an eigenvalue.

Definition 1.7. Let V be a Hilbert space space and T : V → V a linear map
on V . An eigenvector v of T satisfies

Tv = λv

and λ is an eigenvalue of T .

Eigenvectors and eigenvalues are also only defined for a linear map T : V → V
that maps a linear space into itself. A generalization that is defined also when
T : W → V is the singular value decomposition that will be introduced at
the end of the section. Note that v does not have to be unique, even when
we identify linear dependent vectors, and then a nontrivial subspace of V is
associated with the eigenvalue λ. Typically one assumes that eigenvectors are
normalized, that is ‖v‖ = 1, and then the only degree of freedom that is left is
the sign of the eigenvalue, that is we have (λ, v) and (−λ,−v) both represent
the same eigenvalue-eigenvector pair.

Example 8. Let R be a rotation in R3. Then R has an eigenvalue λ = 1 so
that Rv = v. The eigenvector v that is preserved under R is the rotation axis
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and we see that any rotation in R3 can be considered as a two-dimensional
rotation around a fixed axis. The result is known as Euler’s theorem.7

Draw figure

Example 9. In Definition 1.4 we introduced the kernel of a linear map. By
Definition 1.7 we can characterize the kernel of a map T as the subspace of V
associated with the eigenvalue λ = 0. This characterization is computationally
important since it enables to numerically determine the kernel of a linear map
in its coordinate representation.8 By Theorem 1.3 below, the eigenvectors
associated with kernel thereby have to be chosen such that they are orthogonal
to all remaining eigenvectors. In the finite dimensional case, this uniquely fixes
the eigenvectors that span the kernel.

As a concrete example let us consider the projection Px onto the x-axis in
R2:

Draw figure for x-projection in R2.
The matrix representation of Px is given by

Px =

(
1 0
0 0

)
(1.17)

and it is immediately apparent that the eigenvalues and eigenvectors are:

λ1 = 1 v1 = (1.0, 0.0)T

λ2 = 0 v2 = (0.0, 1.0)T
. (1.18)

It holds for arbitrary projection operators that the eigenvalues are all either
zero or one. The example of Px is a special case of a diagonal matrix which we
will consider again in Example 10.

Theorem 1.3 (Spectral Theorem for Self-Adjoint Operators). Let H be a
Hilbert space and T a compact, self-adjoint operator. Then the eigenvectors vi
of T provide an orthonormal basis for V and the eigenvalues of T are real.

Obviously, the above result also holds in the finite dimensional case. T is then
self-adjoint when it is symmetric and compactness is always satisfied. When
T is not symmetric one will obtain complex-valued eigenvalues. In the infinite
dimensional case various generalizations beyond the case of compact operators
exist but since their treatment would require considerable additional technical
machinery we restrict ourselves to the above result and exclusively consider the
finite dimensional case in the following. However, we will consider a special
instance of the infinite dimensional case in the next chapter.

7For a proof see for example (Marsden and Ratiu, Introduction to Mechanics and Sym-
metry: A Basic Exposition of Classical Mechanical Systems, Chapter 9.2).

8Strictly speaking, due to the limited precision of computers, only the numerical kernel
can be determined, say up to floating point precision.
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Example 10. Let D be a diagonal matrix, that is a square matrix satisfying

D =


d1 0 · · ·
0 d2 0 · · ·

. . . . . . . . .
· · · 0 dn−1 0

· · · 0 dn

 (1.19)

Then the kth eigenvalues and the associated eigenvector are given by

λk = dk vk = (0, · · · , 1, · · · , 0)T (1.20)

where the kth element of vk is non-zero.

Example 11. Let C be a circulant matrix, that is a square matrix satisfying

C =


c0 cn−1 · · · c2 c1
c1 c0 · · · c3 c2
...

. . .
...

cn−2 cn−3 · · · c0 cn−1

cn−1 cn−2 · · · c1 c0

 (1.21)

The eigenvalues and eigenvectors of C are complex since C is not symmetric.
Through the special structure of C the eigenvectors and eigenvalues have an
analytic form. The eigenvectors are given by

vk = (1, ωk, ω
2
k, · · · , ωn−1

k ) , ωk = e2πik/n (1.22)

where i is the imaginary unit with i =
√
−1. The corresponding eigenvalues are

λk = c0 + cn−1ωk + · · ·+ c1ω
n−1
k . (1.23)

The vi are related to discrete Fourier basis functions, which arise for example
in the discrete Fourier transform. Their connection to the harmonics can be
seen by Euler’s formula eiθ = cos θ + i sin θ so that

ωk = e2πik/n = cos (2πi k/n) + i sin (2πi k/n) (1.24a)

= cos (2πi λk) + i sin (2πi λk) (1.24b)

with the λk being equidistant samples on [0, 1]. Hence, the vk are the discrete
Fourier transform functions sampled at λk.

figure
This also implies that the vk are orthogonal. In the following chapter, we

will also see the infinite dimensional analogue of this example.

Except for special cases, we have to compute the eigenvalues and eigenvectors
numerically using tools from numerical linear algebra,9 a subject that goes
beyond the present notes.

9For an introduction see for example (Golub and Van Loan, Matrix Computations).
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Remark 1. An alternative perspective on the eigen decomposition of a matrix
is to consider it as a factorization of the form

A = USUT (1.25a)

where U is the orthogonal matrix whose columns are the eigenvectors and S is
diagonal with the eigenvalues being the nonzero entries, that is

A =

v1 · · · vn



λ1

λ2 0
. . .

0 λn−1

λn


 v1

...
vn

 . (1.25b)

Since U is orthogonal its columns form an orthonormal basis, cf. Proposition 1.4,
and UT is the change of basis matrix into this basis. By Eq. 1.25a, the action
A(v) of A applied to v can also be understood as first transforming v using
UT into a basis where A is diagonal, then applying A in its diagonalized form
by S, and then transforming back to the original basis so that the result of
(USUT )(v) indeed equals A(v). The eigen decomposition is hence also often
denoted as the diagonalization of an operator.

Exercise 4. Consider the linear map

A =

(
1.6250 0.6495
0.6495 0.8750

)
. (1.26)

Determine and interpret its eigen decomposition.

Since A is symmetric it has a real eigen decomposition given by

A = USUT =

(
0.87 −0.50
0.50 0.87

)(
2.0 0.0
0.0 0.5

)(
0.87 0.50
−0.50 0.87

)
. (1.27)

By construction, the change of basis matrix U is given by

U = R(30◦) =

(
cos θ − sin θ
sin θ cos θ

)
. (1.28)

Hence, A(v) corresponds to a change of basis to a coordinate basis that is
rotated by 30◦ with respect to the standard basis for R2, then a scaling in the
rotated coordinate system, and finally a change of basis back to the standard
basis for R2.

figure: draw the effect of A with a sketch of the rotated coordinate system

The eigen decomposition exists only when T : V → V is a linear map from
a space onto itself. A generalization that is well defined also when T : V →W
is the singular value decomposition.
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Definition 1.8. Let V,W be finite linear spaces and T : V → W be a linear
map. Then u ∈ W is a left singular vector and v ∈ V a right singular
vector of T when

T v = σ u

and σ is the singular value associated to (u, v).

The singular value decomposition also exists in the infinite dimensional case
but we will not consider it here.10 The importance of the singular vectors and
values stems from the following proposition.

Proposition 1.7. Let V,W be Hilbert spaces of dimension n andm, respectively,
and let T : V → W be a linear map. In matrix form the singular value
decomposition is given by

T = UΣV T .

where the columns of U are formed by left singular vectors ui and the columns of
V by right singular vectors vi, and Σ is a quasi-diagonal matrix whose nonzero
entries are the singular values. Moreover, the left singular vectors {ui}ni=1

form an orthonormal basis for W and the right singular vectors {vi}mi=1 an
orthonormal basis for V .

It is customary to order the singular values in non-decreasing order so that
σi ≥ σi+1 and we will follow this convention in the following. It follows from
the definition that only for T and m× n matrix there are at most min(m,n)
nonzero singular values.

Remark 2. For a rectangular matrix T ∈ Rm×n the matrix Σ is only quasi-
diagonal. For m < n this means

Σ =

σ1 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · σm 0 · · · 0

 (1.29)

and the matrix has the form of the m×m identity matrix with an m× (n−m)
block that is a zero matrix adjoining on the right. Conversely, when m > n
then Σ has the form

Σ =



σ1 · · · 0
...

. . .
...

0 · · · σn
0 · · · 0
...

. . .
...

0 · · · 0


. (1.30)

10For the infinite dimensional case see for example (Stakgold and Holst, Green’s Functions
and Boundary Value Problems) or Lax (Lax, Functional Analysis, Chapter 30).
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Remark 3. The eigen decomposition is a special case of the singular value
decomposition. Because of the significance for quantum mechanics, the eigen
decomposition has been developed earlier and in more detail.

Example 12. Consider the linear map

A =

(
0.55 −0.52
0.55 0.35

)
. (1.31)

Its singular value decomposition is given by

A = UΣV T =

(
0.87 −0.50
0.50 0.87

)(
0.80 0.0
0.0 0.60

)(
0.94 0.34
−0.34 0.94

)
(1.32)

The effect of the transformation, sequentially by first applying V T , then Σ, and
then U , one the canonical basis (e1, e2) is shown below (from left to right, top
to bottom):

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

Analogous to the eigen decomposition, we can also interpret the singular value
decomposition as a diagonalization of an operator. Since the domain and target
of the operator do not coincide, two bases are required for this diagonalization,
and this are the bases formed by the left and right eigenvectors. In the above
example, we can interpret the singular value decomposition as representing A
as a rotation by V T , then a scaling by Σ along the rotated axes, followed by
another rotation by U .

As an example for the manifold applications of the singular value decom-
position we return to the pseudo inverse introduced in Definition 1.5 and
Example 6.
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Proposition 1.8. Let T : Rn → Rm be a linear map with singular value
decomposition T = UΣV T . Then the Moore-Penrose pseudo-inverse T+ of is
given by

T+ = V Σ+ UT (1.33)

where Σ+ is the diagonal matrix whose ith diagonal element is given by 1/σi,
that is Σ+ is obtained by inverting the diagonal entries.

The above proposition provides a practical means to compute the Moore-
Penrose pseudo inverse. Note that as a special case one also obtains means
to compute the inverse. This technique is however more expensive than using
state-of-the-art numerical techniques.11

Exercise 5. Show that the inverse of a square diagonal matrix

D =

d1 · · · 0
...

. . .
...

0 · · · dn

 (1.34)

is given by

D−1 =

1/d1 · · · 0
...

. . .
...

0 · · · 1/dn

 . (1.35)

Exercise 6. As an application of the pseudo inverse we will consider linear
least squares. The problem is to estimate the parameters of a function, for
example of a polynomial

pk(x) =

k∑
i=0

aix
k (1.36)

from m noisy measurements (xi, yi), such as

11As remarked before, in almost all applications one should not explicitly compute the
matrix inverse but instead solve the associated linear system.
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1.0 0.5 0.0 0.5 1.0
1.2

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

For the above data a reasonable model seems to be a first order polynomial,
that is p(x) = a0 + a1 x. However, the data clearly does not perfectly lie on a
line, since the measurements were contaminated with noise, and we also have
far too many measurements to directly determine the two parameters a0 and
a1. Clearly, we would like to use the fact that we have m >> 2 measurements
to make our estimate robust and average out the contribution of the noise.

The measurements should all satisfy the linear equation. Hence we have

y1 = a0 + a1x1

y2 = a0 + a1x2

· · ·

ym = a0 + a1xm

Since the a0,a1 are identical for all equations we can write equivalently as
matrix-vector equation

y =

 y1

...
ym

 =

1.0 x1

...
...

1.0 xm

(a0

a1

)
= Xa. (1.37)

The above equation is an overdetermined linear system. Hence, a solution
can be determined using a pseudo inverse as a = P−1

L y. But which pseudo
inverse should be used? One can show that the Moore-Penrose, which can be
determined using the singular value decomposition, yields the solution ā that
minimizes the quadratic error12

E(a0, a1) =

n∑
i=1

‖yi − pa0,a1
(xi)‖2 . (1.38)

One can show that the minimizer can also be determined without the pseudo
inverse by solving the normal equation

XT y = XTXa. (1.39)
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Now let us assume that we are given are the following measurements:

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

Choose a suitable polynomial to approximate the data and compute the solution
of the least squares problem both using the pseudo inverse, determined from
the pseudo inverse, and the normal equation.

What is linear about the above least squares problem? Or equivalently, what
least squares problems can be solved efficiently? Linearity means, as in the
general definition, that we consider “vectors”, here the unknown polynomial of
degree k, that are linear combinations of basis vectors, here the elementary
polynomials xi, with weights ai. This is a first example of a vector space whose
elements are functions. We will study such spaces in much greater detail in the
next section. An example of a set of measurements where linear least squares
is no longer sufficient is:

0 10 20 30 40 50 60 70
0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

The data are measurements from a damped wave phenomenon
u(t) = û e−δt sin (ω t+ ω̂) (1.40)

with the harmonic part representing the wave and the exponential decay the
linear damping. In Eq. 1.40 û is the amplitude of the wave, δ is the damping
coefficient, ω = 2πf is the angular frequency, and ω̂ the phase shift. Deter-
mining the unknown parameters û, δ, ω, and ω̂ from the measurements (ui, ti)
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Figure 1.1: A group can be considered as the set of possible transformations of a set
such as the possible arrangements, or permutations, of “color tiles” on a 2× 2 panel.

such that the quadratic error

E(û, δ, ω, ω̂) =

m∑
i=1

‖ui − uû,δ,ω,ω̂(ti)‖2 (1.41)

is minimized is a nonlinear problem since parameters appear both in the
exponent of the exponential and inside the sine term. Such a nonlinear least
squares problem requires iterative methods such as the Gauss-Newton algorithm
for its solution.

Solution: See linear_least_squares.py.

Homework 4. Using the singular value decomposition describe the three cases
that exist for the pseudo inverse with respect to the relationship of m and n
for an m× n matrix.

1.6 Linear Spaces as Groups

Groups and their continuous extension, known as Lie groups, are subjects we
will only scratch on in this course. A classical example for Lie groups, and
one of the original templates for the concept, are linear spaces. Lie groups will
be discussed in Chapter 3.7 but we will already introduce the regular group
structures of linear spaces at this point.

Definition 1.9. A group G is a set with a binary group multiplication

g ◦ h = gh : G×G→ G, g, h ∈ G
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that is closed in the set and associative so that f ◦ (g ◦ h) = (f ◦ g) ◦ h. The
identity element e of a group is the unique element such that

e ◦ g = g ◦ e = g

for all g ∈ G. For every group element g ∈ G there exists a unique inverse
element g−1 such that

g ◦ g−1 = g−1 ◦ g = e.

A group is Abelian if group multiplication commutes and g ◦ h = h ◦ g for all
g, h ∈ G.

Example 13. A classical example for a group are permutations, Fig. 1.1. A
permutation σ is a bijection (1, . . . , k)→ (σ(1), . . . , σ(k)) that rearranges the k
elements in its domain. It is often written as(

1 · · · k
σ(1) · · · σ(k)

)
where σ(i) denotes the ith element of the permuted set. The set of all such
bijections forms the permutation group Sk. Group multiplication for Sk is
the sequential application of two re-orderings, the identity element e is the
permutation that leaves all elements at their original place, and the inverse σ−1

of a permutation σ returns all elements to the position before σ was applied.
Some additional useful notions for permutations are as follows. A permuta-

tion σ is a transposition when exactly two elements are interchanged; it is odd
when it consist of an odd number of transpositions, while it is even when it can
be decomposed into an even number of transpositions, and through the group
structure these notions are well defined. The sign sgn (σ) of a permutation is

sgn (σ) =

{
1 σ is even
−1 σ is odd

Permutations will also play an important role in Chapter 3.3 and Chapter 3.4
for working with tensors and differential forms.

Let us now consider a linear space as a group, cf. Def. 1.1.

Exercise 7. Show the group structure for a linear space V .

Solution: The group multiplication of V is given by vector addition and since
addition is commutative V is in fact an Abelian group. The identity element
e of the group is the zero vector and the inverse of an element v ∈ V is −v
since then v + (−v) = 0.

Many more objects we already encountered, such as linear maps, have a
group structure, but we will return to the subject later in Chapter 3.7.

When one encounters groups in an unfamiliar context it often useful to
recall the permutation group or a linear space, such as Euclidean space. The
additional Lie group structure of a linear space corresponds intuitively to the
possibility to smoothly change the group elements. For a permutation group
such a possibility does not exist.
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1.7 Affine Spaces

In the foregoing, we always used R2, or more generally Euclidean space, as
an example of a vector space. However, this model can only represent vectors
starting at the origin and not point and the translation of points using vectors.
A model for Euclidean space that incorporates both points and vectors is an
affine space. Another model, which subsumes the previous ones, follows in
Chapter 3.

Definition 1.10. An affine space is a set A together with a vector space V
and a map

t : V ×A→ A : v + a→ b

for a, b ∈ A and v, w ∈ V , that satisfies

i) identity: 0 + a = a, ∀a ∈ A;

ii) associativity: (v + w) + a = v + (w + a);

iii) uniqueness: v + a = b is a bijection .

The last property of the translation map ‘+’ ensures the existence of well
defined inverse which is denoted by ‘−’ and which allows to combine two
elements of A to form a vector, that is v = a− b. An affine space is sometimes
denoted as a vector space where one forgot the origin since vectors are no longer
required to be based on the origin but can start from any point in the plane.

Example 14. Euclidean space E2 is the two dimensional plane together with
the vector space R2.

It is common to use Rn for both the vector space and the affine space En.

Remark 4. The name ‘affine’ comes from affine combinations of the form

λa+ (1− λ)b = o+ λ(a− o) + (1− λ)(b− o) (1.42)

for a, b ∈ A and λ ∈ R. In an affine space only such combinations are indepen-
dent of the (in an affine space arbitrary) origin o.

Exercise 8. For the following example, show that only for affine combinations
and not general linear combinations the addition of two points is independent
of the origin in R2. With respect to the usual origin o = (0.0, 0.0), let a =
(1.0, 1.5), b = (−1.4, 1.2) and furthermore let a second origin be ō = (1.0, 1.0).
Also we use λ = 0.75, β = 0.5.
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Solution: For the affine combination with the origin being o we have

λa+ (1− λ)b =

(
0.75
1.125

)
+

(
−0.35

0.3

)
=

(
0.4

1.425

)
. (1.43a)

Moving the origin to ō = (1.0, 1.0) we have ā = (0.0, 0.5), b̄ = (−2.4, 0.2) .
Then

λā+ (1− λ)b̄ =

(
0.75
0.375

)
+

(
−0.6
0.05

)
=

(
−0.6
0.425

)
. (1.43b)

And translating the result back from ō to o we see that the affine combination
is indeed independent of the origin. In contrast,

λa+ βb =

(
0.0

1.125

)
+

(
−0.7

0.6

)
=

(
0.05
1.725

)
(1.44a)

and

λā+ βb̄ =

(
0.0

0.375

)
+

(
−1.2

0.1

)
=

(
−1.2
0.475

)
. (1.44b)

Translated back to the origin we thus have (0.2, 1.475) which does not equal
the result for o.

A central property of affine spaces is that the linear addition of a point by
a vector yields again a point in the space. Manifolds, which will be studied
in Chapter 3, are spaces that are not closed under linear addition but where
nonlinear curves are needed to connect points in the space.

Remark 5. An affine space is an example of a group action, here the action of
a linear space considered as a group, on another space or set. We will study
this idea in more detail in Chapter 3.7.

TODO: Affine transformations, in affine space translations are defined,
which is not case in a vector space; to represent it as a linear map one needs
homogeneous coordinates, that is translations are not linear maps with respect
to the vector space structure.

1.8 Further Reading

The abstract perspective on linear spaces is discussed for example by Lax.13
Classical texts on matrix theory are those by Horn and Johnson14 and by Golub
and van Loan.15

13Lax, Linear Algebra and Its Applications.
14Horn and Johnson, Matrix Analysis.
15Golub and Van Loan, Matrix Computations.





Chapter 2

Signal Processing and
Applied Functional Analysis

In this section, we will study one of the most important class of examples for
linear spaces: linear spaces whose elements are continuous functions, so called
function spaces. Elements in function spaces that correspond to a quantity
or phenomenon in the real world are often called “signals", in particular in
engineering and the sciences. In computer graphics, signal processing and
applied functional analysis play important roles for example in rendering,1 for
the representation of signals and curves,2 and for mesh processing.3

2.1 Functions as Vectors in a Linear Space

In this chapter, we will consider spaces of functions. Hence, we will begin by
making precise what we mean by a function.

Definition 2.1. Let X be a set. A function is a map

f : X → R

into the real numbers R.

1For example in precomputed radiance transfer, cf. (Lehtinen, “A Framework for Precom-
puted and Captured Light Transport”; Ramamoorthi, “Precomputation-Based Rendering”),
for radiosity, e.g. (Zatz, “Galerkin Radiosity: A Higher Order Solution Method for Global Illu-
mination”; Gortler, Schröder, Cohen, and Hanrahan, “Wavelet Radiosity”; Schröder, Gortler,
Cohen, and Hanrahan, “Wavelet Projections for Radiosity”), or for the representation and
interpolation of light intensity, e.g. (Lehtinen, Zwicker, Turquin, Kontkanen, Durand, Sillion,
and Aila, “A Meshless Hierarchical Representation for Light Transport”; Mitchell, “Spectrally
Optimal Sampling for Distribution Ray Tracing”)

2For example, (Schröder and Sweldens, “Spherical Wavelets: Efficiently Representing
Functions on the Sphere”; Schröder and Sweldens, “Spherical Wavelets: Texture Processing”;
Finkelstein and Salesin, “Multiresolution Curves”).

3For example (Taubin, “A Signal Processing Approach to Fair Surface Design”; Öztireli,
Alexa, and Gross, “Spectral Sampling of Manifolds”; Sorkine, “Laplacian Mesh Processing”).

25



26

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−2

−1

0

1

2

Figure 2.1: Our running example in this section will be the space H4 ≡ H≤4([0, 1])
over [0, 1] spanned by the first five Legendre polynomials Pi(x).

For us, a function is hence the special case of a map A : X → Y whose
target (or codomain) is always the real numbers. We could also consider
functions as mappings into the complex numbers but since the applications in
computer graphics are very limited and it removes (maybe) much of the intuitive
understanding we have about functions we will restrict us to the real-valued
case. In Definition 2.1 we allowed functions to be defined over arbitrary sets.
In this section we will usually consider X = Rn, and for a few example also
X = S2, and in Chapter 3 we will study functions over arbitrary manifolds.

Definition 2.2. A function space F (X) is a linear space whose elements are
functions f : X → R with addition of elements of F (X) defined by pointwise
addition

f + g |x = f(x) + g(x)

and scalar multiplication by

a f |x = a f(x)

for f, g ∈ F (X) and a ∈ R.

We see in the above definition that the linear operations of elements of a
function space are reduced to scalar operations on real numbers, cf. Fig. 2.2.
The properties that the addition operation in a linear space has to satisfy are
hence trivially satisfied, cf. Def. 1.1. In the following, we will show how the
different structures that we introduced in general in the last chapter are realized
for function spaces. Let us begin by giving some examples of function spaces.

Example 15. The space Pk spanned by all polynomials up to degree k is a
function space. As a running example we will consider in this chapter the space
H4 ≡ H≤4([−1, 1]) on [−1, 1] spanned by the first five Legendre polynomials
Pi(x), cf. Fig. 2.2. Explicitly, the Pi are given by

P0(x) = 1 (2.1a)

P1(x) = x (2.1b)

P2(x) =
1

2

(
3x2 − 1

)
(2.1c)
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Figure 2.2: A function f(x) that is the linear combination f(x) = 0.5g1(x)+0.6g2(x)+
0.7g3(x) of three function gi(x) shown in the background.

P3(x) =
1

2

(
5x3 − 3x

)
(2.1d)

P4(x) =
1

8

(
35x4 − 30x2 + 3

)
(2.1e)

and they form a basis for Pk([−1, 1]).

Exercise 9. In physics one often has vector valued functions ~f : R3 → R3.
We will consider applications of these functions and the underlying structure
in detail in Sec. 3. Introduce a notion of vector addition for such functions
such that one obtains a vector space of vector valued functions.

Solution: TODO: should follow immediately since in fiber-wise vector
addition satisfies the axioms.

Definition 2.3. Let X = Rn. The Lebesgue space Lp(Rn) for 1 ≤ p ≤ ∞ is

Lp(Rn) = {‖f‖p | f : Rn → R}

where the Lp norm ‖ · ‖p for 1 ≤ p <∞ is defined as

‖f‖p =

(∫
Rn
|f(x)|p dx

)1/p

and for p =∞ as

‖f‖∞ = {C ≥ 0 | |f(x)| ≤ C , ∀x ∈ Rn} .

The Lp-spaces are Banach spaces.

The Lp spaces above are the continuous analogues of the discrete `p that we
have already encountered in Chapter 1.2.1. The above definition of Lp spaces
can be generalized beyond Rn by either using measure spaces or with the notion
of integration that is defined on manifolds. We will study the latter approach
in Chapter 3.4.
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Remark 6. For us, the Lp-spaces themselves are typically not of particular
interest. The functions of interest will usually be in all reasonable function
spaces, which, as we will see in the following, is a consequence of our restriction to
finite computations. It often also follows from modelling real world phenomena.
The more important question for us is what does the Lp norms, or other norms
we can consider, measure and do they represent the quantity or behaviour of
interest to us. The norms most commonly used thereby are the L1, L2, and L∞
norm. Compared to the L1 norm, the L2 norm is more sensitive to regions of
extreme values, since squaring amplifies these, but less sensitive to regions with
small values, since squaring further diminishes their contribution in the norm.
Obviously, which norm is most appropriate will depend on the application.

Definition 2.4. For X = Rn, the Sobolev space W k,p(Rn) for integers k ≥ 0
and 1 ≤ p <∞ is the space

W k,p(X) = {f ∈ Lp(X) | (Dαf) ∈ Lp(X) , ∀|α| ≤ k} . (2.3)

Hence, for f to be in a Sobolev space all mixed derivatives Dα whose total
order |α| is at most k have to lie in the Lebesgue space Lp(X), where α is a
multi-index. When suitably completed, the Sobolev space W k,p forms a Banach
space whose norm is given by

‖f‖k,p =

∑
|α|≤k

(
‖Dαf‖p

)p1/p

(2.4)

where the summation is over all mixed derivatives of at most order k. For
p = ∞ Sobolev spaces are defined analogously to the corresponding Lebesgue
spaces.

In contrast to Lp spaces, the norm on Sobolev spaces also takes the derivative
into account. It should then come at no surprise that Sobolev spaces play
an important role in the theory of partial differential equations. As a last
example for a Banach we consider another space that imposes a constraint on
the derivative, and hence how wildly a function can vary.

Example 16. Let X = R. The variation V ba (f) of a function f : R→ R is

V ba (f) =

∫ b

a

|f ′(x)| dx. (2.5)

The space of functions with bounded variation BV([a, b]) is hence defined as

BV([a, b]) =
{
f ∈ L1([a, b]) | V ba (f) <∞

}
(2.6)

and it is a linear subspace of L1([a, b]). Moreover, with the norm

‖f‖BV = ‖f‖1 + V ba (f) (2.7)

the space BV([a, b]) is a Banach space. In higher dimensions and over more
complex domains, the space of functions of bounded variation can be defined
using distributional derivatives. It should be noted that the space of functions
of bounded variation is not separable.
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The space BV ([a, b]) is used for example in integration theory and we will
encounter it again in Chapter 2.4.4. As in the general case, the function spaces
that are most useful are Hilbert spaces where an inner product is available.
Recall that the Riesz representation theorem then enables to identify functionals
α ∈ H̃ on the space, which map elements to real numbers and can be interpreted
as general measurements, to functions f ∈ H in the space with the action being
realized through the inner product

α(f) = 〈gα, f〉 . (2.8)

As in the discrete case, the space L2(Rn) is also in the case of function spaces a
Hilbert space.

Example 17. The Lebesgue space L2(Rn), cf. Example 2.3, is a Hilbert space
with inner product

〈f, g〉 =

∫
Rn

f(x) g(x) dx. (2.9)

The L2-inner product is by far the most common inner product encountered
for function spaces and unless mentioned otherwise we will in the following
always assume this inner product for function spaces.

Example 18. Our example space H4 has inner product spanned by the first
five Legendre polynomials is a Hilbert space with L2-inner product

〈f, g〉 =

∫ 1

−1

f(x) g(x) dx. (2.10)

For example, the inner products of the three functions g1(x) (red), g2(x) (blue),
g3(x) (green) with the Legendre basis functions (dotted, in the background),

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−2

−1

0

1

2

are given by:

〈·, P0〉 〈·, P1〉 〈·, P2〉 〈·, P3〉 〈·, P4〉

g1(x) −0.0137 0.0624 −0.1602 0.0498 −0.3708

g2(x) −0.2797 −0.2483 0.4522 −0.9506 0.1003

g3(x) −0.1566 0.2437 −0.6749 −0.1809 0.2355
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Example 19. The Sobolev spaces W k,2(Rn) modelled on the Hilbert spaces
L2(X) are Hilbert spaces, cf. Example 2.4, and the inner product for the spaces
is given by

〈f, g〉 =
∑
|α|≤k

〈Dαf,Dαg〉 (2.11)

where the summation is over all multi-indices α that have at most order k, and
〈 , 〉 is the L2-inner product of Example 17. The spaces area usually denoted as
Hilbert-Sobolev spaces Hs(X) = W s,2(X).

Exercise 10. Let us return to the example of vector valued functions ~f :
R3 → R3. Introduce an inner product for such functions so that an L2 space
can be defined.

Solution: We have an inner product at each point, by taking the inner
product of vectors, and by replacing scalar multiplication by this vector-valued
multiplication we obtain:〈

~f,~g
〉

=

∫
Rn

~f(x) · ~g(x) dx (2.12)

It needs to be shown that this inner product in fact satisfies all necessary
properties, although this is at least reasonable since the pointwise inner product
given by the dot product clearly satisfies them. The L2-space of vector valued
functions is then defined as usual as the space of all ~f that have finite L2

norm.

In the remainder of the section we will almost exclusively discuss L2-type
Hilbert spaces. These are used most often in practice and their theory most
accessible. A discussion of other Hilbert spaces, such as the Sobolev spaces H2,
and Banach spaces would require a more specialized course.

2.2 Bases and Numerical Computations

Since function spaces are special instances of vector spaces, bases and frames
provide the principal means for performing numerical computations with con-
tinuous functions. Sometimes this is thought to be paradoxical: how can one
perform computations with continuous functions on a discrete computer. The
key is that a we want to perform computations on a finite machine. Hence, as
long as our function spaces are finite dimensional we will be able to perform
numerical computations with them. However, the signals of interest will not
always be finite dimensional and hence we have to consider the question which
finite dimensional space, or equivalently which basis, enables to approximate
the signals. Approximation of functions is a subject we will not be able to
discuss in detail but which we will at least introduce in Chapter 2.3.
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Exercise 11. What does it mean for a function to be finite dimensional? Try
to develop a precise notion of the concept. Is it sufficient to consider one
function?

Solution: Every function f is an element of a one-dimensional function space:
the space spanned by f by af with a ∈ R. Hence, the notion of dimensionality
only makes sense if we consider a family of functions. Typically, this are all the
functions that can possibly and reasonably describe a phenomenon of interest.
A useful example, and one that has been studied extensively in the literature,
is the space of natural images.

2.2.1 Orthonormal Bases

• Repeat definition and most important properties of orthonormal bases.

• For finite dimensional Hilbert spaces H: isomorphism from H and Rn.

– Continuous function is equivalent to vector in Rn with the basis
function coefficients providing the coordinates.

– Since we have an isomorphism, all operations in H are mapped to a
corresponding operation in Rn.

∗ Addition.
∗ Scalar multiplication.
∗ ClassExercise: Inner product and L2 norm.
∗ HomeworkExercise: Parseval’s identity.
∗ How this applies to operators, which is called Galerkin projection,
is discussed in Chapter 2.5.3.

– ClassExercise: Verify addition for random signals in H4.

– Remark: Fourier

∗ Fourier series vs. Fourier transform: compactness of domain can
have crucial difference.

∗ Fourier transform has a continuum of basis functions. Summa-
tion has to be replaced by integration but all properties carry
over by analogy.

∗ Historically, Fourier and polynomials (there’s a whole family of
orthogonal polynomials) were the only bases, orthonormal or
not, that were in general considered as practical. It was only
beginning in the 1980s that it was realized that many more bases
could be construct and that these had many useful properties,
like localization in space, that are not available with classical
bases.
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Remark 7. We have seen that orthonormal bases provide a convenient and
powerful way to work numerically with continuous functions. However, to
recover the result we often need the value of the function, at least pointwise for
some locations in the domain. This then requires to evaluate the basis functions.
The requirement that the basis functions have to be evaluable accurately and
efficiently yields a considerable constraint on the number of bases that are
numerically practical.

In our examples we employ Legendre polynomials. In principle, we could
evaluate the polynomials directly by implementing the formulas in Eq. 2.1 and
for H4 this is indeed a viable option. However, already for H10 this approach
would suffer from substantial inaccuracies due to the use of floating point
numbers.4 Instead, the recurrence relation

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x). (2.13)

It is useful to keep in mind that even “elementary functions” such as sin(x) or
log (x) cannot be evaluated directly on a computer but that approximation
algorithms are employed that evaluate them up to machine precision (and
fortunately these are implemented in hardware so that the computation takes
only a few processor cycles).

Remark 8. TODO: Tensor product spaces and based for them. Not compli-
cated but has to be mentioned.

2.2.2 Biorthogonal Bases and Frames

• Repeat definition of biorthogonal bases.

• Frames as overcomplete bases:

• Practical motivation:

– Orthogonal bases are hard to construct and even if one can construct
them they are restrictive. Biorthogonal bases are much easier to
construct and they are flexible enough so that one can incorporate
other desirable properties (although it is typically not easy to enforce
these). What could be such properties? For example, the Legendre
polynomials are symmetric (more precisely symmetric and anti-
symmetric) with respect to the y-axis. Such symmetries are often
desirable since they avoid that one has directional bias in the basis
representation.

– Frames have redundancy which makes them robust against errors
and loss of information.

4The classical Numerical Recipes book writes on the subject: “Come the (computer)
revolution, all persons found guilty of such criminal behavior [the evaluation of a polynomial
by directly evaluating p(x) = a0 + a1x+ a2x2 + · · · ] will be summarily executed, and their
programs won’t be!”, (Press, Teukolsky, Vetterling, and Flannery, Numerical Recipes in C:
The Art of Scientific Computing, Chapter 5.3).
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• Numerical representation:

– Basis matrix that is formed by basis expansion of ψi(x) with respect
to some reference basis, that is each row of B contains the basis
function coefficients for one function ψi(x).

– The reference basis is necessary for example so that we can evaluate
the functions.

– Dual basis is constructed by inverting the basis matrix. For overcom-
plete frames the dual frame is not uniquely defined and numerically
a pseudo inverse has to be employed to compute it; for example,
we can employ the Moore-Penrose pseudo inverse that we discussed
before and that can be computed using the SVD.

Exercise 12. Construct a biorthogonal basis for H4 by generating five random
functions in the space. Verify that the vectors indeed span the space. Plot both
the primary and dual basis functions.

For an arbitrary signal given by its basis function coefficients with respect
to the Pi determine the error that results when the signal is projected into your
biorthogonal basis and then reconstructed. When is the error minimized? Sug-
gest possibilities to improve the quality of your randomly generated biorthogonal
basis.

Solution: See legPlotBiorthoBasis.m. Five randomly generated signals
ψi(x) in H4 are:

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−2

−1

0

1

2

The associated dual basis functions ψ̃i(x) are given by

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−2

−1

0

1

2

Since the biorthogonality condition is satisfied to good accuracy (6.938894×
10−17) the reconstruction error for a signal is also small: 1.028951× 10−15.
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Homework 5. In Example 1 we introduced the Mercedes Benz frame and in
Exercise 1 we generalized it to R3. When we employ the Cartesian coordinates
of the vectors as basis function coefficients for H2 with respect to the Legendre
polynomials Pi then this yields a frame the function space. Is this frame again
a tight frame? Plot the signal f(x) corresponding to the expansions coefficients
f1 = 0.13, f2 = −0.56, f3 = 0.87.

Solution: This is again a tight frame since the Legendre polynomials provide
an isomorphism from H2 to R3.

TODO: Plot signal.

2.3 Approximation of Functions

In the foregoing we assumed that the function f(x) we would like to represent
in a basis or a frame lies in the space F(X) spanned by the representation,
that is g(x) ∈ F(X). In practice, however, one often has a signal in some space
F(X) and wants or needs to represent it in a“smaller” space F(X). For example,
F(X) might be an infinite dimensional space and F(X) a finite dimensional
approximation space spanned by a given basis.

• Distinguish linear vs. nonlinear.

– Linear: fixed approximation space.
– Nonlinear: approximation space is determined based on the sig-

nal. Under certain conditions this is can be achieved surprisingly
effectively.

The distinction between linear and nonlinear approximation is equivalent to a
stratification along other directions:

Linear Approximation Nonlinear Approximation

classical approximation theory modern approximation theory

Fourier / polynomial bases wavelet bases

optimal for smooth functions
with global regularity

optimal for functions with locally
varying regularity and a finite
number of discontinuities.

In the best case, one obtains even in the case of locally varying regularity and
with singularities the same order or approximation as in the globally smooth
case. The key to this result is an adaptation to the local properties of a function
so that the approximation only becomes “finer” where it is necessary. As we will
see in Chapter 2.3.3 only in 1D, and to a good extent in 2D, does this hold and
in higher dimensions the question of how to effectively adapt to singularities is
still not resolved.
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2.3.1 Linear Approximation

• Typically use of Fourier basis and polynomials to approximate functions.

• Optimal for sufficiently smooth function whose smoothness is constant is
essentially constant over the domain.

• Approximation by retaining the first k coefficients (if necessary we can
reorder basis functions). Error is given by remainder term.

For example for function in the Sovolev spaces H2([0, 1]), cf. Example 19,
we have the following result.5

Theorem 2.1. Let f ∈ Hs([0, 1]) Then the linear N -term approximation error

εl(N, f) = ‖f − fN‖2

attained by approximating f in the Fourier basis over [0, 1] is εl(N, f) = o(N−2s)
and this rate is asymptotically optimal.

The Fourier basis over [0, 1] used in the above theorem is discussed in Sec. 2.5.
There we also show how to define Sobolev spaces for non-integer s. Theorem 2.1
shows that the approximation rate increases as functions get smoother and that
we have at least a quadratic convergence as long as our function is differentiable.
However, the convergence rate becomes only linear when f has singularities.
The same approximation rate of εl(N, f) = o(N−2s) can also be attained using
wavelets when these have q > s vanishing moments, see the next section for an
introduction to wavelets. Results analogous to Theorem 2.1 can be shown for
other global regularity classes.

Example 20. L2-optimal approximations (dashed) of three test signals (full
lines), a smooth signal in H30

Leg (red), a smooth signal with singularities (blue),
and a piecewise constant signal (cyan), in H4

Leg:

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
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The same signals approximated in the larger space H20
Leg:

5Mallat, A Wavelet Tour of Signal Processing: The Sparse Way, Theorem 9.1 and 9.2.
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We see how the approximation becomes better as the number of basis functions,
and hence the dimensionality of the approximation space, becomes larger. We
also see the different effectiveness of the Legendre polynomials for different
signals. The smooth parts of the blue signal and the cyan signal are captured
well by the first 20 Legendre polynomials. For neither of the three test signals
the basis can capture the high frequency variations.

TODO: Implement approximation of blue signal with three different bases
(should be in old course notes).

2.3.2 Nonlinear Approximation

• Derive that L2 approximation is equivalent to retaining the largest coeffi-
cients: selects subspace based on the data and is hence a linear process.
Also remainder in sum is error and convergence as N →∞.

– Show that there is a linear (projection type) operator for linear ap-
proximation but not for nonlinear approximation (or that, in this case,
it cannot satisfy the linearity axioms; should follow relatively easily
by choosing a suitable example of two functions where completely
different subspaces are selected.)

• Remark / Example: wavelets.

– TODO: Add figures from adaptive wavelet sampling on local tree
depth. Any additional figures from Mallat

– Provide at least basic introduction in 1D.

– Fast wavelet transform: efficient algorithms.

– ClassExercise: Derive transform from basis representation. Why can
the transform be computed efficiently (Solution: local support of the
basis functions, sums are short)? What would be the structure of
the basis matrix (sparse with only few nonzero entries)?

• Sparsity of representation and nonlinear approximation.

– Inherent to nonlinear approximation: one obtains a vector that in
some sense has many zeros or at least many very small elements.
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– Moreover, this sparsity reflects the essential signal properties, for
example when wavelets are used it shows the spatial location of
singularities.

– Essential difference to linear approximation: in some sense blind to
the signal (well, the basis function coefficients are not . . . but N-term
approximation).

• Language: more words allow to express ideas more succinctly. Similar,
one wants to have highly sparse representations it is often useful to start
with an overcomplete frame and employ only those basis functions that
are useful to model the features of the signal.

– Another motivation for using frames.

– The prize that has to be paid is that there are no longer easy and
efficient techniques to find the optimal set of basis functions that
should be employed and one has to solve an optimization problem.

– Common numerical techniques are basis pursuit and matching pur-
suit.6

To quantitatively analyze the effectiveness of approximations of nonlinear
approximation one needs a mathematical model of functions with local regularity,
that is the type of functions where we have seen that nonlinear approximation
can be useful. One such model is Lipschitz regularity that can be seen as a
generalization of the Taylor series to functions that do not have a classical
derivative.

Definition 2.5. A function f : R→ R is pointwise Lipschitz α ≥ 0 at x̄ if
there exists a K > 0 and a polynomial px̄(x) of degree m = bαc such that7

|f(x)− px̄(x)| ≤ K|x− x̄|α , ∀x ∈ R. (2.14)

A function is f : R → R is uniformly Lipschitz α over [a, b] if the above
Lipschitz condition is satisfied for all x ∈ [a, b] for a K independent of x. The
Lipschitz regularity of f is the supremum of the α such that f is Lipschitz
α. The homogeneous Hölder α norm ‖f‖Cα of f is the infimum of the K
that satisfy the Lipschitz condition in Eq. 2.14 for fixed α.

The exponent α in the above definition is also known as Hölder exponent.
The definition is motivated by the Taylor series for an m times differentiable
function where one has

|f(x)− px̄(x)| ≤ |x− x̄|m
(

1

m!
sup

u∈[x̄−x,x̄+x]

fm(u)

)
(2.15)

6See (Mallat, A Wavelet Tour of Signal Processing: The Sparse Way, Chapter 12) for
details.

7bαc is the largest integer smaller than α.
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for all x ∈ [x̄− x, x̄+ x] where px̄(x) is the Taylor polynomial of order m,

px̄(x) =

m−1∑
k=0

f (k)(x̄)

k!
(x− x̄)k. (2.16)

When f ism times continuous differentiable then px̄(x) is the Taylor expansion of
f at x̄. If 0 ≤ α < 1 then px̄(x) = f(x̄), the “zero-th order Taylor approximation”,
and the Lipschitz condition becomes

|f(x)− f(x̄)| ≤ K|x− x̄|α. (2.17)

Any 0 ≤ α < 1 characterizes the singularity type at x̄ and α = 0 corresponds to
a bounded but discontinuous function at x̄. Using this notion of local regularity
we can present a nonlinear analogue of Theorem 2.1:8

Theorem 2.2. Let f : [0, 1]→ R with K discontinuities and uniform Lipschitz
α between the discontinuities with 1/2 < α < q then the linear approximation
error for wavelet with q vanishing moments is

εl(N, f) = O
(
K‖f‖2CαM−1

)
and the error using nonlinear wavelet approximation is

εn(N, f) = O
(
‖f‖2CαM−2α

)
.

The discontinuities in the above definition are isolated points where α = 0 and
‖ · ‖Cα is the homogeneous Hölder norm defined in Def. 2.5. Theorem 2.2 shows
that the convergence rate of nonlinear approximation is unaffected by the K
singularities and one obtains still the same rate as if these were not present.
This robustness to singularities is the most important practical advantage of
nonlinear approximation.

TODO: Example of nonlinear approximation of local spline signal with
singularities, analogous to Mallat (cf. Fig. 9.1 / 9.2).

The problem in practice is to find a “good” model class for a given application.

Remark 9 (Compressed Sensing). In the foregoing we only considered optimal
approximations in the L2 norm. However, an alternative to the L2 norm that
has become very popular recently is the L1 norm, mainly for applications in
compressed sensing.9 The idea of the method is recover a signal that requires
m coefficients fi in a sparse representation from little more than m “samples”
of the form 〈f, γi〉 where the γi are suitably chosen vectors such that 〈γi, ψi〉
is nonzero for all ψi that are needed to represent f , at least with very high
probability. The condition 〈γi, ψi〉 6= 0 is known as incoherence condition in the

8Mallat, A Wavelet Tour of Signal Processing: The Sparse Way, Theorem 9.12.
9(Candès, Romberg, and Tao, “Robust Uncertainty Principles: Exact Signal Reconstruction

from Highly Incomplete Frequency Information”; Donoho, “Compressed Sensing”), see for
example (Candès and Wakin, “An Introduction to Compressive Sampling”) for an introduction.
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compressed sensing literature. Minimizing the L1 norm simultaneously finds
the coefficients that are nonzero and their numerical value. The price to be paid
is that one requires an expensive optimization procedure which so far typically
outweighs any benefits. The remarkable aspect of compressed sensing is that
the optimization is guaranteed to succeed with very high probability. Another
application based on the same philosophy of minimizing the L1 norm is matrix
completion from partial observations.10

2.3.3 From One to Higher Dimensions

Unfortunately, the approximation of signals becomes much more complex as the
dimension increases. Part of the phenomenon is known as curse of dimension-
ality . Additionally the structure of singularities becomes much more involved
as the dimension increases.

Remark 10. Dimension of bases space vs. dimension of function space.

Curse of Dimensionality 11

• Integral: with a tensor product one needs Nk quadrature points in k
dimension: exponential dependence on dimension k

• Similar for approximation:

C0n
−s/k ≤ δk(B(Hs))Lp(Ω) ≤ C1n

−s/k (2.18)

where B(Hs) is the unit ball in the Hilbert-Sobolev spaceHs and δn(B(Hs)),
known as Kolmogorov width, corresponds to the nonlinear approximation
error εn(N, f) we considered before. We see that effective approximations
are only possible when s ≈ k, that is when the smoothness of the functions
increases proportional to the dimensionality. This typically unrealistic and
we then have again an exponential dependence on the dimensionality.12

• For Rn or [0, 1]n and functions with classical regularity, sparse and multi-
grid techniques provide a solution for moderate dimensionality up to about
five.13

– Finer notion of smoothness that allows for adaptivity.

• Very active area of research currently.

For more details see the survey by Donoho.14

10Candès and Recht, “Exact Matrix Completion via Convex Optimization”.
11The term was coined by Bellmann (Adaptive Control Processes: A Guided Tour).
12See (R. DeVore, Capturing Functions in High Dimensions) for details.
13Bungartz and Griebel, “Sparse Grids”.
14Donoho, “High-Dimensional Data Analysis: The Curses and Blessings of Dimensionality”.
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Singularities in Higher Dimensions

• In 2D studied extensively for natural images.

– Singularities in 1D have one degree of freedom. In 2D singularities
can be arbitrary curves. In higher dimensions this phenomenon
continues. In nD one can have subsets of dimensions 1 · · · 1n.

– ClassExercise: Singularities for functions f : R → R3. What new
types of singularities arise and find an example where these play a
role? (Solution: 2D sub-manifolds in R3, appears for example in
elasticity when cracks occur.

• Curvelets, bandlets, and shearlets provide representations that are theo-
retically optimal, at least asymptotically, but not entirely practical.

– Also one requires frames to be able to effectively adapt to singulari-
ties.

• High dimensional functions, 3D and beyond, with singularities largely
open research problem.

2.4 Reproducing Kernels

In the last sections we ignored an important question: numerically central are
the basis function coefficients, which provide the coordinates of a signal in Rn
that can be used for numerical computations. However, the coefficients are
given by

fi = 〈f(x), ψ̃i(x)〉 =

∫
X

f(x) ψ̃i(x) dx. (2.19)

However, the integral is a continuous operation that cannot easily be evaluated
on a computer. The only information that can typically easily be obtained
in “computer problems” are function values f(x̄) for arbitrary points x̄ and in
“real world problems” measurements of the form mγ = 〈f, γ〉 for a measurement
functional γ.15 For example, the measurement of a pixel sensor on a CCD chip
can be described by

m =

∫
Pij

∫
H2
x

`(x, ω) pij(x, ω) dω dx (2.20)

where Pij is the area of the pixel, H2
x the hemisphere above a point x on the

pixel, pij(x, ω) is the pixel response function for x and direction ω, and `(x, ω)
the incoming light intensity. By defining an appropriate L2-inner product we
can write the above measurement also as

m = 〈`, pij〉 (2.21)

15This availability of functionals 〈f, γi〉 in many “real world” applications is one of the
reasons for the relevance of compressed sensing, cf. Remark 9.
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When such measurements are available we can construct the basis matrix
to obtain the signal representation in a suitable basis or employ compressed
sensing when the signal is sparse and we are willing to perform an expensive
optimization, cf. Remark 9.

Unfortunately, in computer graphics one has typically synthetic problems
where only pointwise information f(x̄) of the function of interest is available.
In this section, we will discuss how to effectively work with signals when only
function values f(x̄i) are available.

2.4.1 Point Evaluation Functionals

In Sec. 1.3 we discussed linear functionals on linear spaces V , that is maps
ϕ : V → R that yield real number α(v) for elements v ∈ V and that are linear in
their arguments so that φ(av+ bw) = aϕ(v) + b φ(w) for v, w ∈ V and a, b ∈ R.
The space of all such functionals was the dual space of V , and we distinguished
between the algebraic dual space V ∗ and the continuous dual space Ṽ . Also
recall that for Hilbert spaces H, the Riesz representation theorem enables to
identify the continuous dual space H̃ with H such that

ϕ(v) = 〈wϕ, v〉 (2.22)

where wϕ ∈ H is a unique element in H, cf. Theorem 1.1. We used this for
example in the construction of biorthogonal bases where the dual basis function
was the realization of the coordinate functionals in H. An important functional
on function spaces, and the one of central importance for the present section is
the following.

Definition 2.6. Let F(X) be a function space defined over a set X. The point
evaluation functional Υx̄ on F(X) at x̄ ∈ X is for all f ∈ F(X)

Υx̄[f ] = f(x̄).

Example 21. Let C∞0 (R) be the set of compactly supported test functions on
the real line. The point evaluation functional on C∞0 (R) is the Dirac delta δx̄
so that

Υx̄[f ] = δx̄[f ] = f(x̄)

for all f ∈ C∞0 (R). The Dirac delta δx̄ is the prototype for a generalized function
or distribution in the sense of Schwartz . Such objects are useful for example to
define weak derivatives for functions that do not have derivatives in the classical
sense, such as a step function. The derivatives used in the definition of Sobolev
spaces are typically such weak derivatives.

The above result can be extended to L2 since the space of test functions
C∞0 (R) is dense in Lp for 1 ≤ p <∞. This yields a definition of the Dirac delta
also for L2(R) as it is commonly used in the engineering literature.

The above example shows that the point evaluation functional Υx̄ is in general
not continuous. However, in many applications and for computations the spaces
where Υx̄ is continuous are of particular.
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Definition 2.7. Let H(X) be a Hilbert space where the point evaluation func-
tional Υx̄ is continuous. Then the reproducing kernel kbarx(x) at x̄ is the
unique function kx̄(x) ∈ H(X) such that

Υbarx[f ] = 〈f(x), kx̄(x)〉 , ∀f ∈ H(X) (2.23)

and H(X) is a reproducing kernel Hilbert space.

The remainder of the section will largely be concerned with studying the
reproducing kernel Hilbert spaces introduced in the last section. Let us begin
with some examples that show that reproducing kernel Hilbert spaces are indeed
practically relevant.

Example 22. The Sobolev spaces H2(Rn) with s > n+ 1/2 are reproducing
kernel Hilbert spaces.

Example 23. The Paley-Wiener space ΩB(R) of B-Fourier bandlimited func-
tions for which the Fourier transform is supported only on [−B,B]. The
reproducing kernel is

sincB(x̄− x) =
sin(B (x̄− x))

B x
. (2.24)

Example 24. Every finite dimensional Hilbert space is a reproducing kernel
Hilbert space. The reproducing kernel is given below in Eq. 2.26

The last example is crucial for us since it shows that all function spaces relevant
for numerical computations are reproducing kernel Hilbert spaces. Before we
continue, let us however consider an alternative perspective on the reproducing
kernel. Let {φi}ni=1 be an orthonormal basis for H(X) and f ∈ H(X) be an
arbitrary function. Then

f(x̄) =

n∑
i=1

fi φi(x̄) (2.25a)

=

n∑
i=1

〈f(x), φi(x)〉φi(x̄). (2.25b)

Using linearity of the inner product and that f(x) is independent of the sum-
mation we obtain

f(x̄) =

n∑
i=1

〈f(x), φi(x)φi(x̄)〉 (2.25c)

=

〈
f(x) ,

n∑
i=1

φi(x)φi(x̄)

〉
. (2.25d)

Comparing Eq. 2.25d to Eq. 2.23 we see that we have to have

kx̄(x) = k(x̄, x̄) =

n∑
i=1

φi(x̄)φi(x). (2.26)
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Hence, the reproducing kernel acts by determining the basis function coefficients
using the inner product and then reconstructing the function at x̄. Eq. 2.26
can also be interpreted as the basis expansion of kx̄(x) ∈ H(X) with respect
to φi(x) with basis function coefficients φi(x̄). The importance of Eq. 2.26 lies
in the possibility to easily construct reproducing kernels for a space once an
orthonormal basis is known; in practice this is usually not a impediment since
we typically start with a space that is specified by a basis.

Homework 6. Repeat the derivation in Eq. 2.25 for a biorthogonal instead
of an orthonormal basis.

A third perspective that verifies the reproducing property of reproducing
k Using the interpretation of Eq. 2.26 as basis expansion of the reproducing
kernel, insight into the reproducing property can also obtained by using the
equivalence between the continuous inner product and the dot product. This
immediately yields

〈f(x), kλ(x)〉 = fni · φni (λ) (2.27a)

=

n∑
i=1

fi φi(λ) (2.27b)

The last equation is just the reconstruction equation for f(x) at λ. Hence

〈f(x), kλ(x)〉 = f(λ) (2.27c)

which again establishes the reproducing property.

Example 25. Verification of the reconstruction property for a function f ∈
H4

Leg (red) for the reproducing kernel at λ = 0.5

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−2

−1

0

1

2

The y-coordinate for the red cross is determined by Eq. 2.27b. The figure also
shows that the reproducing property only hold for functions in the space and
that it breaks down for a function g ∈ H8

Leg (cyan).

The above example shows a central aspects of reproducing kernels: the
reproducing property only holds for functions in the space H(X) that is associ-
ated with the reproducing kernel kx̄(x). We will not have time to analyse the
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error that results from incorrectly assuming that f ∈ H(X). However, it can
be found in the literature.16

Exercise 13. Show that 〈ky(x), kz(x)〉 = k(z, y) .

Solution: Follows from expanding both functions using Eq. 2.26 and then
exploiting the orthonormality of {φi}ni=1.

Exercise 14. Show that the Gaussian

gx̄,σ(x) = e−
‖x−x̄‖2

2σ2 (2.28)

on R is a reproducing kernel.

Solution: General result is here: http://itb.biologie.hu-berlin.de/
~minh/gaussianpaper-minh-2008-final.pdf. In a restricted case it is fea-
sible to show the result.

2.4.2 Reproducing Kernel Bases

• Crucial observation: reproducing kernels at different points are different
functions.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−2

−1

0

1

2

• Picking different points in X is equivalent to picking different functions
in the space.

• As we have seen before, in many cases picking n functions will yield a
spanning set, and hence a biorthogonal basis for the space.

• Introduce kernel and sampling matrices.

• Recovering basis representation from samples as a change of basis.

Exercise 15. Construct a biorthogonal kernel basis for H4 using random
locations λi in [−1, 1]. Plot the primary and dual basis functions. Verify that
you can reconstruct a signal from only knowing its value at the points λi.

16Lessig, “Modern Foundations of Light Transport Simulation”, Chapter 4.2.

http://itb.biologie.hu-berlin.de/~minh/gaussianpaper-minh-2008-final.pdf
http://itb.biologie.hu-berlin.de/~minh/gaussianpaper-minh-2008-final.pdf
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Solution: See legPlotRKBasis.m For well distributed sampling locations the
reproducing kernel basis functions are given by:

−1.0 1.0

−2.0

−1.0

1.0

2.0

and the corresponding dual basis functions are

−1.0 1.0

−2.0

−1.0

1.0

2.0

For clustered sampling points the kernel basis functions are

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−2

0

2

and the corresponding dual basis functions are

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−2

0

2

x 10
4

Note the scaling of the dual basis functions.

2.4.3 Choice of Sampling Points

• In general not any set of points will work.

• For spaces with globally supported bases, such as our example space H4

almost any set of distinct points will work; except we pick exactly the
reproducing kernel points.

• Location can have great influence on quality.

• With ideal locations one would obtain orthogonal reproducing kernel basis.
However, finding the locations that yield such a basis is highly nontrivial.
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Additionally, on complex domains such points might not exist, which is
already the case for the sphere.

• Oversampling as a strategy to make representation robust to non-bandlimited
input.

• Fortunately, one can numerically optimize locations. This enables to
numerically construct locations that are well suited for a setting. An
alternative is to use so called low discrepancy or quasi random points
which, when mapped appropriately to a domain, provide usually good
points.

• For spaces with locally supported basis functions, for example wavelets,
the situation is more complex. As a rule of thumb one then has to employ
points that are distributed so that they match the local density of the basis
functions. How to effectively combine this with nonlinear approximation
(or compressed sensing) is currently an open question.

Exercise 16. Consider the Paley-Wiener space Ωπ(R) of Fourier-bandlimited
functions with bandlimit π, cf. Example 23. Show that{

sinci(x) =
sin (π(i− x))

π(i− x)

}
i∈I

(2.29)

is an orthogonal basis for Ω1(R). Begin by plotting sinc(i−x) for i = −5, · · · , 5.

Solution: The result follows immediately from the fact that the zero crossings
of sinci(x) are all integers except i, which follows from the zero crossings of
the sine functions.

2.4.4 Pointwise Numerical Techniques

• Sampling theorems.

• Integration. ∫
X

f(x) dx = · · · (2.30)

• Interpolation.

Exercise 17. Let (xi, yi) be k given data points. Interpret the classical
Lagrange interpolation formula

L(x) =

k∑
j=0

yj `j(x) (2.31a)
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with

`j(x) =
∏
i 6=j

x− xi
xj − xi

(2.31b)

from the point of view of reproducing kernel basis expansions.

Solution: The `j(x) are interpolatory dual reproducing kernel basis functions
for the space P k−1(R) spanned by all polynomials up to degree k. Since the
“sampling points” xi are arbitrary and depend on the

Homework 7. Derive a quadrature rule for H4 and compute the weights.
Experiment how the distribution of sampling locations affects the quadrature
weights. When the zeros of P5 are used as quadrature nodes then this is known
as Gauss-Legendre quadrature. Why is this a good choice?

Solution: As for many classical polynomial bases, the Fourier basis, and many
wavelets, the integral of all but the first Legendre polynomial vanishes. Hence,
we obtain for Eq. 2.30,

wi =

n∑
j=1

sji

∫ 1

−1

Pi(x) dx = s0j c0 (2.32)

where c0 is the integral of P0(x) over [−1, 1]. Computing the weights for the
well distributed points considered before, Λ = {−0.8,−0.4, 0.0, 0.4, 0.8}, we
obtain (quadrature weights scaled by three for better visibility; the dual kernel
functions k̃i(x) are shown in the background):

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

1

2

3

Quadrature weights for the clustered sampling points Λ =
{−0.1562,−0.1125,−0.0250, 0.0187, 0.0625} we used before are:

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

x 10
4
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Note that the scaling of the weights differs by four order of magnitude. Addi-
tionally, for clustered sampling points one has positive and negative weights
which is numerically undesirable.17 As an example, we can integrate the Leg-
endre polynomials Pi(x), 1 ≤ x ≤ 4, where we know that the integral vanishes.
With the well distributed sampling points we obtain in double precision an
average error of −6.94× 10−18 while the clustered points yield −1.14× 10−13.
The four digits that are lost compared to machine precision for the clustered
points are roughly described by the magnitude of the quadrature weights.

The quadrature nodes that are classically used for integration in the spaces
HnLeg are the n zero crossings of the Legendre polynomial Pn+1 of degree n+ 1.
The quadrature rule is then known as Gauss-Legendre quadrature. Using the
zero crossings of Pn+1 increases the accuracy of the quadrature rule, as can
be seen using an error analysis.18

Exercise 18. Devise an interpolation technique that employs the values f(λi)
of a function and its derivatives f ′(λi).

TODO: Work out details

• Derivative is a linear operator so it commutes with the basis representa-
tion.

• One can reconstruct a reproducing kernel for derivative information.

• Combining these ideas should yield the result.

Example 26. In this example we will show how reproducing kernels enable
a functional analytic interpretation of Monte Carlo integration. For this, we
will also require the concept of a characteristic basis and its connection to
reproducing kernels.

Let X be a set. The characteristic function χY :X → R for a subset Y ⊂ X
is defined as

χY (x) =

{
1 if x ∈ Y
0 otherwise . (2.33)

A partition of X is the collection of disjoint subsets Xi, i = 1 · · ·n, of X such
that their union forms again X, that is

X =

n⋃
i=1

Xi. (2.34)

When we denote the characteristic function for each element Xi of a partition by
χi(x) then we obtain a basis for the space span(χi(x)) = Hχ ≡ Hχ(X) ⊂ L2(X).
Since Hχ(X) is a closed subspace of L2(X) it is a Hilbert space equipped with
the L2 inner product. We call {χi(x)}ni=1 a characteristic basis.
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Instead of unit height characteristic basis functions χi(x), we will in the
following usually work with their normalized siblings

χ̄i(x) =
1√
|Xi|

χi(x) (2.35)

where |Xi| denotes the area of Xi. The basis {χ̄i(x)}ni=1 is an orthonormal
characteristic basis for Hχ. As an example, for X = [−1, 1] an orthonormal
basis is given by:

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

1

2

3

By Eq. 2.3 in the paper, the reproducing kernel for Hχ at λ ∈ Xj is given by

kλ(x) =

n∑
i=1

χ̄i(λ) χ̄i(x). (2.36a)

Since the product χ̄i(λ) χ̄i(x) vanishes unless λ ∈ Xj the sum collapses and we
have

kλ(x) = χ̄j(λ) χ̄j(x). (2.36b)
By the definition of the normalized characteristic functions we thus obtain

kλ(x) =
1

|Xj |
χj(λ) (2.36c)

Hence, the reproducing kernel kλ(x) for Hχ coincides with the orthonormal
characteristic basis function χ̄i(x) up to a constant.

From Eq. 2.36 it follows that a reproducing kernel basis for Hχ can be
formed by choosing one location λi in each Xi. The reproducing kernel basis
functions in Eq. 2.36c are then orthogonal, since their support is disjoint, but
they are not orthonormal. Moreover, we cannot normalize the ki(x) since they
would then lose the reproducing property; this is an instances where the general
wisdom that every orthogonal basis can be carried over to an orthonormal
basis by normalization of the basis functions is not true, or at least it would
destroy the, for us crucial, reproducing property. From the biorthogonality
condition it follows that the dual kernel functions for the reproducing kernel
basis {ki = 1/|Xi|χx}ni=1 are given by k̃i(x) = χi(x), that is by unnormalized
characteristic functions. The basis pair for a characteristic reproducing kernel
basis is hence ({

ki(x) =
1

|Xi|
χi(x)

}
,
{
k̃i(x) = χi(x)

})
. (2.37)

For the orthonormal characteristic basis that was shown above, the associated
reproducing kernel basis is given by (reproducing kernels in red):
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−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

5
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An important property of characteristic reproducing kernel bases is that these
can be constructed and are practical for arbitrary domains X, including mani-
folds and high-dimensional spaces.

With the definition of characteristic reproducing kernel bases we are prepared
to show how Monte Carlo integration can be obtained as a quadrature rule.
Let {χi}ni=1 be a characteristic basis over a partition for the set X = [a, b] ⊂ R
with elements Xi. With locations Λ = {λi} such that one λi lies in each Xi

we obtain a characteristic reproducing kernel basis for the space Hχ and the
dual kernel functions k̃i(x) are then given by k̃i(x) = χi(x). A quadrature rule
associated with this reproducing kernel basis can be obtained using Eq. 2.9 in
the paper. For the quadrature weights we then obtain

wi =

∫
X

k̃i(x) dx =

∫
X

χi(x) dx = |χi| =
|X|
n
. (2.38)

The quadrature rule for the space Hχ spanned by the χi is thus∫
f(x) dx =

n∑
i=1

wi f(λi) =
|X|
n

n∑
i=1

f(λi) (2.39a)

=
b− a
n

n∑
i=1

f(λi) (2.39b)

Eq. 2.39b formally coincides with the standard Monte Carlo estimator for
uniformly distributed sampling locations. From the definition of a probability
(or measure) space, the result that Monte Carlo integration arises as a quadrature
rule for the space spanned by characteristic functions is by no means surprising.19
Also note that {χi}ni=1 becomes dense in L2([a, b]) as the number of partitions
goes to infinity and hence asymptotically the quadrature rule is applicable for
any f ∈ L2(X).

For samples drawn from an arbitrary probability distribution function p(x)
the requirement of one sample per unit height characteristic basis functions
implies that the partition elements Xi can no longer equal size but have to
have the form Xi = [xi, xi+1] for suitable interval bounds xi ∈ [a, b]. Choosing
the xi such that in the support of every χi(x) is on average one sample is then
equivalent to

nP ([xi, xi+1]) = n

∫ xi+1

xi

p(x) dx = 1 (2.40)

19See (Rudin, Real and Complex Analysis).
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which with y ∈ [xi, xi+1] is to zeroth order

n (p(y) (xi+1 − xi)) = 1. (2.41)

With λi being the samples in the support of χi one thus has |χi| = xi+1 − xi =
1/(n p(λi)). The quadrature rule with samples distributed according to p(x) is
therefore ∫

f(x̄) dx̄ =
1

n

n∑
i=1

f(λi)

p(λi)
(2.42)

Eq. 2.42 formally coincides with the standard Monte Carlo estimator for impor-
tance sampling.

2.5 Linear Operators on Function Spaces

We have already abstractly considered linear maps in Chapter 1.5. In this
section we will specialize to the case of linear spaces that are function spaces.
One then typically speaks about linear operators or just operators. Let us begin
by considering some examples.

Example 27. Linear functional is a special case of a linear operator that we
already considered. Every linear functional ϕ ∈ H∗ can be realized as

ϕ[f ] =

∫
X

kϕ(x) f(x) dx (2.43)

for a sufficiently general integral kernel kϕ(x), which might no longer be a
function in the classical sense. This is a generalization of the Riesz representation
theorem in Theorem 1.1.

We have already seen simple examples for nonlinear operators in Example 5.
We will see nonlinear differential and integral operators in the following sections.

2.5.1 Differential Operators

• We will only briefly discuss differential operators here and have a more
detailed discussion in the next chapter.

– It will be a good warm-up for the things that come later.

• This is the theory of partial differential equations that describe the
evolution (typically time evolution) of “fields”, that is continuous, not
necessarily scalar functions describing quantities of physical interest.

– All things in science are describe by ordinary or partial differential
equations; at least in the hard sciences, and in particular in physics.

– Obviously, our focus will be on linear partial differential equations.
We will remark on nonlinear ones, which can be seen as a natural
generalization, in Remark 12.
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• Before we continue and discuss in more detail the theoretical aspects, let
us consider an example

Example 28. Autonomous transport equation for function ρ :M⊂ R3 → R,
for example fluid mass density in fluid mechanics, for a divergence free velocity
vector field ~v :M⊂ R3 → R320 is given by

∂ρ

∂t
+ ~v · ∂ρ

∂x
= 0. (2.44)

Interpretation:

• The mathematical formula is quite useless if one cannot interpret the
equation and put some meaning into it.

• So called Eulerian representation.

• Right hand side is zero because it describes a conservation equation. Here
the mass density ρ is globally conserved, that is mass is neither created
nor destroyed.

• The equation is somewhat easier to interpret when it is written as

∂ρ

∂t
= ~v · ∂ρ

∂x
. (2.45)

• The change of ρ(x) at x in time, this is what the derivative on the left
hand side says, is given by the divergence on the right hand side. We will
see what the divergence means later but the general form in the Eulerian
representation, the change of the quantity in time is expressed by some
differential operator is very important. To complete the picture one has
to understand the differential operator. In the above case this is best done
later when we introduced a differential operator known as Lie derivative.

• TODO: figure

General form of Linear Partial Differential Equations

• Derivative of functions on the real line is well known.

• We can look at it as a map

d

dx
: F(R)→F(R) (2.46)

where F(R),F(R) are suitable function spaces.

• Hence, d/dx is an operator.

20See Chapter 3.4 for the definition of divergence and its meaning.
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• Is d/dx also a linear operator or map? By the standard rules of differenti-
ation, this is indeed the case:

d

dx

(
a f(x) + b g(x)

)
= a

df

dx
+ b

dg

dx
. (2.47)

• Remark: d/dx vs. ∂/∂x. We will typically use the latter in the following.

• We define Ck(R) as the class of k-times continuously differentiable func-
tions. Then

d

dx
: Ck+1(R)→ Ck(R) (2.48)

and d/dx : C∞ → C∞

• A general linear differential operator on Rn of order k acting on a function
f : Rn → R has the form

Ax =
∑
|α|≤k

cα(x)
∂

∂xα
(2.49)

where α = (α1, · · ·αn) is a multi-index that determines the degree of the
derivative in each dimension. In 2D a differential operator of degree 1
can for example have

α = (0, 0)
∂

∂xα
f =

∂

∂x0
1 x

0
2

f = f (2.50a)

α = (1, 0)
∂

∂xα
f =

∂

∂x1
1 x

0
2

f =
∂f

∂x1
(2.50b)

α = (0, 1)
∂

∂xα
f =

∂

∂x0
1 x

1
2

f =
∂f

∂x2
(2.50c)

α = (1, 1)
∂

∂xα
f =

∂

∂x0
1 x

1
2

f =
∂f

∂x1 x2
(2.50d)

The cα(x) are coefficient functions that can on the position x; in the
simplest case these are just constants.

• This is the coordinate form usually used in the theory of partial differential
equations.

• Remark (appropriate function spaces): We can still defined Ck but its
in general not a very useful notion. Most functions have a different
differentiability class in each dimension. Anisotropic function space that
allow for different differentiability, and more general regularity, at each
point and each coordinate direction one needs much more complicated
spaces. For questions like existence of well defined solutions one also needs
Sobolev spaces that provide additional control over the magnitude of the
derivatives.
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Example 29. Concrete example: Laplacian in Rn

∆f =

n∑
i=1

∂2f

∂x2
i

(2.51)

it is the sum of the pure or unmixed second partial derivatives; to be even more
concrete, in R3 we have

∆f =

n∑
i=1

∂f

∂x2
i

=
∂2f

∂x2
1

+
∂2f

∂x2
2

+
∂2f

∂x2
3

. (2.52)

Initial value problem and boundary conditions

• One knows the differential equation, the “law”, for example for the time
evolution, and one is interested how the system develops for finite times.

• The pde only gives evolution for infinitesimal times, and one has to extend
this to finite times.

• Alternatively, one might be interested in the steady state, see Remark 11.

Boundary conditions:

• On a compact domain, as one typically considers in applications, the
differential equations require boundary to be well defined, that is a de-
scription of what happens to the function at the boundary where the
derivative is not well defined. For example, we could require that f(x)
and all derivatives of f(x). Clearly the boundary conditions will affect the
solution, possibly over the whole domain. The most common boundary
conditions are:

– Dirichlet boundary conditions: the function value at the boundary
is specified.

– Neumann boundary conditions: The derivative of f(x) in the normal
direction is specified (physically, this corresponds to in and out flux
from a domain, which makes them physically very important).

– TODO: figure

• Periodic boundary conditions with period z: f(x + z) = f(x) which
in particular means that one identifies points on “opposite boundaries”
TODO: figure; this corresponds to a torus.

Solving:

• Solving a differential equation for given initial data can rarely be done
analytically.
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• We will talk about Green’s functions as an analytic approach to the
solution and about Galerkin projection for the numerical solution later.
Additionally, the method of characteristics is often very useful, cf. Exam-
ple 45.

• As a rule of thumb, and we talk about this later in more detail, one should
understand as much about the application and mathematical structure of
a partial differential equation before attempting to solve it numerically.

• There are recipes like finite element methods but they are far from
foolproof.

• Mathematics: tries to prove existence of solutions. No general result.

– Millenium prize for Navier-Stokes. Terence Tao’s recent result for
Navier-Stokes.

• Analytic techniques like separation of variables. Subject of a specialized
course on the subject.

– If possible, often a useful step before numerical treatment.

Remark 11. We see how the above partial differential equations describe time
evolution. A stationary or steady state solution is also often of interest. It
means that the quantity of interest, say φ(x, t) does not change. Hence, one
has to have

∂φ

∂t
= 0. (2.53)

For example, for the fluid density in Eq. 2.44 the steady state is given by

∂ρ

∂t
= 0 = ~v · ∂ρ

∂x
. (2.54)

Note that this by no means implies that the fluid velocity vanishes or that no
mass is transported by the fluid. What is steady or time invariant is the value
of the density at the location x.

We will leave it at this for the moment and return to the subject later.
However, before we do this let us look at some examples:

Example 30. The heat equations for a function u :M⊂ R3 → R, for example
the temperature at x ∈M, is given by

∂u

∂t
+ ∆u = 0 (2.55)

As the name suggests, it describes the diffusion of heat in an environment. As
boundary conditions we can for example use Neumann boundary conditions
with

∂u(x)

∂~n(x)

∣∣∣∣
∂M

= 0 (2.56)
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which corresponds to a perfect insulator, that is no heat flows through the
boundary.

TODO: Figure with time evo. From Wikipedia? 1D or 2D?

Example 31. Scalar wave equation for φ :M⊂ R3 → R

∂2φ

∂t2
+ ∆φ = 0 (2.57)

The equation is for example central to acoustics.
The scalar wave equation in Eq. 2.57 is second order and hence more difficult

to interpret than the autonomous transport equation in Example 28 where we
could find an interpretation. However, by introducing

~s =
∂φ

∂t
: M⊂ R3 → R (2.58a)

~r =
∂φ

∂x
: M⊂ R3 → R3 (2.58b)

as independent variables, Eq. 2.57 becomes

∂s

∂t
=

3∑
i=1

∂r

∂xi
(2.59a)

∂r

∂t
=
∂s

∂x
. (2.59b)

Hence, we have two first order transport equation that can be interpreted
similarly to the autonomous transport equation in Example 28. The additional
complexity of the second order equation is thereby “hidden” in the coupling
between the two equations. 21

Exercise 19. Write the scalar wave equation in the form of a general linear
differential operator in Eq. 2.49 by using space-time coordinates where x0 = t.

The wave equation can be seen as a space-time Laplace operator,

Wf =

n∑
i=0

∂2f

∂x2
i

. (2.60)

However, as we will see later the time coordinate does have a different behaviour
than the space coordinates so that the properties of W are quite different.

• We will return to the above examples in Chapter 3 where we will reconsider
them from a more conceptual perspective.

21The reader might have seen something similar already in the context of ordinary dif-
ferential equations where one can also reduce nth order equations to a system of first order
equations. The latter ones are typically used for numerical integration.
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• Laplace operator arose as part of the heat equation and the Laplace
equation. It also plays an important role, and has found a many, many
applications in computer graphics. We will also consider it again from
various perspective below.

Let us conclude this section with going beyond the linear regime and briefly
discussing nonlinear differential operators.

Remark 12. As an extension of Eq. 2.49, the most important examples of
nonlinear differential operators are of the form

N(f) =

∑
|α|<k

ci(f)
∂

∂xα

 f (2.61)

where the ai(f) depend on the argument f and α = (α1, · · · , αn) is again
a multi-index. Such nonlinear operators have a multitude of applications in
science. For example, the Euler equation, which describes the time evolution of
the velocity vector field ~v(x, t) of an ideal fluid, is given by

∂~v

∂t
+∇~v ~v = ∇p (2.62)

where ~v is the fluid velocity vector field and p the pressure, and we see that
in the second term on the left hand side ~v is part of the differential operator
and the vector-valued function the operator acts on. We will return to the
Euler equation again in later chapters. Nonlinear generalization of the linear
differential and integral operators that we consider below in Chapter 2.5.1 and
Chapter 2.5.2.

2.5.2 Integral Operators

• The second class of linear operators we will consider are integral operators.
We will see in the following when we consider Green’s functions that in
many instances an intimate connection between differential and integral
operators exists.

• Definition: given by K : F(X)→F (Y ):

g(y) = K(f) =

∫
X

k(x, y) f(x) dx (2.63)

and k(x, y) is known as the kernel of the integral operator.

Example 32. Linear functionals are (somewhat degenerate) example where
F (Y ) = R

Example 33. Hilbert-Schmidt integral operators.
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• The kernel is in L2 as a function of x and y. This ensures that the
operator is compact, and hence well behaved in a sense somewhat beyond
our discussion.

• When the kernel is symmetric then the operator is self-adjoint.

• Compactness and self-adjointness are the essential condition for spectral
theorem to apply, cf. Theorem 1.3. Hence, Hilbert-Schmidt operators
have a well defined eigen decomposition, and, moreover, the necessary
conditions are easy to verify.

Hilbert-Schmidt operators are the generalization of the above integral operators
that have the same convenient properties.

Exercise 20. Show that on L2(X) a Hilbert-Schmidt operator is self-adjoint
when the kernel is symmetric.

Solution: L2 inner product and integral of operator action can change. L2

integrability ensures that Fubini’s theorem can be used and the interchange is
actually valid. TODO: Verify the idea

Example 34. TODO: Rendering: scattering as Hilbert-Schmidt operator.

Remark 13. By a celebrated result by Laurent Schwartz, every “reasonable”
operator on the space of compactly supported C∞ test functions, cf. Ex. 21, can
be realized as an integral operator. This in particular also includes differential
operators. As an example, the integral representation of the identity operator is

Id(f)|x̄ =

∫
X

δx̄(x) f(x) dx (2.64)

where δx̄(x) is the Dirac delta distribution, cf. again Ex. 21.

Example 35. Markov chain. Integral operator K : F(X)→ F(X) on a space
with λ = 1 as largest eigenvalue, that is

f(y) =

∫
X

k(x, y) f(x) dx. (2.65)

Integral kernel k(x, y) then models the transition probability between the states
x ∈ X and y ∈ X. Hence, it also satisfies

1 =

∫
X

k(x, y)dy (2.66)

to ensure that the transition probability is indeed a probability. The eigenfunc-
tion f(x) associated with λ = 1 is the steady state distribution. The terminology
comes from the fact that f(x) is invariant under the integral operator.



59

Finite dimensional case, K is a matrix and the elements Kij describe the
transition probabilities between the finite state space, interpreted as Rn, cf.
Exercise 21. The steady state distribution is then the left eigenvector associated
with K.

Markov chain: realization of a Markov process where the next state only
depends on current state and not other states further in the past. This is crucial
for matrix representation.

General insight: one can but does not have to look at things probabilisti-
cally.22

Exercise 21.23 We consider a Markov chain that is used weather. For
simplicity we categorize weather as being in one of three states: rain, clouds,
sun. The next day forecast is then given by

rain clouds sun
rain 0.5 0.25 0.25

clouds 0.5 0.0 0.5
sun 0.25 0.25 0.5

where the rows are tomorrow’s weather and the column’s today’s, and the
entries represent probabilities. For the Markov chain defined by the above
transition matrix, compute the steady state distribution. Implement the power
iteration method for this.

Solution: The steady state solution, given by the left eigenvector, is f =
[0.670.330.66]T . See power_iteration.py.

Remark 14. Markov chain’s are the basis for Markov chain Monte Carlo
methods that have various applications in science and engineering, and naturally
also in computer graphics.24

Example 36. Example for nonlinear integral operator:

N(f) =

∫
X

k(x, y; f) f(x) dx (2.67)

where the integral kernel k(x, y; f) depends on the argument f(x). In applica-
tions in physics one often has that an integral operator is in general nonlinear
but that in a restricted regime the integral kernel is independent of f and one
hence can with a linear integral operator, which is much easier to handle. An
example is the scattering function in Ex. 34. For moderate light intensities
ρ(ω, ω̄) is independent of it but when the intensity becomes very high then
material properties change and the scattering kernel has a nonlinear dependence
on the intensity.

22For a reinterpretation of many ideas from machine learning from an analytic perspective
see (Cucker and Zhou, Learning Theory: An Approximation Theory Viewpoint) and references
therein.

24For example (Veach and Guibas, “Metropolis Light Transport”; Chenney and Forsyth,
“Sampling Plausible Solutions to Multi-body Constraint Problems”).
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Green’s Functions Let us begin by recalling the spectral theory that we
introduced in Chapter 1.5.2. and that immediately applies to linear operators.

• Recall spectral theorem for operators.

• In our formulation is immediately applies to operators.

• Requires compactness. Generalizations exist but too technical for our
purposes. For example, in general continuous spectrum possible, which is
much more difficult to work with (although we will encounter it when we
talk about the Fourier transform). Also, there might be no eigenfunctions
at all, or they are or can only defined implicitly.

Definition 2.8. Green’s function

Proposition 2.1. Eigenvector expansion of Green’s function

Exercise 22. Show the above proposition.

Solution: TODO: Show it.

Example 37. Poisson equation

∆f = g (2.68)

The Laplace equation is g = 0, that is the homogenous form of the equation.
On R3 the Green’s function of the Poisson equation is given by

G(x, x̄) = − 1

4π

1

|x− x̄|
. (2.69)

The Poisson and Laplace equations arise in a multitude of applications in CG.

• TODO: Provide a concrete example. For example surface reconstruction.
Where was Green’s function actually used?

Homework 8. Eigenfunction’s of heat operator H are Fourier and eigenvalues
are . . .Numerically construct the Green’s function. For this, experiment with
the number of eigenfunctions that are needed. Guess the analytic form

Solution: TODO: Implement!

How to solve differential equations using Green’s functions:

• Sometimes, like in the case of the heat equation, the Green’s function has
an analytic form and this form is sufficiently nice to enable an analytic
solution.

– Restricted to simple / symmetric domains.
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– “Canonical” differential equations. Although the number of “useful”
differential equations is surprisingly small and one encounters the
same equation typically over and over again.

• In principal one can use quadrature since one has an integral. However,
this only yields the solution at single point. Galerkin projection, which
will be discussed in the next section,

2.5.3 Galerkin Projection

Galerkin projection25

• Very general approach to obtain finite dimensional representations for
operator equations.

– Classical form and the once we will discuss are for linear operator
equations but also extensions for nonlinear ones.

Let A : F → G be a linear operator between separable Hilbert spaces F and
G, that is

Af = g. (2.70)

Furthermore assume that {ϕi}∞i=1 is an orthonormal basis for F and {ψj}∞j=1 is
an orthonormal basis for G. For Galerkin projection, we project Eq. 2.70 onto
ψj ,

〈Af, ψj〉 = 〈g, ψj〉 (2.71a)

and expand f in {ϕi}∞i=1,〈
A
(∑

i fi ϕi

)
, kj

〉
= 〈g, ψj〉 . (2.71b)

By linearity we then have

∞∑
i=1

fi 〈Aϕi, ψj〉 = 〈g, ψj〉 . (2.71c)

and by defining Aij = 〈Aϕi, ψj〉 we obtain

∞∑
i=1

fiAij = gj . (2.71d)

• The Aij form an infinite matrix.

25Galerkin, “On Electrical Circuits for the Approximate Solution of the Laplace Equation”;
Petrov, “Application of the Method of Galerkin to a Problem Involving the Stationary Flow
of a Viscous Fluid”.
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• A numerically practical realization is obtained by truncating the bases
{ϕi}∞i=1 and {ψj}∞j=1 at some finite n and m, respectively. Then

Ā f̄ = ḡ (2.72)

where Ā ∈ Rn×m and f̄ and ḡ are n- and m-dimensional vectors, respec-
tively.

• Brings us back to the question what are good approximation spaces, or

• With the discussion of Chapter 2.3 in mind, Galerkin projection is a linear
ansatz in that one fixes a subspace a priori and not based on the data.

– One can imagine choosing A based on the problem, for example by
locally refining where necessary. An example of this idea are adaptive
PDE methods.

Homework 9. Perform a derivation analogous to those in Eq. 2.71 for
biorthogonal bases for F and G.

TODO: Do derivation.

Example 38. TODO: Finite Differences and finite volume methods Should we
include it? What are applications where it is preferable over finite elements?

• Can one consider the finite volume method as a finite element method for
constant test functions?

• Application of divergence theorem as a form of weak formulation?

Example 39. Finite elements Before Galerkin projection, write a linear equa-
tion

Af = g (2.73)

with A : W → V in weak form

φ(f, h) = g(h) (2.74)

where h ∈ Ṽ is an element in the dual space Ṽ of V . Hence g(h) refers to the
natural pairing between V

• Analogous to how weak derivative is defined in Example XXX, and in fact
equivalent in that the original PDE can then be applied to distributions,
within a mathematically rigorous theory.

• Lax-Milgram theorem that asserts the existence of a unique solution.26

26Lax and Milgram, “Parabolic equations”.
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• Allows to work with derivative even for C0 (basis) functions.

• Add figure with 2D elements.

The Poisson equation ∆f = g in one dimension is given by

∂2

∂2x
f = g. (2.75)

As the domainM of the problem we will assumeM = [0, 1] ⊂ R with Dirichlet
boundary conditions f(0) = f(1) = 0.

To obtain the weak formulation we require equality Eq. 2.75 to hold with
respect to an arbitrary test function h from a suitable space. We will employ
the Sobolev space H1

0 ([0, 1]) of functions with bounded derivative which also
satisfy h(0) = h(1) = 0 as test function space; since the boundary ∂M = 0, 1
is a set of measure zero we can disregard it at the moment and enforce the
correct values f(0) = f(1) = 0 of the solution at the end. Pairing with the test
function and using integration by parts yields∫ 1

0

(
∂2

∂2x
f(x)

)
h(x) dx =

∫ 1

0

g(x)h(x) dx (2.76a)

[
∂f(x)

∂x
h(x)

]x=1

x=0

−
∫ 1

0

∂f(x)

∂x

∂h(x)

∂x
dx =

∫ 1

0

g(x)h(x) dx (2.76b)

and since h(x) vanishes at the boundary the first term on the left hand side is
zero. Hence, we have ∫ 1

0

∂f

∂x

∂h

∂x
dx =

∫ 1

0

g(x)h(x) dx (2.76c)

φ(f, h) = 〈g, h〉 . (2.76d)

The last equation has the desired form of Eq. 2.74 with the left hand side being
the bilinear pairing

φ(f, h) =

∫ 1

0

∂f

∂x

∂h

∂x
dx (2.77)

and the right hand side the usual L2 inner product.
To obtain a finite approaximation of Eq. 2.76d we have to perform Galerkin

projection and expand the left and right hand side in the piecewise-linear finite
element basis {vi}ni=1 which we assume, without loss of generality, to be defined
over a regular grid, cf. Fig. XXX. This yields

φ

(
n∑
a=1

fava(x) ,

n∑
b=1

hbvb(x)

)
=

〈
n∑
c=1

gcvc(x),

n∑
d=1

hdvd(x)

〉
. (2.78a)
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and by (bi-)linearity of φ and the inner product we obtain
n∑
a=1

n∑
b=1

fa hb φ(va(x), vb(x)) =

n∑
c=1

n∑
d=1

gc hd 〈vc(x), vd(x)〉 . (2.78b)

Since the vi(x) are polynomials we can explicitly evaluate φ(va(x), vb(x)) and
〈vc(x), vd(x)〉. Without loss of generality, assume b > a. We then have

Lab = φ(va(x), vb(x)) (2.79a)

=

∫ ha+h

ha−h

∂va
∂x

∂vb
∂x

dx. (2.79b)

When the support of va(x) and vb(x) is disjoint then the integral vanishes
immediately. From Fig. XXX it folds that this is the case unless b = a+ 1 in
which case

Lab =

∫ ha

ha−h
1/h 0 dx+

∫ ha+1

ha

1/h (−1/h) dx+

∫ ha+2

ha+1

0 (−1/h) dx (2.79c)

= −h (1/h2) = −1/h. (2.79d)

Hence, in general Lab is nonzero if and only if b = a + 1 and or b = a − 1.
The Lab form the so called “stiffness matrix”, a term that comes from early
applications of the finite element methods to elasticity. Analogous to Eq. 2.79,
for 〈vc(x), vd(x)〉 we have for d > c

Mcd = 〈vc(x), vd(x)〉 (2.80a)

=

∫ hd+h

hc−h
vc(x) vd(x) dx (2.80b)

which is nonzero if and only if c and d are adjacent, in which case one has

Mcd = h/6 (2.80c)

The Mij form the “mass matrix”. Note that both the stiffness matrix and the
mass matrix are highly sparse due to the highly localized support of the vi(x).

Analogous for 2D. The only slight complication is integration by parts for
which . . .

Remark 15. Spectral methods: Galerkin with Fourier basis functions. The
term is often used for any form of Galerkin projection with globally supported
basis functions. These methods are highly efficient for smooth phenomena on
regular domains but lose in accuracy when the solution has discontinuities or
the domain is not a Cartesian subset of Rn.

Example 40. We already introduced the Poisson equation in Example 37
and discussed its solution in one dimension using the finite element method in
Example 39. On [0, 2π, ]× [0, 2π], the equation is given by(

∂2

∂x1
+

∂2

∂x2

)
f(x) = g(x). (2.81)
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When we assume periodic boundary conditions the functions f(x) and g(x) can
be expanded in the Fourier series as

f(x) =

∞∑
a=0

∞∑
b=0

f̂a,b e
iax1 eibx2 =

∞∑
a,b=0

f̂a,b e
i(ax1+bx2) (2.82a)

g(x) =

∞∑
a=0

∞∑
b=0

ĝa,b e
iax1 eibx2 =

∞∑
a,b=0

ĝa,b e
i(ax1+bx2) (2.82b)

for complex coefficients f̂a,b and ĝa,b. Inserting the Fourier representations into
the Poisson equation in Eq. 2.82 we have(

∂2

∂x1
+

∂2

∂x2

) ∞∑
a,b=0

f̂a,b e
i(ax1+bx2) =

∞∑
a,b=0

ĝa,b e
i(ax1+bx2). (2.83a)

Using the linearity of differentiation we obtain

∞∑
a,b=0

f̂a,b

(
∂2

∂x1
+

∂2

∂x2

)
ei(ax1+bx2) =

∞∑
a,b=0

ĝa,b e
i(ax1+bx2) (2.83b)

and since (∂/∂x)eαx = αeαx this can be written as

∞∑
a,b=0

f̂a,b
(
−a2 − b2

)
ei(ax1+bx2) =

∞∑
a,b=0

ĝa,b e
i(ax1+bx2) (2.83c)

Since the Fourier coefficients of a function are unique we hence have to have

−f̂a,b
(
a2 + b2

)
= ĝa,b; (2.84)

which, following the ansatz of Galerkin projection, could also be obtained
by projecting both sides onto ei(āx1+b̄x2) and using the orthonormality of the
Fourier basis functions. Eq. 2.84 enables to directly solve for the f̂a,b given the
coefficients ĝa,b on the right hand side. To numerically implement this method
one has to choose a finite bandlimit N and only consider the Fourier expansion
up to this term.

For the given boundary condition, the Fourier basis hence enables a very
efficient solution of the Poisson equation. In fact, the basis diagonalizes the
operator, since f̂a,b only depends on ĝa,b and no other basis function coefficients
of g(x), cf. Chapter 2.5.4. Unfortunately, for more complex domains such a
simple solution is no longer possible.27

TODO: Should we write the above derivation to more closely follow the
general Galerkin projection eq., which mainly corresponds to not explicitly
expand the right hand side? TODO: Implement.

27For approaches to solve the Poisson equation relevant for graphics see for example (Botsch,
Kobbelt, Pauly, Alliez, and Levy, Polygon Mesh Processing).
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Example 41. The integral equation

g̃(y) = Kg |y=

∫ 1

−1

g(x)
(
15 exp (−10 ∗ (x− y)2)

)
dx

with a Gaussian kernel (green, scaled by 1/15) for the Legendre polynomial
f(x) = P4(x) (blue) as input:

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−2

−1

0

1

2

The result g(x) is plotted in red. The approximation of the kernel in H4
Leg is

given by

K = 〈Pi(x)|k(x, y)|Pj(y)〉 =


2.55 0.0 −0.35 0.0 −0.14
0.0 2.07 0.0 −0.51 0.0

−0.35 0.0 1.61 0.0 −0.51
0.0 −0.51 0.0 1.21 0.0

−0.14 0.0 −0.52 0.0 0.88


The sparsity results from the symmetry of the kernel. When we solve the above
integral equation through its finite representation, that is

g̃ = Kg =


g̃5

1

g̃5
2

g̃5
3

g̃5
4

g̃5
5

 = K


0
0
0
0
1

 =


−0.14

0.0
−0.51

0.0
0.88


we obtain the approximation g̃(y) (shown in blue)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−2

−1

0

1

2

An 11-dimensional approximation ĝ(y) ∈ H10
Leg (green) is almost indistinguish-

able from the analytic solution (red, dashed). See legPlotIntegralEquation.m
for the implementation.
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Homework 10. Let H(X) be a reproducing kernel Hilbert space with orthonor-
mal reproducing kernel basis {ki(x)}∞i=1. Compute the Galerkin projection of
Af = g for a linear operator A : H(X) → H(X) by following the steps in
Eq. 2.71.

Solution: Following Eq. 2.71 we have

〈Af, kj〉 = 〈g, kj〉 (2.85a)〈
A
(∑

if(λi) ki

)
, kj

〉
= 〈g, kj〉 (2.85b)

and by linearity ∑
if(λi) 〈Aki, kj〉 = 〈g, kj〉 . (2.85c)

Exploiting now the reproducing kernel property of the ki we obtain∑
if(λi)A(λi, λj) = g(λj). (2.85d)

Hence, for reproducing kernel Galerkin projection the resulting matrix-vector
equation only depends on pointwise values of the functions and the operator.
Moreover, the “reconstruction kernels” for the right hand side are uniquely
given by the reproducing kernel functions ki.

TODO: Implement RK Galerkin projection for example? Use Ex. 41 again?
H10 should be enough to avoid RK issues.

2.5.4 Fourier Theory Revisited

TODO: Work out.
Fourier transform, Fourier series, and linear time invariant systems.

• Translation operator Ta commutes with differentiation: first translate and
then differentiate is the same as first differentiate and then translate.

– Hence differentiation has some eigenfunctions as translation.
– The argument generalizes to any operator that is translation invari-

ant.

• d/dxf = af => f = ceax, for all a ∈ R: this is just Fourier transform:

f̂(ω) =

∫
R
f(x)ei ω xdx. (2.86)

• The equation is just projection into the eigenbasis.

• Commutes with Ta. Hence Ta has the same eigenfunctions. And then
every translation invariant operator has the Fourier basis as eigenfunctions.
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• Consequently, translation invariant operators are diagonalized by Fourier
basis.

• Application of operator is then multiplication by spectrum. Since R is
non-compact the spectrum is continuous and it means applying a function
to the continuous spectral representation.

• Spectrum is continuous for noncompact domain.

– This is why the basis expansion is an integral and not a sum.

• But is there an obvious reason why it is discrete on compact domains?

Remark 16. When X = Rn, then the Sobolev spaces W k,p(Rn) can also be
defined using the Fourier transform F as

W k,p(Rn) =
{
f ∈ Lp(Rn) | F−1

(
(1 + ξ)k/2f̂

)
∈ Lp(Rn)

}
, (2.87)

where f̂ denotes the Fourier transform of the function f , that is f̂ = F (f), and
the behaviour of the derivatives is controlled by the weight (1 + ξ)k/2 which
enforces a suitable decay of the Fourier coefficients as the frequency ξ goes to
infinity. The above definition can be extended from Rn to other domains where
a suitable generalization of the Fourier transform is defined, for example on
the sphere,28 and it also allows to introduce Sobolev spaces where k is not an
integer.

Remark 17. Mention Fourier and derivative -> symbol calculus.

Remark 18. Beyond Fourier many other integral transforms that might be
useful. For example, the Hilbert transform plays an essential role for the
representation of wave signals.29

2.6 Further Reading

A comprehensive discussion of mathematical basis of signal processing can be
found in the classic text by Mallat.30 Introductions to the theory of frames can
be found in the survey articles by Kovacevic and Chebira.31 Approximation
theory is very large subject in itself. A useful recent accounts on the classical
theory is presented by Trefethen32 and a good starting point for the modern

28For Sobolev spaces over the sphere see for example (Freeden, Gervens, and Schreiner,
Constructive Approximation on the Sphere (With Applications to Geomathematics); Hesse,
“Complexity of numerical integration over spherical caps in a Sobolev space setting”).

29Mandel and Wolf, Optical Coherence and Quantum Optics, Chapter 3.
30Mallat, A Wavelet Tour of Signal Processing: The Sparse Way.
31Kovacevic and Chebira, “Life Beyond Bases: The Advent of Frames (Part I)”; Kovacevic

and Chebira, “Life Beyond Bases: The Advent of Frames (Part II)”.
32(Trefethen, Approximation Theory and Approximation Practice), see also (Davis, Inter-

polation and Approximation; Cheney and Light, A Course in Approximation Theory).
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theory for signals with varying regularity is again presented by Mallat.33 For a
more rigorous and mathematical treatment of function spaces see for example the
classic text by Lax34 or the books by Rudin.35 For an alternative introduction
to finite element methods see the article by Trenogin.36

33(Mallat, A Wavelet Tour of Signal Processing: The Sparse Way), see for example
also (R. A. DeVore and Lorentz, Constructive approximation; R. A. DeVore, “Nonlinear Approx-
imation”; Wendland, Scattered Data Approximation; Freeden, Gervens, and Schreiner, Con-
structive Approximation on the Sphere (With Applications to Geomathematics); Temlyakov,
“Nonlinear Methods of Approximation”; Reimer, Multivariate Polynomial Approximation;
Cucker and Zhou, Learning Theory: An Approximation Theory Viewpoint).

34Lax, Functional Analysis.
35Rudin, Principles of Mathematical Analysis; Rudin, Real and Complex Analysis; Rudin,

Functional Analysis.
36Trenogin, “Galerkin Method”.





Chapter 3

Manifolds and Tensors

Relevance for graphics: - Meshes, as discussed in more detail in the next section.
- For simulation. - For manifold learning, i.e. the analysis of high dimen-
sional data.1 - Lie groups: Rotations are omnipresent in graphics, symmetry
detection,2 Lie group integrators.3

3.1 Preliminaries

In the following, it will be useful to have in mind some notions from algebra
about the relationship between mathematical structures. We will therefore
recall them at this point.

Definition 3.1. A homomorphism is a structure preserving map between
algebraic structures.

Homomorphisms exists for different structures, such as algebras, Lie algebras,
rings, and groups, and the precise meaning of the term depends on the structure
of interest. The following examples demonstrate this.

Example 42. Let (H(X), 〈 , 〉) be a finite dimensional Hilbert space, and let
{ϕi}ni=1 and orthonormal basis for H(X). Then {ϕi}ni=1 defines a Hilbert space
homomorphism from H(X) to Rn with the usual Euclidean inner product.

1(Coifman, Lafon, Lee, Maggioni, Nadler, Warner, and Zucker, “Geometric Diffusions as a
Tool for Harmonic Analysis and Structure Definition of Data: Diffusion Maps”; Coifman, Lafon,
Lee, Maggioni, Nadler, Warner, and Zucker, “Geometric Diffusions as a Tool for Harmonic
Analysis and Structure Definition of Data: Multiscale Methods”) and references therein. A
pivotal early paper is those by Belin and Niyogi (“Laplacian Eigenmaps for Dimensionality
Reduction and Data Representation”).

2(Lipman, Chen, Daubechies, and Funkhouser, “Symmetry Factored Embedding and
Distance”); through the intimate relationship between rotations and the Laplace operator
also methods that employ spherical harmonics can be considered to be based on Lie groups,
see e.g. (Kazhdan, Funkhouser, and Rusinkiewicz, “Rotation Invariant Spherical Harmonic
Representation of 3D Shape Descriptors”).

3Kobilarov, Crane, and Desbrun, “Lie Group Integrators for Animation and Control of
Vehicles”.
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This is just a more formal version of the previous observation that, using an
orthonormal basis such as {ϕi}ni=1, all operations in H(X) can equivalently be
performed in Rn.

Example 43. A Lie algebra homomorphism ϕ : (g, [ , ]g) → (h, [ , ]h) be-
tween two Lie algebras (g, [ , ]g) and (h, [ , ]h) is a map such that [X,Y ]g =
[ϕ(X), ϕ(Y )]h for all X,Y ∈ g.

Definition 3.2. An isomorphism between two algebraic structures is a ho-
momorphism whose inverse is also a homomorphism.

An isomorphism thus defines an equivalence between two structures that enables
to perform all operations on the first structure also with the second one, and
then relate the result back to the first. When two structures A and B are
isomorphic then this will be denoted as A ∼= B.

Example 44. Extending Example 42, any finite dimensional Hilbert space
(H, 〈 , 〉) of dimension n is isomorphic to Euclidean space (Rn, ·) with the inner
product over H being the dot product over Rn.

Definition 3.3. An endomorphism is a homomorphism from an object onto
itself.

Definition 3.4. An automorphism is an isomorphism from an object onto
itself.

Automorphisms are for example of importance in the context of (Lie) groups
when it is acting on itself.

Definition 3.5. A homeomorphism ϕ : S → T between topological spaces S
and T is a bijective mapping that is continuous and has a continuous inverse.

By the required continuity, a homeomorphism is an isomorphism in the cate-
gory of topological spaces, preserving the topological structure of S and T . Some
care is required to distinguish homomorphisms and homeomorphisms which
are related—and orthographically almost coincide—but nonetheless distinct
concepts.

3.2 Manifolds

3.2.1 Continuous Theory

3.2.2 Discrete Theory

3.3 Tensors

Distinguish from the tensors, that is multi-dimensional arrays, that sometimes
appear in computer science.4 - The connection is that the representation of the
tensors we talk about can be multi-linear arrays.

4Vasilescu and Terzopoulos, “TensorTextures”; Vasilescu and Terzopoulos, “Multilinear
Analysis of Image Ensembles: TensorFaces”; Tsai and Shih, “All-Frequency Precomputed Radi-
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Exercises: Derivatives for matrices.

3.4 Differential Forms and Exterior Calculus

3.4.1 Continuous Theory

Use integration as example application. Also the crucial aspect for discretization.
Remark on Lp spaces on manifolds.

3.4.2 Discrete Theory

3.5 The Lie Derivative

Develop continuous theory.
Make some remarks on discrete theory but no well developed theory so far.

3.6 Riemannian Manifolds

3.6.1 Continuous Theory

3.6.2 Discrete Theory

3.7 Lie Groups

Also talk about representations of matrices: this is how they occur almost
always in applications.

For the examples build on the material in Mechanics and Symmetry.

3.7.1 The Euclidean Group

In Example 7 we already showed that a linear space has a group structure.

3.7.2 The Rotation Group

SO(3) and its different realizations (including quaternions) as example.

3.7.3 Diffeomorphism Groups

3.8 Further Reading

A comprehensive and rigorous discussion of manifolds and tensor calculus can
be found in the book by Marsden, Ratiu, and Abraham.5 A shorter introduction
can be found in the “little Spivak”.6 A classical presentation from the point of

ance Transfer Using Spherical Radial Basis Functions and Clustered Tensor Approximation”.
5Marsden, Ratiu, and Abraham, Manifolds, Tensor Analysis, and Applications.
6Spivak, Calculus on Manifolds: A Modern Approach to Classical Theorems of Advanced

Calculus.
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physics that also tries to provide as much intuition as possible is those in the
“Big Black Book: B3” by Misner, Thorne, and Wheeler.7

7Misner, Thorne, and Wheeler, Gravitation.



Chapter 4

Dynamical Systems and Geometric
Mechanics

- Simulation and animation; although so far almost exclusively used for simula-
tion and control. - Fluid simulation.1 - Control.2 - Elastics.3.

4.1 Motivation and Intuition

4.2 Ordinary and Partial Differential Equations

4.3 Hamiltonian Mechanics

4.3.1 Continuous Theory

Example 45. Method of characteristics, at least for ḟ = −{f,H}.

4.3.2 Symplectic Integrators

4.4 Lagrangian Mechanics

4.4.1 Continuous Theory

Remark 19 (Calculus of Variations). Explain basic rules of classical classical
calculus of variations.

1Elcott, Tong, Kanso, Schröder, and Desbrun, “Stable, Circulation-Preserving, Simplicial
Fluids”; Pavlov, Mullen, Tong, Kanso, Marsden, and Desbrun, “Structure-preserving discretiza-
tion of incompressible fluids”; Mullen, Crane, Pavlov, Tong, and Desbrun, “Energy-Preserving
Integrators for Fluid Animation”.

2Kobilarov, Crane, and Desbrun, “Lie Group Integrators for Animation and Control of
Vehicles”.

3Bergou, Wardetzky, Robinson, Audoly, and Grinspun, “Discrete Elastic Rods”; Bergou,
Audoly, Vouga, Wardetzky, and Grinspun, “Discrete Viscous Threads”; Batty, Uribe, Audoly,
and Grinspun, “Discrete Viscous Sheets”.
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Figure 4.1: Explicit Euler integrator.
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Figure 4.2: Implicit Euler integrator.

4.4.2 Variational Integrators

Begin with motivation:

• Explicit and implicit Euler for Pendulum. Always non-physical behaviour.

• Also recall mathematical form of explicit / implicit Euler.

In the continuous case, the equation motion is derived by inserting the
Lagrangian for a system into the continuous Euler-Lagrange equation

∂L

∂q
+
d

dt

∂L

∂q̇
= 0 (4.1)

which we derived before in Sec. 4.4.1 from Hamilton’s principle.
TODO: Add details on derivation of discrete Euler-Lagrange equations.

Look at (Stern and Desbrun, “Discrete Geometric Mechanics for Variational
Time Integrators”). For a variational integrator, the Lagrangian is discretized
by

L̂(qk, qk+1) =

∫ qk+1

tk

L(q, q̇) dt. (4.2)

For a simple one point quadrature and equidistant nodes with qk+1 − qk = h
one obtains

L̂(qk, qk+1) = hL

(
(1− α)qk + αqk+1 ,

qk+1 − qk
h

)
(4.3)
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with α ∈ [0, 1].
TODO: Choices for α.
The discrete Euler-Lagrange equation is

D1 L̂(qk, qk+1) +D2 L̂(qk−1, qk) = 0. (4.4)

Example 46 (Variational Integrator for Pendulum). The Lagrangian for the
pendulum is

L(q, q̇) =
1

2
l2q̇2 + gl cos θ (4.5)

j where g is the gravitational constant and l the length of the pendulum. By
Eq. 4.3, for α = 1 the discrete Lagrangian is then

L̂(θk, θk+1) =
1

2
l2v2

k+1 + glcos(θk) (4.6a)

where the discrete velocity is given by

vk+1 = vk+1(qk, qk+1) =
qk+1 − qk

h
(4.6b)

and hence depends on both qk and qk+1. For the derivatives in the discrete
Euler-Lagrange4.4 we thus have

D1L̂(θk, θk+1) = h

(
1

2
l2
(

2 vk+1
1

h

)
− gl sin (θk)

)
(4.7a)

D2L̂(θk−1, θk) = h

(
1

2
l2
(

2 vk
1

h

)
+ 0

)
(4.7b)

and inserting into the discrete Euler-Lagrange equation hence yields(
l2 vk+1 − h gl sin (θk)

)
+
(
l2vk

)
= 0 (4.8)

which only has one unknown, the velocity vk+1 at the next time step. Simplifying
the equation we obtain

vk+1 = vk + h
g

l
sin (θk) (4.9a)

which equals an explicit Euler step for the velocity, see above. The angle at the
next time step can be obtained by solving Eq. 4.6b for qk+1. that is

θk+1 = θk + hvk+1 (4.9b)

which is an implicit Euler step. Eq. 4.9 provides a complete update rule for the
pendulum. Numerically, the integrator yields (from left to right: energy, time
series, and phase portrait)
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and, in contrast to the explicit and implict Euler integrator in Fig. 4.1 and
Fig. 4.2, we obtain a qualitatively correct harmonic motion. Note that Eq. 4.9
differs from the formulas for the explicit and implicit Euler schemes only slightly,
but with a tremendous difference in the numerics. Also the computation is not
more expensive than an explicit Euler-Integrator, the simplest possible scheme,
while the nonlinear solve that is needed for the implicit Euler-scheme is avoided.

4.5 Symmetries

4.6 Further Reading

Books on geometric mechanics are for example the classic texts by Abraham
and Marsden4 and Arnold5. More current treatments can be found in books
by Marsden and Ratiu,6 which discusses a wealth of physical systems, and the
books by Holm and co-workers7 that provide a more pedagogical exposition.

4Abraham and Marsden, Foundations of Mechanics.
5Arnold, Mathematical Methods of Classical Mechanics.
6Marsden and Ratiu, Introduction to Mechanics and Symmetry: A Basic Exposition of

Classical Mechanical Systems.
7Holm, Geometric Mechanics: Dynamics and Symmetry; Holm, Geometric mechanics:

Rotating, translating and rolling; Holm, Schmah, and Stoica, Geometric Mechanics and
Symmetry: From Finite to Infinite Dimensions.
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“My work always tried to unite
the truth with the beautiful,
but when I had to choose
one or the other,
I usually chose the beautiful.”

Hermann Weyl



© Christian Lessig 2014


	Contents
	1 Linear Algebra
	1.1 Linear Spaces
	1.2 Linear Spaces with Additional Structure
	1.2.1 Norms
	1.2.2 Inner Products

	1.3 Linear Functionals
	1.4 Bases for Linear Spaces
	1.4.1 Biorthogonal Bases
	1.4.2 Orthonormal Bases
	1.4.3 Overcomplete Bases: Frames

	1.5 Linear Maps
	1.5.1 Fundamental Concepts
	1.5.2 Eigen and Singular Value Decomposition

	1.6 Linear Spaces as Groups
	1.7 Affine Spaces
	1.8 Further Reading

	2 Signal Processing and Applied Functional Analysis
	2.1 Functions as Vectors in a Linear Space
	2.2 Bases and Numerical Computations
	2.2.1 Orthonormal Bases
	2.2.2 Biorthogonal Bases and Frames

	2.3 Approximation of Functions
	2.3.1 Linear Approximation
	2.3.2 Nonlinear Approximation
	2.3.3 From One to Higher Dimensions

	2.4 Reproducing Kernels
	2.4.1 Point Evaluation Functionals
	2.4.2 Reproducing Kernel Bases
	2.4.3 Choice of Sampling Points
	2.4.4 Pointwise Numerical Techniques

	2.5 Linear Operators on Function Spaces
	2.5.1 Differential Operators
	2.5.2 Integral Operators
	2.5.3 Galerkin Projection
	2.5.4 Fourier Theory Revisited

	2.6 Further Reading

	3 Manifolds and Tensors
	3.1 Preliminaries
	3.2 Manifolds
	3.2.1 Continuous Theory
	3.2.2 Discrete Theory

	3.3 Tensors
	3.4 Differential Forms and Exterior Calculus
	3.4.1 Continuous Theory
	3.4.2 Discrete Theory

	3.5 The Lie Derivative
	3.6 Riemannian Manifolds
	3.6.1 Continuous Theory
	3.6.2 Discrete Theory

	3.7 Lie Groups
	3.7.1 The Euclidean Group
	3.7.2 The Rotation Group
	3.7.3 Diffeomorphism Groups

	3.8 Further Reading

	4 Dynamical Systems and Geometric Mechanics
	4.1 Motivation and Intuition
	4.2 Ordinary and Partial Differential Equations
	4.3 Hamiltonian Mechanics
	4.3.1 Continuous Theory
	4.3.2 Symplectic Integrators

	4.4 Lagrangian Mechanics
	4.4.1 Continuous Theory
	4.4.2 Variational Integrators

	4.5 Symmetries
	4.6 Further Reading

	Bibliography
	Index

