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My background
  ◦ Ph.D. on simulations in computer graphics

  ◦ Classical numerical modeling and simulations of light, 
fluids, ... for scientific appliations

  › Adaptive schemes

  › Structure-preserving (Lie group) integrators

  ◦ Part of DFG-funded CRC-287 “BULK Reaction”

  › Large scale simulation of reacting, gaseous flows in 
granular assemblies for industrial applications
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Motivation: weather and climate
296 V. M. Gálfi et al.

Fig. 1 Idealised power spectra for the atmosphere indicating the relationship between the spatial and tem-
poral scales of atmospheric flows. The source of this material is the COMET©Website at http://meted.ucar.
edu/ of the University Corporation for Atmospheric Research (UCAR), sponsored in part through coopera-
tive agreement(s) with the National Oceanic and Atmospheric Administration (NOAA), U.S. Department of
Commerce (DOC). ©1997–2017 University Corporation for Atmospheric Research. All Rights Reserved

of the statistical and dynamical properties of blocking events is still challenging for
both numerical weather forecast models [85] and climate models [54].

The hope is that, by focusing on suitably defined large deviations of the atmospheric
fields, one could distil information on the low-frequency variability of the atmosphere.
Roughly speaking, as discussed below, it can be proven rigorously that any large
deviation is realised in the least unlikely of all the unlikely ways [63]. Let’s clarify
this important concept using again an example drawn from climate science. Let’s
assume that we have established a large deviation law describing the probability of
occurrence of heatwaves in a given location. In principle, the corresponding rare events
can take place as a result of a variety of large scale atmospheric configurations; see a
recent analysis of heatwaves in France [7]. Nonetheless, LDT imposes that, in fact, if
we look at true extremes, with overwhelming probability the heatwaves we observe
will take place, apart from small-scale spatio-temporal fluctuations, as a result of a
well-defined large-scale atmospheric configuration, which is very rare in the standard
statistics, but is typical if we consider the multitude of possible heatwaves with same
intensity. By typical here we mean that the probability of the occurrence of a large
scale atmospheric pattern that is very close to such a configuration, conditional on
the occurrence of heatwave at the reference location, is very high, and gets closer to
one as we consider more stringent criteria - in terms of intensity and duration - for
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From V. M. Galfi, V. Lucarini, F. Ragone, and J. Wouters. Applications of large deviation theory in geophysical fluid dynamics and cli-
mate science. La Rivista del Nuovo Cimento, 44(6):291–363, 2021.
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Relevant phenomena 
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time
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Often no physical 
models at all and 

usually no effective 
coarse-scale models
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span 10 orders of  
magnitude in space and 
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  ◦ Large amounts of data available in the Earth sciences:

  › ERA5: ≈6 PB 

  › CMIP6: ≈100 PB

  › MetOp-SG: 8 x 864 GB/day (80 Mbit/s)

  › OCEAN5: ≈4 PB

Motivation: weather and climate
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  ◦ Large amounts of data available in the Earth sciences:

  › ERA5: ≈6 PB 

  › CMIP6: ≈100 PB

  › MetOp-SG: 8 x 864 GB/day (80 Mbit/s)

  › OCEAN5: ≈4 PB

  ◦ Observational or quasi-observational data with effects 
and phenomena not captured in known analytic models

growing 
fast

Motivation: weather and climate
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  ◦ How to use this data for machine learning?
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Motivation
  ◦ How to use this data for machine learning?

  › Most data is unlabeled

  › Super-computing infrastructure required for storing 
and processing

  › Unclear how to ensure that learned models are  
physically consistent

Motivation: weather and climate
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  ◦ Example: hurricane tracking

  › Large importance for immediate   
effects and climate projections
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  ◦ Example: hurricane tracking

  › Large importance for immediate   
effects and climate projections

  › NOAA HURDAT2 Atlantic hurricane 
database: 6.5 MB 

Can we use large amounts of unlabeled data to augment 
the very small amounts of labeled hurricane tracking data?
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Self-supervised representation learning

  ◦ Yoshua Bengio: “Humans develop representations and 
abstractions to enable problem-solving and reasoning; 
our computers should do the same.”1

  ◦ Yann LeCun: “Self-supervised learning: The dark matter 
of intelligence“2

1 http://www.iro.umontreal.ca/~bengioy/talks/icml2012-YB-tutorial.pdf 
2 https://ai.facebook.com/blog/self-supervised-learning-the-dark-matter-of-intelligence/
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Self-supervised representation learning

  ◦ Representation learning

  › Learn a task-independent representation of the data 
in the feature space of the neural network 
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Self-supervised representation learning

  ◦ Representation learning

  › Learn a task-independent representation of the data 
in the feature space of the neural network 

Effective “encoding” of the data  
useful for many applications



24© Christian Lessig, 2022

Visualizing and Understanding Convolutional Networks

Layer 2
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Figure 2. Visualization of features in a fully trained model. For layers 2-5 we show the top 9 activations in a random subset
of feature maps across the validation data, projected down to pixel space using our deconvolutional network approach.
Our reconstructions are not samples from the model: they are reconstructed patterns from the validation set that cause
high activations in a given feature map. For each feature map we also show the corresponding image patches. Note:
(i) the the strong grouping within each feature map, (ii) greater invariance at higher layers and (iii) exaggeration of
discriminative parts of the image, e.g. eyes and noses of dogs (layer 4, row 1, cols 1). Best viewed in electronic form.

From M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, editors, Computer 
Vision – ECCV 2014, pages 818–833, Cham, 2014. Springer International Publishing.

Self-supervised representation learning
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Self-supervised representation learning

  ◦ Representation learning

  › Learn a task-independent representation of the data 
in the feature space of the neural network 

  ◦ Self-supervised training

  › Train with “labels” intrinsic to the data 

Effective “encoding” of the data  
useful for many applications
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  ◦ Self-supervised pretext tasks: 

Self-supervised representation learning
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  ◦ Self-supervised pretext tasks: 
inpainting of randomly delet-
ed image parts1

1 D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros. Context encod-
ers: Feature learning by inpainting. In Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition (CVPR), June 2016.

Self-supervised representation learning
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  ◦ Self-supervised pretext tasks: predicting deleted col-
or and gray scale channels1

1 R. Zhang, P. Isola, and A. A. Efros. Split-brain autoencoders: Unsupervised learning by cross-channel prediction. In Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition (CVPR), July 2017.

Self-supervised representation learning
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Self-supervised representation learning

  ◦ BERT masked language model1

  › Self-supervised representation learning for natural  
language processing (NLP)

  › Very large transformer neural network with billions of 
parameters 

  › Self-supervised training essentially only feasible op-
tion at this scale

1 J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep bidirectional transformers for language understanding, 2019.
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Self-supervised representation learning

  ◦ BERT1

Figure 1: Overall pre-training and fine-tuning procedures for BERT. Apart from output layers, the same architec-
tures are used in both pre-training and fine-tuning. The same pre-trained model parameters are used to initialize
models for different down-stream tasks. During fine-tuning, all parameters are fine-tuned. [CLS] is a special
symbol added in front of every input example, and [SEP] is a special separator token (e.g. separating ques-
tions/answers).

ing and auto-encoder objectives have been used
for pre-training such models (Howard and Ruder,
2018; Radford et al., 2018; Dai and Le, 2015).

2.3 Transfer Learning from Supervised Data

There has also been work showing effective trans-
fer from supervised tasks with large datasets, such
as natural language inference (Conneau et al.,
2017) and machine translation (McCann et al.,
2017). Computer vision research has also demon-
strated the importance of transfer learning from
large pre-trained models, where an effective recipe
is to fine-tune models pre-trained with Ima-
geNet (Deng et al., 2009; Yosinski et al., 2014).

3 BERT

We introduce BERT and its detailed implementa-
tion in this section. There are two steps in our
framework: pre-training and fine-tuning. Dur-
ing pre-training, the model is trained on unlabeled
data over different pre-training tasks. For fine-
tuning, the BERT model is first initialized with
the pre-trained parameters, and all of the param-
eters are fine-tuned using labeled data from the
downstream tasks. Each downstream task has sep-
arate fine-tuned models, even though they are ini-
tialized with the same pre-trained parameters. The
question-answering example in Figure 1 will serve
as a running example for this section.

A distinctive feature of BERT is its unified ar-
chitecture across different tasks. There is mini-

mal difference between the pre-trained architec-
ture and the final downstream architecture.

Model Architecture BERT’s model architec-
ture is a multi-layer bidirectional Transformer en-
coder based on the original implementation de-
scribed in Vaswani et al. (2017) and released in
the tensor2tensor library.1 Because the use
of Transformers has become common and our im-
plementation is almost identical to the original,
we will omit an exhaustive background descrip-
tion of the model architecture and refer readers to
Vaswani et al. (2017) as well as excellent guides
such as “The Annotated Transformer.”2

In this work, we denote the number of layers
(i.e., Transformer blocks) as L, the hidden size as
H , and the number of self-attention heads as A.3

We primarily report results on two model sizes:
BERTBASE (L=12, H=768, A=12, Total Param-
eters=110M) and BERTLARGE (L=24, H=1024,
A=16, Total Parameters=340M).

BERTBASE was chosen to have the same model
size as OpenAI GPT for comparison purposes.
Critically, however, the BERT Transformer uses
bidirectional self-attention, while the GPT Trans-
former uses constrained self-attention where every
token can only attend to context to its left.4

1https://github.com/tensorflow/tensor2tensor
2http://nlp.seas.harvard.edu/2018/04/03/attention.html
3In all cases we set the feed-forward/filter size to be 4H ,

i.e., 3072 for the H = 768 and 4096 for the H = 1024.
4We note that in the literature the bidirectional Trans-

1 J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep bidirectional transformers for language understanding, 2019.
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tion in this section. There are two steps in our
framework: pre-training and fine-tuning. Dur-
ing pre-training, the model is trained on unlabeled
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as a running example for this section.
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mal difference between the pre-trained architec-
ture and the final downstream architecture.

Model Architecture BERT’s model architec-
ture is a multi-layer bidirectional Transformer en-
coder based on the original implementation de-
scribed in Vaswani et al. (2017) and released in
the tensor2tensor library.1 Because the use
of Transformers has become common and our im-
plementation is almost identical to the original,
we will omit an exhaustive background descrip-
tion of the model architecture and refer readers to
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such as “The Annotated Transformer.”2

In this work, we denote the number of layers
(i.e., Transformer blocks) as L, the hidden size as
H , and the number of self-attention heads as A.3

We primarily report results on two model sizes:
BERTBASE (L=12, H=768, A=12, Total Param-
eters=110M) and BERTLARGE (L=24, H=1024,
A=16, Total Parameters=340M).

BERTBASE was chosen to have the same model
size as OpenAI GPT for comparison purposes.
Critically, however, the BERT Transformer uses
bidirectional self-attention, while the GPT Trans-
former uses constrained self-attention where every
token can only attend to context to its left.4

1https://github.com/tensorflow/tensor2tensor
2http://nlp.seas.harvard.edu/2018/04/03/attention.html
3In all cases we set the feed-forward/filter size to be 4H ,

i.e., 3072 for the H = 768 and 4096 for the H = 1024.
4We note that in the literature the bidirectional Trans-

1 J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep bidirectional transformers for language understanding, 2019.

The sun was 
shining bright.
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Self-supervised representation learning

  ◦ BERT1
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ture is a multi-layer bidirectional Transformer en-
coder based on the original implementation de-
scribed in Vaswani et al. (2017) and released in
the tensor2tensor library.1 Because the use
of Transformers has become common and our im-
plementation is almost identical to the original,
we will omit an exhaustive background descrip-
tion of the model architecture and refer readers to
Vaswani et al. (2017) as well as excellent guides
such as “The Annotated Transformer.”2

In this work, we denote the number of layers
(i.e., Transformer blocks) as L, the hidden size as
H , and the number of self-attention heads as A.3

We primarily report results on two model sizes:
BERTBASE (L=12, H=768, A=12, Total Param-
eters=110M) and BERTLARGE (L=24, H=1024,
A=16, Total Parameters=340M).

BERTBASE was chosen to have the same model
size as OpenAI GPT for comparison purposes.
Critically, however, the BERT Transformer uses
bidirectional self-attention, while the GPT Trans-
former uses constrained self-attention where every
token can only attend to context to its left.4
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3In all cases we set the feed-forward/filter size to be 4H ,

i.e., 3072 for the H = 768 and 4096 for the H = 1024.
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1 J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep bidirectional transformers for language understanding, 2019.
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Figure 1: Overall pre-training and fine-tuning procedures for BERT. Apart from output layers, the same architec-
tures are used in both pre-training and fine-tuning. The same pre-trained model parameters are used to initialize
models for different down-stream tasks. During fine-tuning, all parameters are fine-tuned. [CLS] is a special
symbol added in front of every input example, and [SEP] is a special separator token (e.g. separating ques-
tions/answers).
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Figure 1: Overall pre-training and fine-tuning procedures for BERT. Apart from output layers, the same architec-
tures are used in both pre-training and fine-tuning. The same pre-trained model parameters are used to initialize
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System Dev Test
EM F1 EM F1

Top Leaderboard Systems (Dec 10th, 2018)
Human - - 82.3 91.2
#1 Ensemble - nlnet - - 86.0 91.7
#2 Ensemble - QANet - - 84.5 90.5

Published
BiDAF+ELMo (Single) - 85.6 - 85.8
R.M. Reader (Ensemble) 81.2 87.9 82.3 88.5

Ours
BERTBASE (Single) 80.8 88.5 - -
BERTLARGE (Single) 84.1 90.9 - -
BERTLARGE (Ensemble) 85.8 91.8 - -
BERTLARGE (Sgl.+TriviaQA) 84.2 91.1 85.1 91.8

BERTLARGE (Ens.+TriviaQA) 86.2 92.2 87.4 93.2

Table 2: SQuAD 1.1 results. The BERT ensemble
is 7x systems which use different pre-training check-
points and fine-tuning seeds.

System Dev Test
EM F1 EM F1

Top Leaderboard Systems (Dec 10th, 2018)
Human 86.3 89.0 86.9 89.5
#1 Single - MIR-MRC (F-Net) - - 74.8 78.0
#2 Single - nlnet - - 74.2 77.1

Published
unet (Ensemble) - - 71.4 74.9
SLQA+ (Single) - 71.4 74.4

Ours
BERTLARGE (Single) 78.7 81.9 80.0 83.1

Table 3: SQuAD 2.0 results. We exclude entries that
use BERT as one of their components.

tuning data, we only lose 0.1-0.4 F1, still outper-
forming all existing systems by a wide margin.12

4.3 SQuAD v2.0

The SQuAD 2.0 task extends the SQuAD 1.1
problem definition by allowing for the possibility
that no short answer exists in the provided para-
graph, making the problem more realistic.

We use a simple approach to extend the SQuAD
v1.1 BERT model for this task. We treat ques-
tions that do not have an answer as having an an-
swer span with start and end at the [CLS] to-
ken. The probability space for the start and end
answer span positions is extended to include the
position of the [CLS] token. For prediction, we
compare the score of the no-answer span: snull =
S·C + E·C to the score of the best non-null span

12The TriviaQA data we used consists of paragraphs from
TriviaQA-Wiki formed of the first 400 tokens in documents,
that contain at least one of the provided possible answers.

System Dev Test

ESIM+GloVe 51.9 52.7
ESIM+ELMo 59.1 59.2
OpenAI GPT - 78.0

BERTBASE 81.6 -
BERTLARGE 86.6 86.3

Human (expert)† - 85.0
Human (5 annotations)† - 88.0

Table 4: SWAG Dev and Test accuracies. †Human per-
formance is measured with 100 samples, as reported in
the SWAG paper.

ˆsi,j = maxjiS·Ti + E·Tj . We predict a non-null
answer when ˆsi,j > snull + ⌧ , where the thresh-
old ⌧ is selected on the dev set to maximize F1.
We did not use TriviaQA data for this model. We
fine-tuned for 2 epochs with a learning rate of 5e-5
and a batch size of 48.

The results compared to prior leaderboard en-
tries and top published work (Sun et al., 2018;
Wang et al., 2018b) are shown in Table 3, exclud-
ing systems that use BERT as one of their com-
ponents. We observe a +5.1 F1 improvement over
the previous best system.

4.4 SWAG

The Situations With Adversarial Generations
(SWAG) dataset contains 113k sentence-pair com-
pletion examples that evaluate grounded common-
sense inference (Zellers et al., 2018). Given a sen-
tence, the task is to choose the most plausible con-
tinuation among four choices.

When fine-tuning on the SWAG dataset, we
construct four input sequences, each containing
the concatenation of the given sentence (sentence
A) and a possible continuation (sentence B). The
only task-specific parameters introduced is a vec-
tor whose dot product with the [CLS] token rep-
resentation C denotes a score for each choice
which is normalized with a softmax layer.

We fine-tune the model for 3 epochs with a
learning rate of 2e-5 and a batch size of 16. Re-
sults are presented in Table 4. BERTLARGE out-
performs the authors’ baseline ESIM+ELMo sys-
tem by +27.1% and OpenAI GPT by 8.3%.

5 Ablation Studies

In this section, we perform ablation experiments
over a number of facets of BERT in order to better
understand their relative importance. Additional

Performance of fine-
tuned model on ques-
tion-answer benchmark
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  ◦ Many other recent approaches:

  › Contrastive loss functions1

  › DINO2

  › Extensions of BERT-style completion tasks3

  › ...

1 P. H. Le-Khac, G. Healy, and A. F. Smeaton. Contrastive representation learning: A framework and review. IEEE Access, 8:193907–193934, 2020.
2 M. Caron, H. Touvron, I. Misra, H. Jegou, J. Mairal, P. Bojanowski, and A. Joulin. Emerging properties in self-supervised vision transformers. CoRR, 
abs/2104.14294, 2021.

3 H. Bao, L. Dong, S. Piao, and F. Wei. BEit: BERT pre-training of image transformers. In International Conference on Learning Representations, 2022.
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Abstract

Attention-based neural networks such as the Vision Trans-

former (ViT) have recently attained state-of-the-art results

on many computer vision benchmarks. Scale is a primary

ingredient in attaining excellent results, therefore, under-

standing a model’s scaling properties is a key to designing

future generations effectively. While the laws for scaling

Transformer language models have been studied, it is un-

known how Vision Transformers scale. To address this, we

scale ViT models and data, both up and down, and character-

ize the relationships between error rate, data, and compute.

Along the way, we refine the architecture and training of ViT,

reducing memory consumption and increasing accuracy of

the resulting models. As a result, we successfully train a

ViT model with two billion parameters, which attains a new

state-of-the-art on ImageNet of 90.45% top-1 accuracy. The

model also performs well for few-shot transfer, for example,

reaching 84.86% top-1 accuracy on ImageNet with only 10

examples per class.

1. Introduction

Attention-based Transformer architectures [45] have
taken computer vision domain by storm [8, 16] and are be-
coming an increasingly popular choice in research and prac-
tice. Previously, Transformers have been widely adopted in
the natural language processing (NLP) domain [7, 15]. Opti-
mal scaling of Transformers in NLP was carefully studied
in [22], with the main conclusion that large models not only
perform better, but do use large computational budgets more
efficiently. However, it remains unclear to what extent these
findings transfer to the vision domain, which has several
important differences. For example, the most successful
pre-training schemes in vision are supervised, as opposed to
unsupervised pre-training in the NLP domain.

In this paper we concentrate on scaling laws for transfer
performance of ViT models pre-trained on image classifica-

?equal contribution

Figure 1. Few-shot transfer results. Our ViT-G model reaches
84.86% top-1 accuracy on ImageNet with 10-shot linear evaluation.

tion tasks. In particular, we experiment with models ranging
from five million to two billion parameters, datasets ranging
from one million to three billion training images and com-
pute budgets ranging from below one TPUv3 core-day to
beyond 10 000 core-days. Our main contribution is a char-
acterization of the performance-compute frontier for ViT
models, on two datasets.

Along the way, we create an improved large-scale train-
ing recipe. We investigate training hyper-parameters and
discover subtle choices that make drastic improvements in
few-shot transfer performance. The few-shot transfer evalua-
tion protocol has also been adopted by previous large-scale
pre-training efforts in NLP domain [6]. Specifically, we
discover that very strong L2 regularization, applied to the
final linear prediction layer only, results in a learned visual
representation that has very strong few-shot transfer capabili-
ties. For example, with just a single example per class on the
ImageNet dataset (which has 1 000 classes), our best model
achieves 69.52% accuracy; and with 10 examples per class

it attains 84.86%. In addition, we substantially reduce the
memory footprint of the original ViT model proposed in [16].
We achieve this by hardware-specific architecture changes
and a different optimizer. As a result, we train a model
with two billion parameters and attain a new state-of-the-art

90.45% accuracy on ImageNet.
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beyond 10 000 core-days. Our main contribution is a char-
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models, on two datasets.
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pre-training efforts in NLP domain [6]. Specifically, we
discover that very strong L2 regularization, applied to the
final linear prediction layer only, results in a learned visual
representation that has very strong few-shot transfer capabili-
ties. For example, with just a single example per class on the
ImageNet dataset (which has 1 000 classes), our best model
achieves 69.52% accuracy; and with 10 examples per class

it attains 84.86%. In addition, we substantially reduce the
memory footprint of the original ViT model proposed in [16].
We achieve this by hardware-specific architecture changes
and a different optimizer. As a result, we train a model
with two billion parameters and attain a new state-of-the-art
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Scaling data and 
model size leads 
to continuously im-
proving results
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Published as a conference paper at ICLR 2021

Ours-JFT Ours-JFT Ours-I21k BiT-L Noisy Student
(ViT-H/14) (ViT-L/16) (ViT-L/16) (ResNet152x4) (EfficientNet-L2)

ImageNet 88.55± 0.04 87.76± 0.03 85.30± 0.02 87.54± 0.02 88.4/88.5⇤

ImageNet ReaL 90.72± 0.05 90.54± 0.03 88.62± 0.05 90.54 90.55
CIFAR-10 99.50± 0.06 99.42± 0.03 99.15± 0.03 99.37± 0.06
CIFAR-100 94.55± 0.04 93.90± 0.05 93.25± 0.05 93.51± 0.08
Oxford-IIIT Pets 97.56± 0.03 97.32± 0.11 94.67± 0.15 96.62± 0.23
Oxford Flowers-102 99.68± 0.02 99.74± 0.00 99.61± 0.02 99.63± 0.03
VTAB (19 tasks) 77.63± 0.23 76.28± 0.46 72.72± 0.21 76.29± 1.70
TPUv3-core-days 2.5k 0.68k 0.23k 9.9k 12.3k

Table 2: Comparison with state of the art on popular image classification benchmarks. We re-
port mean and standard deviation of the accuracies, averaged over three fine-tuning runs. Vision
Transformer models pre-trained on the JFT-300M dataset outperform ResNet-based baselines on all
datasets, while taking substantially less computational resources to pre-train. ViT pre-trained on the
smaller public ImageNet-21k dataset performs well too. ⇤Slightly improved 88.5% result reported
in Touvron et al. (2020).
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Figure 2: Breakdown of VTAB performance in Natural, Specialized, and Structured task groups.

model still took substantially less compute to pre-train than prior state of the art. However, we note
that pre-training efficiency may be affected not only by the architecture choice, but also other pa-
rameters, such as training schedule, optimizer, weight decay, etc. We provide a controlled study of
performance vs. compute for different architectures in Section 4.4. Finally, the ViT-L/16 model
pre-trained on the public ImageNet-21k dataset performs well on most datasets too, while taking
fewer resources to pre-train: it could be trained using a standard cloud TPUv3 with 8 cores in ap-
proximately 30 days.

Figure 2 decomposes the VTAB tasks into their respective groups, and compares to previous SOTA
methods on this benchmark: BiT, VIVI – a ResNet co-trained on ImageNet and Youtube (Tschannen
et al., 2020), and S4L – supervised plus semi-supervised learning on ImageNet (Zhai et al., 2019a).
ViT-H/14 outperforms BiT-R152x4, and other methods, on the Natural and Structured tasks. On the
Specialized the performance of the top two models is similar.

4.3 PRE-TRAINING DATA REQUIREMENTS

The Vision Transformer performs well when pre-trained on a large JFT-300M dataset. With fewer
inductive biases for vision than ResNets, how crucial is the dataset size? We perform two series of
experiments.

First, we pre-train ViT models on datasets of increasing size: ImageNet, ImageNet-21k, and JFT-
300M. To boost the performance on the smaller datasets, we optimize three basic regularization
parameters – weight decay, dropout, and label smoothing. Figure 3 shows the results after fine-
tuning to ImageNet (results on other datasets are shown in Table 5)2. When pre-trained on the
smallest dataset, ImageNet, ViT-Large models underperform compared to ViT-Base models, despite
(moderate) regularization. With ImageNet-21k pre-training, their performances are similar. Only
with JFT-300M, do we see the full benefit of larger models. Figure 3 also shows the performance

2Note that the ImageNet pre-trained models are also fine-tuned, but again on ImageNet. This is because the
resolution increase during fine-tuning improves the performance.

6

very large
transformer

very large con-
volutional net

From A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. 
Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. In International Conference on Learning Representations, 2021.
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Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. 
N. Gomez, L. Kaiser, and I. Polosukhin. Attention is all you 
need. In NEURIPS 2017, 2017.
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Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. 
N. Gomez, L. Kaiser, and I. Polosukhin. Attention is all you 
need. In NEURIPS 2017, 2017.
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Figure 1: The Transformer - model architecture.
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Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. 
N. Gomez, L. Kaiser, and I. Polosukhin. Attention is all you 
need. In NEURIPS 2017, 2017.
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Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. 
N. Gomez, L. Kaiser, and I. Polosukhin. Attention is all you 
need. In NEURIPS 2017, 2017.
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76© Christian Lessig, 2022 Figure 1: Overall pre-training and fine-tuning procedures for BERT. Apart from output layers, the same architec-
tures are used in both pre-training and fine-tuning. The same pre-trained model parameters are used to initialize
models for different down-stream tasks. During fine-tuning, all parameters are fine-tuned. [CLS] is a special
symbol added in front of every input example, and [SEP] is a special separator token (e.g. separating ques-
tions/answers).

ing and auto-encoder objectives have been used
for pre-training such models (Howard and Ruder,
2018; Radford et al., 2018; Dai and Le, 2015).

2.3 Transfer Learning from Supervised Data

There has also been work showing effective trans-
fer from supervised tasks with large datasets, such
as natural language inference (Conneau et al.,
2017) and machine translation (McCann et al.,
2017). Computer vision research has also demon-
strated the importance of transfer learning from
large pre-trained models, where an effective recipe
is to fine-tune models pre-trained with Ima-
geNet (Deng et al., 2009; Yosinski et al., 2014).

3 BERT

We introduce BERT and its detailed implementa-
tion in this section. There are two steps in our
framework: pre-training and fine-tuning. Dur-
ing pre-training, the model is trained on unlabeled
data over different pre-training tasks. For fine-
tuning, the BERT model is first initialized with
the pre-trained parameters, and all of the param-
eters are fine-tuned using labeled data from the
downstream tasks. Each downstream task has sep-
arate fine-tuned models, even though they are ini-
tialized with the same pre-trained parameters. The
question-answering example in Figure 1 will serve
as a running example for this section.

A distinctive feature of BERT is its unified ar-
chitecture across different tasks. There is mini-

mal difference between the pre-trained architec-
ture and the final downstream architecture.

Model Architecture BERT’s model architec-
ture is a multi-layer bidirectional Transformer en-
coder based on the original implementation de-
scribed in Vaswani et al. (2017) and released in
the tensor2tensor library.1 Because the use
of Transformers has become common and our im-
plementation is almost identical to the original,
we will omit an exhaustive background descrip-
tion of the model architecture and refer readers to
Vaswani et al. (2017) as well as excellent guides
such as “The Annotated Transformer.”2

In this work, we denote the number of layers
(i.e., Transformer blocks) as L, the hidden size as
H , and the number of self-attention heads as A.3

We primarily report results on two model sizes:
BERTBASE (L=12, H=768, A=12, Total Param-
eters=110M) and BERTLARGE (L=24, H=1024,
A=16, Total Parameters=340M).

BERTBASE was chosen to have the same model
size as OpenAI GPT for comparison purposes.
Critically, however, the BERT Transformer uses
bidirectional self-attention, while the GPT Trans-
former uses constrained self-attention where every
token can only attend to context to its left.4

1https://github.com/tensorflow/tensor2tensor
2http://nlp.seas.harvard.edu/2018/04/03/attention.html
3In all cases we set the feed-forward/filter size to be 4H ,

i.e., 3072 for the H = 768 and 4096 for the H = 1024.
4We note that in the literature the bidirectional Trans-
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A. Vaswani, N. Shazeer, N. Parmar, J. Usz-
koreit, L. Jones, A. N. Gomez, L. Kaiser, and 
I. Polosukhin. Attention is all you need. In I. 
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R. Fergus, S. Vishwanathan, and R. Garnett, 
editors, Advances in Neural Information 
Processing Systems, volume 30. Curran As-
sociates, Inc., 2017.
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Transformer neural networks for vision

  ◦ Wide adoption of transformers for vision took 4 years

  › Token initially often defined as a pixel: too small and 
too many

  › Training with insufficient amounts of data leads to 
worse performance than CNN

  › Token as 16x16 pixels now widely adopted and sub-
stantially improved performance with sufficient data
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M. Caron, H. Touvron, I. Misra, H. Jegou, J. 
Mairal, P. Bojanowski, and A. Joulin. Emerg-
ing properties in self-supervised vision 
transformers. CoRR, abs/2104.14294, 2021.

Table 5: DAVIS 2017 Video object segmentation. We evaluate
the quality of frozen features on video instance tracking. We report
mean region similarity Jm and mean contour-based accuracy Fm.
We compare with existing self-supervised methods and a supervised
ViT-S/8 trained on ImageNet. Image resolution is 480p.

Method Data Arch. (J&F)m Jm Fm

Supervised

ImageNet INet ViT-S/8 66.0 63.9 68.1
STM [48] I/D/Y RN50 81.8 79.2 84.3

Self-supervised

CT [71] VLOG RN50 48.7 46.4 50.0
MAST [40] YT-VOS RN18 65.5 63.3 67.6
STC [37] Kinetics RN18 67.6 64.8 70.2
DINO INet ViT-S/16 61.8 60.2 63.4
DINO INet ViT-B/16 62.3 60.7 63.9
DINO INet ViT-S/8 69.9 66.6 73.1

DINO INet ViT-B/8 71.4 67.9 74.9

Figure 3: Attention maps from multiple heads. We consider
the heads from the last layer of a ViT-S/8 trained with DINO and
display the self-attention for [CLS] token query. Different heads,
materialized by different colors, focus on different locations that
represents different objects or parts (more examples in Appendix).

4.2.2 Discovering the semantic layout of scenes

As shown qualitatively in Figure 1, our self-attention maps
contain information about the segmentation of an image. In
this study, we measure this property on a standard benchmark
as well as by directly probing the quality of masks generated
from these attention maps.

Video instance segmentation. In Tab. 5, we evaluate the
output patch tokens on the DAVIS-2017 video instance seg-
mentation benchmark [52]. We follow the experimental pro-
tocol in Jabri et al. [37] and segment scenes with a nearest-
neighbor between consecutive frames; we thus do not train
any model on top of the features, nor finetune any weights
for the task. We observe in Tab. 5 that even though our
training objective nor our architecture are designed for dense
tasks, the performance is competitive on this benchmark.
Since the network is not finetuned, the output of the model
must have retained some spatial information. Finally, for
this dense recognition task, the variants with small patches
(“/8”) perform much better (+9.1% (J&F)m for ViT-B).

Probing the self-attention map. In Fig. 3, we show that
different heads can attend to different semantic regions of an
image, even when they are occluded (the bushes on the third
row) or small (the flag on the second row). Visualizations are
obtained with 480p images, resulting in sequences of 3601
tokens for ViT-S/8. In Fig. 4, we show that a supervised
ViT does not attend well to objects in presence of clutter
both qualitatively and quantitatively. We report the Jaccard
similarity between the ground truth and segmentation masks
obtained by thresholding the self-attention map to keep 60%
of the mass. Note that the self-attention maps are smooth
and not optimized to produce a mask. Nonetheless, we see
a clear difference between the supervised or DINO models
with a significant gap in terms of Jaccard similarities. Note
that self-supervised convnets also contain information about
segmentations but it requires dedicated methods to extract it
from their weights [31].

4.2.3 Transfer learning on downstream tasks

In Tab. 6, we evaluate the quality of the features pretrained
with DINO on different downstream tasks. We compare
with features from the same architectures trained with super-
vision on ImageNet. We follow the protocol used in Tou-
vron et al. [69] and finetune the features on each downstream
task. We observe that for ViT architectures, self-supervised
pretraining transfers better than features trained with su-
pervision, which is consistent with observations made on
convolutional networks [10, 33, 62]. Finally, self-supervised
pretraining greatly improves results on ImageNet (+1-2%).

5. Ablation Study of DINO

In this section, we empirically study DINO applied to
ViT. The model considered for this entire study is ViT-S. We
also refer the reader to Appendix for additional studies.

5.1. Importance of the Different Components

We show the impact of adding different components from
self-supervised learning on ViT trained with our framework.

  ◦ DINO (computer vision):
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Figure 3: Attention maps from multiple heads. We consider
the heads from the last layer of a ViT-S/8 trained with DINO and
display the self-attention for [CLS] token query. Different heads,
materialized by different colors, focus on different locations that
represents different objects or parts (more examples in Appendix).

4.2.2 Discovering the semantic layout of scenes

As shown qualitatively in Figure 1, our self-attention maps
contain information about the segmentation of an image. In
this study, we measure this property on a standard benchmark
as well as by directly probing the quality of masks generated
from these attention maps.

Video instance segmentation. In Tab. 5, we evaluate the
output patch tokens on the DAVIS-2017 video instance seg-
mentation benchmark [52]. We follow the experimental pro-
tocol in Jabri et al. [37] and segment scenes with a nearest-
neighbor between consecutive frames; we thus do not train
any model on top of the features, nor finetune any weights
for the task. We observe in Tab. 5 that even though our
training objective nor our architecture are designed for dense
tasks, the performance is competitive on this benchmark.
Since the network is not finetuned, the output of the model
must have retained some spatial information. Finally, for
this dense recognition task, the variants with small patches
(“/8”) perform much better (+9.1% (J&F)m for ViT-B).

Probing the self-attention map. In Fig. 3, we show that
different heads can attend to different semantic regions of an
image, even when they are occluded (the bushes on the third
row) or small (the flag on the second row). Visualizations are
obtained with 480p images, resulting in sequences of 3601
tokens for ViT-S/8. In Fig. 4, we show that a supervised
ViT does not attend well to objects in presence of clutter
both qualitatively and quantitatively. We report the Jaccard
similarity between the ground truth and segmentation masks
obtained by thresholding the self-attention map to keep 60%
of the mass. Note that the self-attention maps are smooth
and not optimized to produce a mask. Nonetheless, we see
a clear difference between the supervised or DINO models
with a significant gap in terms of Jaccard similarities. Note
that self-supervised convnets also contain information about
segmentations but it requires dedicated methods to extract it
from their weights [31].

4.2.3 Transfer learning on downstream tasks

In Tab. 6, we evaluate the quality of the features pretrained
with DINO on different downstream tasks. We compare
with features from the same architectures trained with super-
vision on ImageNet. We follow the protocol used in Tou-
vron et al. [69] and finetune the features on each downstream
task. We observe that for ViT architectures, self-supervised
pretraining transfers better than features trained with su-
pervision, which is consistent with observations made on
convolutional networks [10, 33, 62]. Finally, self-supervised
pretraining greatly improves results on ImageNet (+1-2%).

5. Ablation Study of DINO

In this section, we empirically study DINO applied to
ViT. The model considered for this entire study is ViT-S. We
also refer the reader to Appendix for additional studies.

5.1. Importance of the Different Components

We show the impact of adding different components from
self-supervised learning on ViT trained with our framework.
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correlation between  
inputs in feature space:
attention

sun
shining

The sun was shining bright.

Transformers for fluid flow



96© Christian Lessig, 2022

t-2 t-1 t t+1

correlation between  
inputs in feature space:
attention

Fluid flow



97© Christian Lessig, 2022

t-2 t-1 t

Transformers for fluid flow



98© Christian Lessig, 2022

block=1, heads

tim
e
(past

st
ep
s)

t-2 t-1 t

block=1, heads

tim
e
(past

st
ep
s) block=1, heads

tim
e
(past

st
ep
s)

Transformers for fluid flow



99© Christian Lessig, 2022

block=1, heads

tim
e
(past

st
ep
s)

t-2 t-1 t

block=1, heads

tim
e
(past

st
ep
s)

t+1

block=1, heads

tim
e
(past

st
ep
s)

Transformers for fluid flow



100© Christian Lessig, 2022

block=1, heads

tim
e
(past

st
ep
s)

block=1, heads

tim
e
(past

st
ep
s)

t-2 t-1 t

block=1, heads

tim
e
(past

st
ep
s)

t+1

important for 
prediction

Transformers for fluid flow



101© Christian Lessig, 2022

t-2 t-1 t

Transformers for fluid flow



102© Christian Lessig, 2022

t-2 t-1 t

block=4, heads

tim
e
(past

st
ep
s) block=4, heads

tim
e
(past

st
ep
s) block=4, heads

tim
e
(past

st
ep
s)

Transformers for fluid flow



103© Christian Lessig, 2022

t-2 t-1 t

Transformers for fluid flow



104© Christian Lessig, 2022

block=1, heads

tim
e
(past

st
ep
s)

block=1, heads

tim
e
(past

st
ep
s)

block=1, heads

tim
e
(past

st
ep
s) block=1, heads

tim
e
(past

st
ep
s) block=1, heads

tim
e
(past

st
ep
s)

t-2 t-1 t

Transformers for fluid flow



105© Christian Lessig, 2022

  ◦ The classical perspective

  › Token: finite volume/discontinuous FEM cell

  › Attention: learnable inner product

  › Feature/embedding space: analogous to PCA (or 
complex bases such as wavelets)

Transformers for fluid flow
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Transformer neural networks

  ◦ Scale well to highly parallel training and billions of pa-
rameters, especially for sequential data

  ◦ Attention mechanism allows to model complex depen-
dencies in data

  › Learned inner product in feature space with “legs” in 
input domain

  › Direct interpretation of learned representations 
through attention maps
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Transformer neural networks

  ◦ Standard model for language models and vision

  ◦ Attention mechanism allows to model complex depen-
dencies in data

  ◦ Attention can also be used creatively wherever interac-
tion between inputs / part of the input need to be mod-
elled

  ◦ Generative prediction model
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How can we adapt representation 
learning and transformers to  

science and engineering?
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Rep. learning for science and engineering?

  ◦ Often very large amounts of data

  › CMIP6: 100+ PB

  › E.g. MetOp-SG: 8 x 864 GB/day 
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  ◦ Often very large amounts of data

  ◦ Often no complete classical model for system and dynam-
ics in complex interacting systems

  › Central issue for weather and climate projections 

Rep. learning for science and engineering?
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  ◦ Often very large amounts of data

  ◦ Often no complete classical model for system and dynam-
ics in complex interacting systems

  ◦ Large networks learn statistical representations

  › Point predictions usually not meaningful in large complex 
systems

Rep. learning for science and engineering?
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AtmoRep 
 

Large scale representation learning of 
atmospheric dynamics
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Data: ERA5 reanalysis
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Data: ERA5 reanalysis

137 vertical 
layers
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Data: ERA5 reanalysis
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Data: ERA5 reanalysis

137 vertical 
layers

- vorticity
- divergence
- temperature
- geopotential
- ...

721x1440 horizontal grid (0.25 degree)

Time: hourly for 70 years
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AtmoRep data
  ◦ Physical fields: vorticity, divergence, temperature, geo-
potential height, humidity

  ◦ Space: 721 x 1440 x 10 vertical layers

  ◦ Time: 24 time steps per day for 365 days for 70 years
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AtmoRep data
vorticity
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AtmoRep data
divergence
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AtmoRep data
temperature
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AtmoRep data
geopotential
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AtmoRep data
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AtmoRep network architecture

  ◦ Transformer-based network architecture

  › Scales well to very large data-sets

  › Generative model (with decoder)

  › Attention maps provide (physical) interpretability
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AtmoRep network architecture

  ◦ Transformer encoder-based network architecture

  › Scales well to very large data-sets

  › Generative model (with decoder)

  › Attention maps provide (physical) interpretability

  ◦ Network is local in space-time
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AtmoRep network architecture
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AtmoRep network architecture
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AtmoRep network architecture
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AtmoRep network architecture

  ◦ Transformer encoder-based network architecture

  › Scales well to very large data-sets

  › Generative model (with decoder)

  › Attention maps provide (physical) interpretability

  ◦ Network is local in space-time

  › Principal of dynamics are universally valid

  › Local particularities can be learned by providing time + 
space position as auxiliary information 
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What is a token?What is a token?

token: small 
space-time cube
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  ◦ Token is small neighborhood in 
space-time

  › Small for token attention / inter-
action to be informative

  › Big enough so token has rich 
internal strurcture

What is a token?
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  ◦ Token is small neighborhood in 
space-time

  › Small for token attention / inter-
action to be informative

  › Big enough so token has rich  
internal strurcture

  ◦ Token size is field-dependent

  ◦ Multiple token sizes to provide multi-resolution structure 
and large contexts for neighborhood

What is a token?
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Multiformer: respect the physical fields

  ◦ Attention maps:

t-2 t-1 tt-3

vorticity

orography
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Embedding of tokens

  ◦ Use non-trivial embedding network so that it models 
longer range effects and field interactions in a rich latent 
space

  ◦ Allow for tokens of different size in space-time
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Embedding of tokens

  ◦ Use non-trivial embedding network so that multiformer 
can model longer range effects and field interactions in 
a rich latent space

  ◦ Allow for tokens of different size in space-time

=> Use small/medium-size standard transformer as em-
bedding network
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Embedding of tokens

  ◦ Allow for tokens of different size in space-time
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Embedding of tokens

  ◦ Allow for tokens of different size in space-time
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Embedding of tokens

  ◦ Allow for tokens of different size in space-time

Sub-tokens instead 
of pixels



173© Christian Lessig, 2022

Embedding of tokens

  ◦ Allow for tokens of different size in space-time

Sub-tokens instead 
of pixels

  ◦ Transformer takes an arbitrary number of tokens as input

  › Training yields consistent embedding
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Training of embedding network

  ◦ Self-supervised training with variation of BERT masked 
language language model



175© Christian Lessig, 2022

AtmoRep training
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AtmoRep training
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AtmoRep training
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Training of embedding network

  ◦ Self-supervised training with variation of BERT masked 
language language model

  › Natural interpretation as forecasting / hindcasting / in-
terpolation
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Training of embedding network

  ◦ Self-supervised training with variation of BERT masked 
language language model

  › Natural interpretation as forecasting / hindcasting / in-
terpolation

  › Performed on randomly cropped subset to obtain con-
sitent embedding network for different sized tokens
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AtmoRep training
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AtmoRep training
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AtmoRep training



183© Christian Lessig, 2022

AtmoRep training

forecasting

BERT

BERT-large
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Statistical loss: respect the stochasticity

  ◦ Machine learning: Training on MSE/L2 loss is problematic 
in terms of training dynamics



185© Christian Lessig, 2022

Statistical loss: respect the stochasticity

  ◦ Machine learning: Training on MSE/L2 loss is problematic 
in terms of training dynamics

L2 loss

L2 + KL

L2 + ensemble prob.

MSE



186© Christian Lessig, 2022

Statistical loss: respect the stochasticity

  ◦ Machine learning: Training on MSE/L2 loss is problematic 
in terms of training dynamics

L2 loss

L2 + KL

L2 + ensemble prob.

MSE
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Statistical loss: respect the stochasticity

  ◦ Respect the stochasticity in the dynamics

  › ML: Training on MSE/L2 loss is problematic in terms of 
training dynamics

  › Training on just the mean is sub-optimal to learn a 
probabilitic/statistical representation of the dynamics 
and the system
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Statistical loss: respect the stochasticity
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Statistical loss: respect the stochasticity

  ◦ How to obtain better training dynamics and ensure 
probabilistic/statistical representation in network?
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Statistical loss: respect the stochasticity
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Statistical loss: respect the stochasticity

?
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AtmoRep: forecasting and climate projections
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Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. 
N. Gomez, L. Kaiser, and I. Polosukhin. Attention is all you 
need. In NEURIPS 2017, 2017.

encoder decoder

output stream of 
predicted words

AtmoRep: forecasting and climate projections
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3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. 
N. Gomez, L. Kaiser, and I. Polosukhin. Attention is all you 
need. In NEURIPS 2017, 2017.
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Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. 
N. Gomez, L. Kaiser, and I. Polosukhin. Attention is all you 
need. In NEURIPS 2017, 2017.
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(e.g. symmetries) in the machine 
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  ◦ Hard constraints typically sever-
ly degrade the efficiency of the 
learning

  ◦ Respect the physics with archi-
tectural choices without being 
too rigid?

Observational data: avoid the (in-
ductive) biases and constraints 
we have in analytic models in the 
learned model

  ◦ Use neural networks where reduc-
tionist models are no longer effec-
tiv

  ◦ Provide new understanding of 
physics?
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  › Large amounts of unlabeled data (and fast growing)
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Summary
  ◦ Self-supervised representation learning has (in my 
opinion) great, untapped potential 

  › Large amounts of unlabeled data (and fast growing)

  › Labeled data is scarce and difficult to obtain

  ◦ Transformers are a versatile and powerful architecture

  › Largely unexplored for science and engineering

  › Fits natural with scientific computing
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Self-supervised representation learning

  ◦ DINO1

  › Self-supervised representation learning for computer 
vision tasks 

  › Vision transformer as neural network

  › Training with unlabeled ImageNet dataset

  › Student-teacher training with virtual prediction task

1 M. Caron, H. Touvron, I. Misra, H. Jegou, J. Mairal, P. Bojanowski, and A. Joulin. Emerging properties in self-supervised vision transformers. CoRR, 2021.
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  ◦ DINO1

1 M. Caron, H. Touvron, I. Misra, H. Jegou, J. Mairal, P. Bojanowski, and A. Joulin. Emerging properties in self-supervised vision transformers. CoRR, 2021.

Supervised

DINO

Random Supervised DINO

ViT-S/16 22.0 27.3 45.9
ViT-S/8 21.8 23.7 44.7

Figure 4: Segmentations from supervised versus DINO. We vi-
sualize masks obtained by thresholding the self-attention maps to
keep 60% of the mass. On top, we show the resulting masks for
a ViT-S/8 trained with supervision and DINO. We show the best
head for both models. The table at the bottom compares the Jac-
card similarity between the ground truth and these masks on the
validation images of PASCAL VOC12 dataset.

Table 6: Transfer learning by finetuning pretrained models on

different datasets. We report top-1 accuracy. Self-supervised
pretraining with DINO transfers better than supervised pretraining.

Cifar10 Cifar100 INat18 INat19 Flwrs Cars INet

ViT-S/16

Sup. [69] 99.0 89.5 70.7 76.6 98.2 92.1 79.9
DINO 99.0 90.5 72.0 78.2 98.5 93.0 81.5

ViT-B/16

Sup. [69] 99.0 90.8 73.2 77.7 98.4 92.1 81.8
DINO 99.1 91.7 72.6 78.6 98.8 93.0 82.8

In Table 7, we report different model variants as we add
or remove components. First, we observe that in the absence
of momentum, our framework does not work (row 2) and
more advanced operations, SK for example, are required to
avoid collapse (row 9). However, with momentum, using
SK has little impact (row 3). In addtition, comparing rows 3
and 9 highlights the importance of the momentum encoder
for performance. Second, in rows 4 and 5, we observe that
multi-crop training and the cross-entropy loss in DINO are
important components to obtain good features. We also ob-
serve that adding a predictor to the student network has little
impact (row 6) while it is critical in BYOL to prevent col-
lapse [16, 30]. For completeness, we propose in Appendix B
an extended version of this ablation study.

Importance of the patch size. In Fig. 5, we compare the
k-NN classification performance of ViT-S models trained

Table 7: Important component for self-supervised ViT pre-

training. Models are trained for 300 epochs with ViT-S/16. We
study the different components that matter for the k-NN and linear
(“Lin.”) evaluations. For the different variants, we highlight the
differences from the default DINO setting. The best combination
is the momentum encoder with the multicrop augmentation and
the cross-entropy loss. We also report results with BYOL [30],
MoCo-v2 [15] and SwAV [10].

Method Mom. SK MC Loss Pred. k-NN Lin.

1 DINO X 7 X CE 7 72.8 76.1
2 7 7 X CE 7 0.1 0.1
3 X X X CE 7 72.2 76.0
4 X 7 7 CE 7 67.9 72.5
5 X 7 X MSE 7 52.6 62.4
6 X 7 X CE X 71.8 75.6

7 BYOL X 7 7 MSE X 66.6 71.4
8 MoCov2 X 7 7 INCE 7 62.0 71.6
9 SwAV 7 X X CE 7 64.7 71.8

SK: Sinkhorn-Knopp, MC: Multi-Crop, Pred.: Predictor
CE: Cross-Entropy, MSE: Mean Square Error, INCE: InfoNCE

Figure 5: Effect of

Patch Size. k-NN eval-
uation as a function of
the throughputs for dif-
ferent input patch sizes
with ViT-B and ViT-S.
Models are trained for
300 epochs.

with different patch sizes, 16 ⇥ 16, 8 ⇥ 8 and 5 ⇥ 5. We
also compare to ViT-B with 16⇥ 16 and 8⇥ 8 patches. All
the models are trained for 300 epochs. We observe that the
performance greatly improves as we decrease the size of the
patch. It is interesting to see that performance can be greatly
improved without adding additional parameters. However,
the performance gain from using smaller patches comes at
the expense of throughput: when using 5⇥5 patches, the
throughput falls to 44 im/s, vs 180 im/s for 8⇥8 patches.

5.2. Impact of the choice of Teacher Network

In this ablation, we experiment with different teacher
network to understand its role in DINO. We compare models
trained for 300 epochs using the k-NN protocol.

Building different teachers from the student. In
Fig. 6(right), we compare different strategies to build the
teacher from previous instances of the student besides the

Performance of fine-
tuned model on classi-
fication
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