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Fig. 1. Divergence free wavelets in the Fourier (top) and spatial domains (bottom). The left columns shows an isotropic
function that can be interpreted as an isolated vortex. The remaining ones provide examples of directional wavelets for the
horizontal orientation with different angular localizations and for shearing- (middle two columns) and streaming-like flows

(right column)

2.2.1. Properties of Wavelets. A critical property of the wavelet defined in Eq. 3 is that these generate a
Parseval tight frame for the space Ldiv

2 (R2,2) of divergence free vector fields with finite L2-norm. Hence,
most of the conveniences of an orthonormal basis are available and in particular primary and dual frame
functions coincide and Parseval’s identity holds so that the norm of the expansion coefficients equals
those of the signal. See for example Daubechies classical treatise [9, Ch. 3] or the expository articles by
Kovacevic and Chebira [17,18] for more details on frames.

Proposition 1. Let Uj be the (Mj × 2Nj + 1)-dimensional matrix formed by the angular localization
coefficients βj,t

n = βj
n e−int(2π/Mj) for the Mj different orientations, and let Dj be a diagonal matrix of

size (2Nj + 1) × (2Nj + 1). When the Caldèron admissibility condition
∑

j∈Z
∣∣ĥ(2−j |ξ|)

∣∣2 = 1, ∀ξ ∈ R2

is satisfied and UH
j Uj = Dj with tr(Dj) = 1 for all levels j, then any divergence free vector field �u(x) ∈

Ldiv
2 (R2,2) has the representation

�u(x) =
∑

j∈Z

∑

k∈Z2

Mj∑

t=1

〈
�u(y), �ψj,k,t(y)

〉
�ψj,k,t(x) (5a)

with frame functions

�ψj,k,t(x) =
2j

2π
�ψ
(
R2πt/Mj

(2jx − k)
)

(5b)

where �ψ(x) is given by Eq. 4 and R2πt/Mj
is the rotation by 2πt/Mj.
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Motivation

  ◦ Objective: simulation with qualitatively correct behavior

  › Structure preserving discretization

  › PDEs: requires a discretization of exterior calculus 

  › Adaptive simulation to capture relevant details
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De Rham complex



4© Christian Lessig, 2021

De Rham complex

Forms as fields covariant under differentiation
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De Rham complex
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De Rham complex
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De Rham complex

Forms as infinitesimal integrals (measurements)
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De Rham complex (with metric)
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De Rham complex (with metric)
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De Rham complex (with metric)
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De Rham complex (with metric)

  ◦ Laplace Beltrami operator:

  ◦ Hodge-Helmholtz decomposition:
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Fourier transform



14© Christian Lessig, 2021

Fourier transform
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Fourier transform
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Fourier transformFourier transform
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Exterior calculus and the Fourier transform



18© Christian Lessig, 2021

  ◦ Integration:

Exterior calculus and the Fourier transform
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  ◦ Integration:

Exterior calculus and the Fourier transform

2-form
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  ◦ Integration:
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1-form 1-form



25© Christian Lessig, 2021

  ◦ Differential operators:

Exterior calculus and the Fourier transform
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Exterior calculus and the Fourier transform

  ◦ Integration:

2-form 0-form
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Exterior calculus and the Fourier transform
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Exterior calculus and the Fourier transform

  ◦ Fourier transform:
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Exterior calculus and the Fourier transform

  ◦ Fourier transform:
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Exterior calculus and the Fourier transform

  ◦ Fourier transform:

for covariance     has to
be a co-vector
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Exterior calculus and the Fourier transform



54© Christian Lessig, 2021

Exterior calculus and the Fourier transform
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Exterior calculus and the Fourier transform

  ◦ Fourier transform of differential forms:
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Exterior calculus and the Fourier transform

regular Fourier transform of 
coordinate functions

  ◦ Fourier transform of differential forms:
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Exterior calculus and the Fourier transform

  ◦ Fourier transform of differential forms:
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Exterior calculus and the Fourier transform

  ◦ Fourier transform of differential forms:
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Exterior calculus and the Fourier transform

  ◦ Fourier transform of differential forms:

has to respect      grading
to ensure proper anti-symmetry
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Exterior calculus and the Fourier transform

  ◦ Exponential form factor in     :
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Exterior calculus and the Fourier transform
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Exterior calculus and the Fourier transform

  ◦ Exponential form factor in     :
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Exterior calculus and the Fourier transform
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Exterior calculus and the Fourier transform
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Exterior calculus and the Fourier transform

  ◦ Fourier transform of exterior derivative:
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Exterior calculus and the Fourier transform

  ◦ Fourier transform of exterior derivative:

radial coordinate 
vector
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Exterior calculus and the Fourier transform

  ◦ Fourier transform of exterior derivative:

radial coordinate 
vector
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Exterior calculus and the Fourier transform

  ◦ Fourier transform of exterior derivative:

Koszul differential that also 
appears in FEEC
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Exterior calculus and the Fourier transform

  ◦ Fourier transform of exterior derivative:

Alternative in the literature:

Koszul differential that also 
appears in FEEC
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Exterior calculus and the Fourier transform

  ◦ Hodge star:

  ◦ Plancherel theorem:

  ◦ Stokes theorem
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   ec: A local spectral exterior calculus

  ◦ Motto: use simple structure of exterior calculus in polar 
coordinates to construct a discretization of it
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  ◦ Differential form basis functions:
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  ◦ Differential form basis functions:

   ec: A local spectral exterior calculus

Can be computed in 
closed form
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translation
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orientation
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Fig. 1. Divergence free wavelets in the Fourier (top) and spatial domains (bottom). The left columns shows an isotropic
function that can be interpreted as an isolated vortex. The remaining ones provide examples of directional wavelets for the
horizontal orientation with different angular localizations and for shearing- (middle two columns) and streaming-like flows

(right column)

2.2.1. Properties of Wavelets. A critical property of the wavelet defined in Eq. 3 is that these generate a
Parseval tight frame for the space Ldiv

2 (R2,2) of divergence free vector fields with finite L2-norm. Hence,
most of the conveniences of an orthonormal basis are available and in particular primary and dual frame
functions coincide and Parseval’s identity holds so that the norm of the expansion coefficients equals
those of the signal. See for example Daubechies classical treatise [9, Ch. 3] or the expository articles by
Kovacevic and Chebira [17,18] for more details on frames.

Proposition 1. Let Uj be the (Mj × 2Nj + 1)-dimensional matrix formed by the angular localization
coefficients βj,t

n = βj
n e−int(2π/Mj) for the Mj different orientations, and let Dj be a diagonal matrix of

size (2Nj + 1) × (2Nj + 1). When the Caldèron admissibility condition
∑

j∈Z
∣∣ĥ(2−j |ξ|)

∣∣2 = 1, ∀ξ ∈ R2

is satisfied and UH
j Uj = Dj with tr(Dj) = 1 for all levels j, then any divergence free vector field �u(x) ∈

Ldiv
2 (R2,2) has the representation

�u(x) =
∑

j∈Z

∑

k∈Z2

Mj∑

t=1

〈
�u(y), �ψj,k,t(y)

〉
�ψj,k,t(x) (5a)

with frame functions

�ψj,k,t(x) =
2j

2π
�ψ
(
R2πt/Mj

(2jx − k)
)

(5b)

where �ψ(x) is given by Eq. 4 and R2πt/Mj
is the rotation by 2πt/Mj.
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   ec: A local spectral exterior calculus

C. Lessig / Appl. Comput. Harmon. Anal. 51 (2021) 56–103 79

Fig. 1. Examples for differential 1-form mother wavelets ψ1,ν
j ≡ ψ1,ν,2

j,0,0 for different levels with exact forms ψ1,d,2
j,0,0 in the top row 

and co-exact ones ψ1,δ,2
j,0,0 in the bottom row (visualized as vector fields). The anisotropic functions exist at different directions and 

model discontinuities aligned with their orientation (here along the x1-axis), cf. Sec. 5.2.1 and Example 9.

An,r,ν =
{

{1, 2} n = 3 and r = 1, ν = δ; r = 2, ν = d
{1} otherwise

When ψ̂s(ξ) is a polar wavelet in the sense of Sec. 3 then the polar differential r-forms wavelets ψr,ν,n
s,a (x) in 

Rn, defined in frequency space through their Fourier transform ψ̂r,ν,n
s,a (ξ), are as given in Fig. 2 and Fig. 3.

Remark 7. Remarks on Definition 3:

1. The tangent space to the sphere Ŝ2 in frequency space is 2-dimensional and hence there are two different 
wavelets that have a tangential component to Ŝ2. Ar,ν is used to index these. To simplify notation we 
will typically omit a when a ∈ {1} and the same holds when n is clear from the context.

2. As discussed in Sec. 4.3, the Fourier transform of an r-form is an (n − r)-form in frequency space. 
Although they are defined in the Fourier domain, we use the degree of the form in space in our nomen-
clature, i.e. ψ̂r,ν,n

s,a ∈ Ω̂n−r(R̂n).
3. The above definition can be extended to differential forms on R1. There one only has a radial direction 

and the wavelets are hence given by ψ̂0,δ,1
s = −iψ̂s(ξ) ∂/∂ξ and ψ̂1,d,1

s = ψ̂s(ξ). This extension is useful, 
for example, when one considers fiber integration, cf. Sec. 5.2.2.

It follows immediately from the definition that differential r-forms wavelets are differential forms in sense 
of the continuous theory. This is a vital difference to existing discretizations of exterior calculus, e.g. [9,49]. 
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What is a compatible chain of function spaces?
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Local Fourier Slice Photography

CHRISTIAN LESSIG∗, Institute for Simulation and Graphics, O�o-von-Guericke-Universität Magdeburg, Germany
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Fig. 1. Right: Refocused images obtained with local Fourier slice photography directly from a sparse, compressed wavelet representation of the light field (U is
the ratio between the original and the refocused sensor plane distance from the lens). Le�: Reconstruction error as a function of the nonzero coe�icients (nzs)
in the sparse representation, demonstrating that the image fidelity degrades gracefully as storage requirements are reduced. The plot also shows the output
sensitivity of our technique, with the largest error obtained when the in-focus region in the image is largest.

Light �eld cameras provide intriguing possibilities, such as post-capture re-
focus or the ability to synthesize images from novel viewpoints. This comes,
however, at the price of signi�cant storage requirements. Compression tech-
niques can be used to reduce these but refocusing and reconstruction require
so far again a dense pixel representation. To avoid this, we introduce local
Fourier slice photography that allows for refocused image reconstruction
directly from a sparse wavelet representation of a light �eld, either to obtain
an image or a compressed representation of it. The result is made possi-
ble by wavelets that respect the “slicing’s” intrinsic structure and enable
us to derive exact reconstruction �lters for the refocused image in closed
form. Image reconstruction then amounts to applying these �lters to the
light �eld’s wavelet coe�cients, and hence no reconstruction of a dense
pixel representation is required. We demonstrate that this can reduce stor-
age requirements and also computation times. We furthermore analyze the
computational complexity of our algorithm and show that it scales linearly
with the size of the reconstructed region and the non-negligible wavelet
coe�cients, i.e. with the visual complexity.

CCS Concepts: •Computingmethodologies→Computational photog-
raphy; Image compression; •Mathematics of computing → Computation
of transforms.

Additional Key Words and Phrases: light �eld camera, Fourier slice theorem,
wavelets
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1 INTRODUCTION
Light �eld cameras, which record the full four-dimensional plenoptic
function, open up many possibilities for both consumer, e.g. [Ng
et al. 2005], and professional applications, e.g. [Levoy et al. 2006].
Prime examples are post-capture refocus and the ability to obtain
images where every depth is in focus. The possibilities, however,
come at the price of considerable storage requirements for the light
�eld data sets. Compression techniques can alleviate these but image
reconstruction and light �eld processing typically require again a
dense representation.
To avoid this, we propose local Fourier slice photography, an al-

gorithm to compute refocused images directly from a light �eld’s
sparse wavelet representation. Our work draws inspiration from
Ng’s seminal Fourier slice photography [2005] where image recon-
struction is performed in the frequency domain using the projec-
tion slice theorem. We combine this work with a recent advance-
ment of the slice theorem [Lessig 2018a] that uses carefully chosen
wavelets to allow for an e�cient projection from a signal’s com-
pressed wavelet representation. To apply this result to refocused
image reconstruction, we extend it to a sheared, local projection slice
equation that establishes closed-form, shear-dependent reconstruc-
tion kernels for the projected signal. With these, a refocused image
can be obtained directly from a light �eld’s compressed wavelet
coe�cients using an inverse transform. We also derive an exten-
sion that enables one to directly obtain sparse, refocused images
from a sparse light �eld data set. Our experimental results con�rm
that our approach yields high �delity, refocused images directly
from compressed light �elds without the need to obtain a dense
pixel representation. They also demonstrate that errors that arise
at high compression rates mainly manifest themselves through lost
high-frequency detail, i.e. without distracting artifacts.

The sparsity that reduces storage requirements also reduces com-
putational costs. We show this experimentally and verify it through
a theoretical analysis that establishes a linear dependence on the
number of nonzero wavelet coe�cients. Because of the spatial lo-
calization of the wavelets, the costs of our technique depend on the
light �eld’s angular resolution. This was not the case for Fourier

2020-05-29 12:17. Page 1 of 1–16. ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2020.
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Fig. 1. Right: Refocused images obtained with local Fourier slice photography directly from a sparse, compressed wavelet representation of the light field (U is
the ratio between the original and the refocused sensor plane distance from the lens). Le�: Reconstruction error as a function of the nonzero coe�icients (nzs)
in the sparse representation, demonstrating that the image fidelity degrades gracefully as storage requirements are reduced. The plot also shows the output
sensitivity of our technique, with the largest error obtained when the in-focus region in the image is largest.

Light �eld cameras provide intriguing possibilities, such as post-capture re-
focus or the ability to synthesize images from novel viewpoints. This comes,
however, at the price of signi�cant storage requirements. Compression tech-
niques can be used to reduce these but refocusing and reconstruction require
so far again a dense pixel representation. To avoid this, we introduce local
Fourier slice photography that allows for refocused image reconstruction
directly from a sparse wavelet representation of a light �eld, either to obtain
an image or a compressed representation of it. The result is made possi-
ble by wavelets that respect the “slicing’s” intrinsic structure and enable
us to derive exact reconstruction �lters for the refocused image in closed
form. Image reconstruction then amounts to applying these �lters to the
light �eld’s wavelet coe�cients, and hence no reconstruction of a dense
pixel representation is required. We demonstrate that this can reduce stor-
age requirements and also computation times. We furthermore analyze the
computational complexity of our algorithm and show that it scales linearly
with the size of the reconstructed region and the non-negligible wavelet
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1 INTRODUCTION
Light �eld cameras, which record the full four-dimensional plenoptic
function, open up many possibilities for both consumer, e.g. [Ng
et al. 2005], and professional applications, e.g. [Levoy et al. 2006].
Prime examples are post-capture refocus and the ability to obtain
images where every depth is in focus. The possibilities, however,
come at the price of considerable storage requirements for the light
�eld data sets. Compression techniques can alleviate these but image
reconstruction and light �eld processing typically require again a
dense representation.
To avoid this, we propose local Fourier slice photography, an al-

gorithm to compute refocused images directly from a light �eld’s
sparse wavelet representation. Our work draws inspiration from
Ng’s seminal Fourier slice photography [2005] where image recon-
struction is performed in the frequency domain using the projec-
tion slice theorem. We combine this work with a recent advance-
ment of the slice theorem [Lessig 2018a] that uses carefully chosen
wavelets to allow for an e�cient projection from a signal’s com-
pressed wavelet representation. To apply this result to refocused
image reconstruction, we extend it to a sheared, local projection slice
equation that establishes closed-form, shear-dependent reconstruc-
tion kernels for the projected signal. With these, a refocused image
can be obtained directly from a light �eld’s compressed wavelet
coe�cients using an inverse transform. We also derive an exten-
sion that enables one to directly obtain sparse, refocused images
from a sparse light �eld data set. Our experimental results con�rm
that our approach yields high �delity, refocused images directly
from compressed light �elds without the need to obtain a dense
pixel representation. They also demonstrate that errors that arise
at high compression rates mainly manifest themselves through lost
high-frequency detail, i.e. without distracting artifacts.

The sparsity that reduces storage requirements also reduces com-
putational costs. We show this experimentally and verify it through
a theoretical analysis that establishes a linear dependence on the
number of nonzero wavelet coe�cients. Because of the spatial lo-
calization of the wavelets, the costs of our technique depend on the
light �eld’s angular resolution. This was not the case for Fourier
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Fig. 1. Right: Refocused images obtained with local Fourier slice photography directly from a sparse, compressed wavelet representation of the light field (U is
the ratio between the original and the refocused sensor plane distance from the lens). Le�: Reconstruction error as a function of the nonzero coe�icients (nzs)
in the sparse representation, demonstrating that the image fidelity degrades gracefully as storage requirements are reduced. The plot also shows the output
sensitivity of our technique, with the largest error obtained when the in-focus region in the image is largest.

Light �eld cameras provide intriguing possibilities, such as post-capture re-
focus or the ability to synthesize images from novel viewpoints. This comes,
however, at the price of signi�cant storage requirements. Compression tech-
niques can be used to reduce these but refocusing and reconstruction require
so far again a dense pixel representation. To avoid this, we introduce local
Fourier slice photography that allows for refocused image reconstruction
directly from a sparse wavelet representation of a light �eld, either to obtain
an image or a compressed representation of it. The result is made possi-
ble by wavelets that respect the “slicing’s” intrinsic structure and enable
us to derive exact reconstruction �lters for the refocused image in closed
form. Image reconstruction then amounts to applying these �lters to the
light �eld’s wavelet coe�cients, and hence no reconstruction of a dense
pixel representation is required. We demonstrate that this can reduce stor-
age requirements and also computation times. We furthermore analyze the
computational complexity of our algorithm and show that it scales linearly
with the size of the reconstructed region and the non-negligible wavelet
coe�cients, i.e. with the visual complexity.
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of transforms.
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1 INTRODUCTION
Light �eld cameras, which record the full four-dimensional plenoptic
function, open up many possibilities for both consumer, e.g. [Ng
et al. 2005], and professional applications, e.g. [Levoy et al. 2006].
Prime examples are post-capture refocus and the ability to obtain
images where every depth is in focus. The possibilities, however,
come at the price of considerable storage requirements for the light
�eld data sets. Compression techniques can alleviate these but image
reconstruction and light �eld processing typically require again a
dense representation.
To avoid this, we propose local Fourier slice photography, an al-

gorithm to compute refocused images directly from a light �eld’s
sparse wavelet representation. Our work draws inspiration from
Ng’s seminal Fourier slice photography [2005] where image recon-
struction is performed in the frequency domain using the projec-
tion slice theorem. We combine this work with a recent advance-
ment of the slice theorem [Lessig 2018a] that uses carefully chosen
wavelets to allow for an e�cient projection from a signal’s com-
pressed wavelet representation. To apply this result to refocused
image reconstruction, we extend it to a sheared, local projection slice
equation that establishes closed-form, shear-dependent reconstruc-
tion kernels for the projected signal. With these, a refocused image
can be obtained directly from a light �eld’s compressed wavelet
coe�cients using an inverse transform. We also derive an exten-
sion that enables one to directly obtain sparse, refocused images
from a sparse light �eld data set. Our experimental results con�rm
that our approach yields high �delity, refocused images directly
from compressed light �elds without the need to obtain a dense
pixel representation. They also demonstrate that errors that arise
at high compression rates mainly manifest themselves through lost
high-frequency detail, i.e. without distracting artifacts.

The sparsity that reduces storage requirements also reduces com-
putational costs. We show this experimentally and verify it through
a theoretical analysis that establishes a linear dependence on the
number of nonzero wavelet coe�cients. Because of the spatial lo-
calization of the wavelets, the costs of our technique depend on the
light �eld’s angular resolution. This was not the case for Fourier
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Fig. 1. Right: Refocused images obtained with local Fourier slice photography directly from a sparse, compressed wavelet representation of the light field (U is
the ratio between the original and the refocused sensor plane distance from the lens). Le�: Reconstruction error as a function of the nonzero coe�icients (nzs)
in the sparse representation, demonstrating that the image fidelity degrades gracefully as storage requirements are reduced. The plot also shows the output
sensitivity of our technique, with the largest error obtained when the in-focus region in the image is largest.

Light �eld cameras provide intriguing possibilities, such as post-capture re-
focus or the ability to synthesize images from novel viewpoints. This comes,
however, at the price of signi�cant storage requirements. Compression tech-
niques can be used to reduce these but refocusing and reconstruction require
so far again a dense pixel representation. To avoid this, we introduce local
Fourier slice photography that allows for refocused image reconstruction
directly from a sparse wavelet representation of a light �eld, either to obtain
an image or a compressed representation of it. The result is made possi-
ble by wavelets that respect the “slicing’s” intrinsic structure and enable
us to derive exact reconstruction �lters for the refocused image in closed
form. Image reconstruction then amounts to applying these �lters to the
light �eld’s wavelet coe�cients, and hence no reconstruction of a dense
pixel representation is required. We demonstrate that this can reduce stor-
age requirements and also computation times. We furthermore analyze the
computational complexity of our algorithm and show that it scales linearly
with the size of the reconstructed region and the non-negligible wavelet
coe�cients, i.e. with the visual complexity.
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1 INTRODUCTION
Light �eld cameras, which record the full four-dimensional plenoptic
function, open up many possibilities for both consumer, e.g. [Ng
et al. 2005], and professional applications, e.g. [Levoy et al. 2006].
Prime examples are post-capture refocus and the ability to obtain
images where every depth is in focus. The possibilities, however,
come at the price of considerable storage requirements for the light
�eld data sets. Compression techniques can alleviate these but image
reconstruction and light �eld processing typically require again a
dense representation.
To avoid this, we propose local Fourier slice photography, an al-

gorithm to compute refocused images directly from a light �eld’s
sparse wavelet representation. Our work draws inspiration from
Ng’s seminal Fourier slice photography [2005] where image recon-
struction is performed in the frequency domain using the projec-
tion slice theorem. We combine this work with a recent advance-
ment of the slice theorem [Lessig 2018a] that uses carefully chosen
wavelets to allow for an e�cient projection from a signal’s com-
pressed wavelet representation. To apply this result to refocused
image reconstruction, we extend it to a sheared, local projection slice
equation that establishes closed-form, shear-dependent reconstruc-
tion kernels for the projected signal. With these, a refocused image
can be obtained directly from a light �eld’s compressed wavelet
coe�cients using an inverse transform. We also derive an exten-
sion that enables one to directly obtain sparse, refocused images
from a sparse light �eld data set. Our experimental results con�rm
that our approach yields high �delity, refocused images directly
from compressed light �elds without the need to obtain a dense
pixel representation. They also demonstrate that errors that arise
at high compression rates mainly manifest themselves through lost
high-frequency detail, i.e. without distracting artifacts.

The sparsity that reduces storage requirements also reduces com-
putational costs. We show this experimentally and verify it through
a theoretical analysis that establishes a linear dependence on the
number of nonzero wavelet coe�cients. Because of the spatial lo-
calization of the wavelets, the costs of our technique depend on the
light �eld’s angular resolution. This was not the case for Fourier
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Fig. 1. Left: Conceptual depiction of our construction. Middle and right: Directional polar
wavelet  2

s (xxx) in two dimensions (middle) and its “sliced” counter-part  1
0,0,0(x1) = h

1
(|x1 |)

obtained by projecting along the x2-axis (right).

2.1. Polar wavelets

Polar wavelets are defined in polar or spherical coordinates in the Fourier domain using a
compactly supported radial window ĥ(|⇠⇠⇠ |), which controls the overall frequency localization,
and an angular one γ̂(✓⇠⇠⇠ ), which controls the directionality. The mother wavelet is thus given by
 ̂(⇠⇠⇠) = γ̂(✓⇠⇠⇠ ) ĥ(|⇠⇠⇠ |) with the whole family of functions being generated by dilation, translation
and rotation.

In two dimensions, the angular window is best described using a Fourier series. A polar
wavelet takes there hence the form

 ̂s(⇠⇠⇠) ⌘  ̂jkt (⇠⇠⇠) =
⇣’

n

βtj,n e
in✓⇠⇠⇠

⌘
ĥ(2−j |⇠⇠⇠ |) e

−i h⇠⇠⇠,2 jkkk i (5a)

with the βtj,n controlling the angular localization. In the simplest case βn = δn0 and one has
isotropic, bump-like wavelet functions. In the spatial domain, the wavelets are given by

 s(xxx) ⌘  jkt (xxx) =
2j

2⇡

’
n

i
n βtj,n e

in✓xxx hn(2j
|xxx − kkk |) (5b)

where hn(|xxx |) is the Hankel transform of ĥ(|⇠⇠⇠ |) of order n. For ĥ(|⇠⇠⇠ |) we will employ the window
proposed for the steerable pyramid [21], since hn(|xxx |) then has a closed form expression [27].
When the wavelets in Eq. (5) are suitably augmented using scaling functions φ j,k(xxx) to represent
a signal’s low frequency part, with  −1,k(xxx) ⌘ φ0,k(xxx), the polar wavelets in Eq. (5) provide a
tight frame for L2(R

2
). Hence any signal f (xxx) 2 L2(R

2
) can be represented as

f (xxx) =
’
s2I

D
f (yyy) ,  s(yyy)

E
 s(xxx) =

1’
j=−1

’
k2Z2

N j’
t=1

⌦
f (yyy) ,  jkt (yyy)

↵
 jkt (xxx) (6)

and, although redundant, the frame affords most of the conveniences of an orthonormal basis.
Analogous to Eq. (5a), in three dimensions polar wavelets are defined by

 ̂j,k,t (⇠⇠⇠) = γ̂j,t
�
⇠̄⇠⇠
�

ĥ(2−j |⇠⇠⇠ |) e
−i h⇠⇠⇠,2 jkkk i =

’
l,m


jt
lm

ylm(⇠̄⇠⇠) ĥ(2−j |⇠⇠⇠ |) e
−i h⇠⇠⇠,2 jkkk i (7)

where ⇠̄⇠⇠ = ⇠⇠⇠/|⇠⇠⇠ |, the ylm(⇠̄⇠⇠) are spherical harmonics, and the coefficients  jt
lm

control the angular
localization. The wavelets in Eq. (7) have again closed form expressions in the spatial domain and
they generate a tight frame for L2(R

3
), so that the analogue of Eq. (6) holds for all f (xxx) 2 L2(R

3
).

We refer to the original works [26, 28] and [27] for a more detailed discussion of polar wavelets.
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Fig. 2. Directional polar wavelet  3
s (xxx) in R3 and its projection  2

s (x12) along the x3 axis,
which is a two-dimensional polar wavelet. Note how the orientation of  3

s (xxx) is essentially
preserved under projection. This is critical for the conservation of sparsity.

2.2. Local Fourier slice equation in the plane

In the plane and when ⌫ is in the directions of the x2-axis, the classical Fourier slice theorem is
easily established. Writing f (xxx) as its inverse Fourier transform we have for the projection

f2(x1) =
1

2⇡

π
Rx2

π
R2
⇠⇠⇠

f̂ (⇠1, ⇠2) e
i h⇠⇠⇠,xxx i

d⇠⇠⇠ dx2. (8a)

Since the Fourier transform f̂ (⇠1, ⇠2) does not depend on x2, the integral over Rx2 only involves
e
i h⇠⇠⇠,xxx i , yielding e

i h⇠1,x1 i δ(⇠2). Thus

f2(x1) =
1

2⇡

π
R⇠1

f̂ (⇠1, 0) e
i h⇠1,x1 i d⇠1 (8b)

which is the Fourier slice theorem. The general result, for an arbitrary axis of integration, follows
by the covariance of the Fourier transform.

With f (xxx) in Eq. (8b) given in its polar wavelet representation,

f2(x1) =
1

2⇡

π
R⇠1

 ’
s

fs  ̂s(⇠1, 0)

!
e
i h⇠1,x1 i d⇠1. (9a)

Using linearity and with the definition of the polar wavelets in Eq. (5a) we obtain

f2(x1) =
1

2⇡

’
s

fs γ̂s(0)
π
R⇠1

ĥ(2js |⇠⇠⇠ |) e
i h⇠1,k

s
1 i e

i h⇠1,x1 i d⇠1 (9b)

where, through the “slicing”, the angular window γ̂(✓⇠⇠⇠ ) no longer depends on the integration
variable and only needs to be evaluated at ✓⇠⇠⇠ = 0. The remaining integral in Eq. (9b) is a
one-dimensional Fourier transform with translation factor e

i h⇠1,k
s
1 i . By defining

 1
s (x1) =

1
2⇡
γ̂s(0)

π
R⇠1

ĥ
�
2js |⇠⇠⇠ |

�
e
i h⇠1,k

s
1 i e

i h⇠1,x1 i d⇠1

|                                         {z                                         }
h

1
(2j

x1  k
s
1)

(10)

we recover the local Fourier slice equation in Eq. (4). For the radial window ĥ(|⇠⇠⇠ |) of the steerable
pyramid [21], the profile h

1
(|x |) in Eq. (10) has, in fact, a closed form expression,

h
1
(x) =

i⇡

8
�
Ec(z) + Ec(z) + 4Ec(4z) + 4Ec(z)

�
(11)
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Fig. 18. Reconstruction errors as a function of the number of nonzero coe�icients in the sparse wavelet representation of the data sets and reconstructed
images for U = 0.9 for the dragon scene and U = 1.35 for the tree blossoms. Shown are also di�erence images compared to the uncompressed reference
(computed and visualized without tone mapping). The results demonstrate that a reconstruction from a sparse wavelet representation of the light fields
yields high fidelity images and that even with a very small number of nonzero coe�icients, and a correspondingly high compression rates, the errors manifest
themselves mainly as missing high frequency details, e.g. on the back of the red dragon, but there are largely no disruptive visual artifacts. Animations for the
reconstructed image are provided in the supplementary material.

All-in-focus reconstruction. Fig. 20, right, shows a reconstruction
of the dragons scene as well as of the checkerboard ground plane
with a depth dependent U value so that the entire scene is in focus.
Slight artifacts are visible around the dragon silhouettes, since we
do not take the varying support of the ZUB (G) into account and only
sample the depth map at the location of the reconstruction kernels.

Performance. Fig. 17 shows the relative execution time as a func-
tion of the compression rate. Although our implementation is not
particularly optimized and we only use the Eigen library for the
sparse wavelet representation, the results demonstrate that sparsity
can lead to a substantial reduction in computation time. The plots
also show the execution time decreases approximately as 1/cr, as
one would expect from our analysis of the computational complexity
in Sec. 4.5, see in particular Eq. 26.
The absolute computation time of image reconstruction is cur-

rently approximately two minute for a 1025⇥1025⇥33⇥33⇥3 light
�eld data set with a dense wavelet representation and 13 seconds
for the highest compression rate we considered. The projection in
the pixel domain requires in our implementation 25 seconds from
a decompressed, dense light �eld and roughly the same time is re-
quired for the sparse projection with a compression rate of 200. The
computation of the wavelet representation of the light �eld requires
approximately a minute.

5.5 Discussion
Our experimental results demonstrate the practical viability of Algo-
rithm 1 for the reconstruction of refocused images from the sparse
wavelet representation of a light �eld. We veri�ed that high �delity
images can be obtained from a highly sparse representation and that

the error increases gracefully with the compression rate. Further-
more, our experiments show that the error depends on the visual
complexity of the in-focus region, which can be exploited when a
depth map is available. Additionally, we demonstrated that simple
hard thresholding of polar wavelet coe�cients is, at least for mod-
erate to high compression rates, competitive with the transform
coding step of JPEG, which uses highly optimized masks. In future
work, it would be interesting to also compare to other light �eld
compression schemes that have been proposed in the literature and
that exploit the 4D structure of the light �eld, e.g. [Alves et al. 2018;
Conti et al. 2014; Viola et al. 2017; Wu et al. 2017].

Our results also show that sparsity in the wavelet representation
can lead to a reduction in the computation time through the smaller
number of coe�cients that has to be processed. Our implementation
is, however, currently slower than projection in the pixel domain
when a dense representation of a light �eld is directly available. Al-
gorithm 1 is easily parallelized by exploiting that the reconstruction
for each pixel is independent, i.e. there is #G ⇥#~ data parallel work.
This makes it directly amenable to a GPU implementation where
one could also take advantage of half-precision, which is su�cient
to obtain artifact free images. This would also provide bene�ts on
the embedded processors typically available in cameras.

Fig. 20 showed �rst results on the reconstruction of all-focus im-
ages from the compressed wavelet representation. While currently
not artifact free when the depth map contains discontinuities, the
results verify the potential of our approach to e�ciently obtain all-
focus images, which requires a convolution in the frequency domain
using Fourier slice photography. To remove the current artifacts,
the depth map needs to be preprocessed in a mip-map-like manner
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Fig. 18. Reconstruction errors as a function of the number of nonzero coe�icients in the sparse wavelet representation of the data sets and reconstructed
images for U = 0.9 for the dragon scene and U = 1.35 for the tree blossoms. Shown are also di�erence images compared to the uncompressed reference
(computed and visualized without tone mapping). The results demonstrate that a reconstruction from a sparse wavelet representation of the light fields
yields high fidelity images and that even with a very small number of nonzero coe�icients, and a correspondingly high compression rates, the errors manifest
themselves mainly as missing high frequency details, e.g. on the back of the red dragon, but there are largely no disruptive visual artifacts. Animations for the
reconstructed image are provided in the supplementary material.

All-in-focus reconstruction. Fig. 20, right, shows a reconstruction
of the dragons scene as well as of the checkerboard ground plane
with a depth dependent U value so that the entire scene is in focus.
Slight artifacts are visible around the dragon silhouettes, since we
do not take the varying support of the ZUB (G) into account and only
sample the depth map at the location of the reconstruction kernels.

Performance. Fig. 17 shows the relative execution time as a func-
tion of the compression rate. Although our implementation is not
particularly optimized and we only use the Eigen library for the
sparse wavelet representation, the results demonstrate that sparsity
can lead to a substantial reduction in computation time. The plots
also show the execution time decreases approximately as 1/cr, as
one would expect from our analysis of the computational complexity
in Sec. 4.5, see in particular Eq. 26.
The absolute computation time of image reconstruction is cur-

rently approximately two minute for a 1025⇥1025⇥33⇥33⇥3 light
�eld data set with a dense wavelet representation and 13 seconds
for the highest compression rate we considered. The projection in
the pixel domain requires in our implementation 25 seconds from
a decompressed, dense light �eld and roughly the same time is re-
quired for the sparse projection with a compression rate of 200. The
computation of the wavelet representation of the light �eld requires
approximately a minute.

5.5 Discussion
Our experimental results demonstrate the practical viability of Algo-
rithm 1 for the reconstruction of refocused images from the sparse
wavelet representation of a light �eld. We veri�ed that high �delity
images can be obtained from a highly sparse representation and that

the error increases gracefully with the compression rate. Further-
more, our experiments show that the error depends on the visual
complexity of the in-focus region, which can be exploited when a
depth map is available. Additionally, we demonstrated that simple
hard thresholding of polar wavelet coe�cients is, at least for mod-
erate to high compression rates, competitive with the transform
coding step of JPEG, which uses highly optimized masks. In future
work, it would be interesting to also compare to other light �eld
compression schemes that have been proposed in the literature and
that exploit the 4D structure of the light �eld, e.g. [Alves et al. 2018;
Conti et al. 2014; Viola et al. 2017; Wu et al. 2017].

Our results also show that sparsity in the wavelet representation
can lead to a reduction in the computation time through the smaller
number of coe�cients that has to be processed. Our implementation
is, however, currently slower than projection in the pixel domain
when a dense representation of a light �eld is directly available. Al-
gorithm 1 is easily parallelized by exploiting that the reconstruction
for each pixel is independent, i.e. there is #G ⇥#~ data parallel work.
This makes it directly amenable to a GPU implementation where
one could also take advantage of half-precision, which is su�cient
to obtain artifact free images. This would also provide bene�ts on
the embedded processors typically available in cameras.

Fig. 20 showed �rst results on the reconstruction of all-focus im-
ages from the compressed wavelet representation. While currently
not artifact free when the depth map contains discontinuities, the
results verify the potential of our approach to e�ciently obtain all-
focus images, which requires a convolution in the frequency domain
using Fourier slice photography. To remove the current artifacts,
the depth map needs to be preprocessed in a mip-map-like manner
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Fig. 18. Reconstruction errors as a function of the number of nonzero coe�icients in the sparse wavelet representation of the data sets and reconstructed
images for U = 0.9 for the dragon scene and U = 1.35 for the tree blossoms. Shown are also di�erence images compared to the uncompressed reference
(computed and visualized without tone mapping). The results demonstrate that a reconstruction from a sparse wavelet representation of the light fields
yields high fidelity images and that even with a very small number of nonzero coe�icients, and a correspondingly high compression rates, the errors manifest
themselves mainly as missing high frequency details, e.g. on the back of the red dragon, but there are largely no disruptive visual artifacts. Animations for the
reconstructed image are provided in the supplementary material.

All-in-focus reconstruction. Fig. 20, right, shows a reconstruction
of the dragons scene as well as of the checkerboard ground plane
with a depth dependent U value so that the entire scene is in focus.
Slight artifacts are visible around the dragon silhouettes, since we
do not take the varying support of the ZUB (G) into account and only
sample the depth map at the location of the reconstruction kernels.

Performance. Fig. 17 shows the relative execution time as a func-
tion of the compression rate. Although our implementation is not
particularly optimized and we only use the Eigen library for the
sparse wavelet representation, the results demonstrate that sparsity
can lead to a substantial reduction in computation time. The plots
also show the execution time decreases approximately as 1/cr, as
one would expect from our analysis of the computational complexity
in Sec. 4.5, see in particular Eq. 26.
The absolute computation time of image reconstruction is cur-

rently approximately two minute for a 1025⇥1025⇥33⇥33⇥3 light
�eld data set with a dense wavelet representation and 13 seconds
for the highest compression rate we considered. The projection in
the pixel domain requires in our implementation 25 seconds from
a decompressed, dense light �eld and roughly the same time is re-
quired for the sparse projection with a compression rate of 200. The
computation of the wavelet representation of the light �eld requires
approximately a minute.

5.5 Discussion
Our experimental results demonstrate the practical viability of Algo-
rithm 1 for the reconstruction of refocused images from the sparse
wavelet representation of a light �eld. We veri�ed that high �delity
images can be obtained from a highly sparse representation and that

the error increases gracefully with the compression rate. Further-
more, our experiments show that the error depends on the visual
complexity of the in-focus region, which can be exploited when a
depth map is available. Additionally, we demonstrated that simple
hard thresholding of polar wavelet coe�cients is, at least for mod-
erate to high compression rates, competitive with the transform
coding step of JPEG, which uses highly optimized masks. In future
work, it would be interesting to also compare to other light �eld
compression schemes that have been proposed in the literature and
that exploit the 4D structure of the light �eld, e.g. [Alves et al. 2018;
Conti et al. 2014; Viola et al. 2017; Wu et al. 2017].

Our results also show that sparsity in the wavelet representation
can lead to a reduction in the computation time through the smaller
number of coe�cients that has to be processed. Our implementation
is, however, currently slower than projection in the pixel domain
when a dense representation of a light �eld is directly available. Al-
gorithm 1 is easily parallelized by exploiting that the reconstruction
for each pixel is independent, i.e. there is #G ⇥#~ data parallel work.
This makes it directly amenable to a GPU implementation where
one could also take advantage of half-precision, which is su�cient
to obtain artifact free images. This would also provide bene�ts on
the embedded processors typically available in cameras.

Fig. 20 showed �rst results on the reconstruction of all-focus im-
ages from the compressed wavelet representation. While currently
not artifact free when the depth map contains discontinuities, the
results verify the potential of our approach to e�ciently obtain all-
focus images, which requires a convolution in the frequency domain
using Fourier slice photography. To remove the current artifacts,
the depth map needs to be preprocessed in a mip-map-like manner
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Fig. 14. Log-linear plots of !1 reconstruction error as a function of the nonzero coe�icients for five di�erent photographic light fields (flowers_plants_1
to flowers_plants_5 from le� to right) and U = 0.6, 0.85, 1.1, 1.35 (from top to bo�om). The vertical grey dashed line in the plots on the le� indicates the
coe�icients required for the uncompressed representation. Shown are reconstructed images obtained from the full wavelet representation to show the e�ect of
changing U (see Fig. 18 for a depiction of compressed ones).

For tone mapping we used a simple log-luminance operator in all
instances; brightness variations that can be seen in some of the
results for varying U stem from (independent) tone mapping. We
used two to three wavelet levels in all experiments (because of the
limited resolution in the angular dimension) and for the experiments
with the photographic light �elds the same parameters (such as
range of U values and tone mapping parameters) were applied in
each case, which might be sub-optimal in individual instances.

5.2 Implementation
We developed a Mathematica reference implementation of Algo-
rithm 1 (available in the supplementary material) and a basic, multi-
threaded C++ implementation. Since the reconstruction �lters ZUB (G)
are relatively expensive to evaluate, cf. Appendix A, we sampled
them in a preprocessing step and interpolated at runtime (the er-
ror introduced through the interpolation was below 10−7 and thus
negligible for photographic applications). Post-processing bias was
avoided by using one sample per pixel for image reconstruction and
no interpolation �lter on the image plane. “Reference” solutions
were similarly computed using naïve projection in the pixel domain
without �ltering of the light �eld data sets or the pixel data.

For the polar wavelets, we used �lter taps of size 81 ⇥ 81 and,
as mentioned earlier, an apron of 4 pixels. Larger values did not
improve the reconstruction. Note that our algorithm for refocused
image reconstruction is itself parameter free.

To study the e�ect of sparsi�cation on image reconstruction qual-
ity we implemented a simple transform coding scheme with hard
thresholding, i.e. we set to zero all coe�cients whose magnitude

is below a threshold n dependent on the light �eld’s !2 norm to
compensate for overall brightness di�erences between the data sets.
Results will be reported using either the number of nonzero coe�-
cients in the light �elds n-sparse wavelet representation (denoted
by nzs) or the compression rate (denoted by cr), i.e. the number of
nonzero coe�cients in a sparse over the total number in a dense
wavelet representation. The number of nonzero coe�cients pro-
vides an indication of the storage requirements although it is an
upper bound since our wavelet representation only provides the
transform coding step of a full compression scheme and we do not
consider blocking, quantization, entropy coding and other aspects
that are critical in practical compression algorithms.

5.3 Simple experiments
To demonstrate the correctness of the sheared local Fourier slice
equation as well as to gain some understanding of various concep-
tual aspects we performed experiments on two dimensional signals
yielding a one dimensional projection.

Basic veri�cation. We veri�ed the correctness of the local Fourier
slice equation using the sheared projection of a two dimensional
Gaussian for which an analytic solution exists. As shown in Fig 7, our
reconstruction matches the analytic one very well with a maximum
error on 1.86 ⇥ 10−6. This is of the same order as the reconstruction
error of the 2D input signal, and hence attributable to inaccuracies
in the transform yielding the wavelet coe�cients.

Basic veri�cation. To obtain insights on the behavior of our tech-
nique for “natural images” as well as to understand the e�ect of
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Fig. 14. Log-linear plots of !1 reconstruction error as a function of the nonzero coe�icients for five di�erent photographic light fields (flowers_plants_1
to flowers_plants_5 from le� to right) and U = 0.6, 0.85, 1.1, 1.35 (from top to bo�om). The vertical grey dashed line in the plots on the le� indicates the
coe�icients required for the uncompressed representation. Shown are reconstructed images obtained from the full wavelet representation to show the e�ect of
changing U (see Fig. 18 for a depiction of compressed ones).

For tone mapping we used a simple log-luminance operator in all
instances; brightness variations that can be seen in some of the
results for varying U stem from (independent) tone mapping. We
used two to three wavelet levels in all experiments (because of the
limited resolution in the angular dimension) and for the experiments
with the photographic light �elds the same parameters (such as
range of U values and tone mapping parameters) were applied in
each case, which might be sub-optimal in individual instances.

5.2 Implementation
We developed a Mathematica reference implementation of Algo-
rithm 1 (available in the supplementary material) and a basic, multi-
threaded C++ implementation. Since the reconstruction �lters ZUB (G)
are relatively expensive to evaluate, cf. Appendix A, we sampled
them in a preprocessing step and interpolated at runtime (the er-
ror introduced through the interpolation was below 10−7 and thus
negligible for photographic applications). Post-processing bias was
avoided by using one sample per pixel for image reconstruction and
no interpolation �lter on the image plane. “Reference” solutions
were similarly computed using naïve projection in the pixel domain
without �ltering of the light �eld data sets or the pixel data.

For the polar wavelets, we used �lter taps of size 81 ⇥ 81 and,
as mentioned earlier, an apron of 4 pixels. Larger values did not
improve the reconstruction. Note that our algorithm for refocused
image reconstruction is itself parameter free.

To study the e�ect of sparsi�cation on image reconstruction qual-
ity we implemented a simple transform coding scheme with hard
thresholding, i.e. we set to zero all coe�cients whose magnitude

is below a threshold n dependent on the light �eld’s !2 norm to
compensate for overall brightness di�erences between the data sets.
Results will be reported using either the number of nonzero coe�-
cients in the light �elds n-sparse wavelet representation (denoted
by nzs) or the compression rate (denoted by cr), i.e. the number of
nonzero coe�cients in a sparse over the total number in a dense
wavelet representation. The number of nonzero coe�cients pro-
vides an indication of the storage requirements although it is an
upper bound since our wavelet representation only provides the
transform coding step of a full compression scheme and we do not
consider blocking, quantization, entropy coding and other aspects
that are critical in practical compression algorithms.

5.3 Simple experiments
To demonstrate the correctness of the sheared local Fourier slice
equation as well as to gain some understanding of various concep-
tual aspects we performed experiments on two dimensional signals
yielding a one dimensional projection.

Basic veri�cation. We veri�ed the correctness of the local Fourier
slice equation using the sheared projection of a two dimensional
Gaussian for which an analytic solution exists. As shown in Fig 7, our
reconstruction matches the analytic one very well with a maximum
error on 1.86 ⇥ 10−6. This is of the same order as the reconstruction
error of the 2D input signal, and hence attributable to inaccuracies
in the transform yielding the wavelet coe�cients.

Basic veri�cation. To obtain insights on the behavior of our tech-
nique for “natural images” as well as to understand the e�ect of
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Fig. 14. Log-linear plots of !1 reconstruction error as a function of the nonzero coe�icients for five di�erent photographic light fields (flowers_plants_1
to flowers_plants_5 from le� to right) and U = 0.6, 0.85, 1.1, 1.35 (from top to bo�om). The vertical grey dashed line in the plots on the le� indicates the
coe�icients required for the uncompressed representation. Shown are reconstructed images obtained from the full wavelet representation to show the e�ect of
changing U (see Fig. 18 for a depiction of compressed ones).

For tone mapping we used a simple log-luminance operator in all
instances; brightness variations that can be seen in some of the
results for varying U stem from (independent) tone mapping. We
used two to three wavelet levels in all experiments (because of the
limited resolution in the angular dimension) and for the experiments
with the photographic light �elds the same parameters (such as
range of U values and tone mapping parameters) were applied in
each case, which might be sub-optimal in individual instances.

5.2 Implementation
We developed a Mathematica reference implementation of Algo-
rithm 1 (available in the supplementary material) and a basic, multi-
threaded C++ implementation. Since the reconstruction �lters ZUB (G)
are relatively expensive to evaluate, cf. Appendix A, we sampled
them in a preprocessing step and interpolated at runtime (the er-
ror introduced through the interpolation was below 10−7 and thus
negligible for photographic applications). Post-processing bias was
avoided by using one sample per pixel for image reconstruction and
no interpolation �lter on the image plane. “Reference” solutions
were similarly computed using naïve projection in the pixel domain
without �ltering of the light �eld data sets or the pixel data.

For the polar wavelets, we used �lter taps of size 81 ⇥ 81 and,
as mentioned earlier, an apron of 4 pixels. Larger values did not
improve the reconstruction. Note that our algorithm for refocused
image reconstruction is itself parameter free.

To study the e�ect of sparsi�cation on image reconstruction qual-
ity we implemented a simple transform coding scheme with hard
thresholding, i.e. we set to zero all coe�cients whose magnitude

is below a threshold n dependent on the light �eld’s !2 norm to
compensate for overall brightness di�erences between the data sets.
Results will be reported using either the number of nonzero coe�-
cients in the light �elds n-sparse wavelet representation (denoted
by nzs) or the compression rate (denoted by cr), i.e. the number of
nonzero coe�cients in a sparse over the total number in a dense
wavelet representation. The number of nonzero coe�cients pro-
vides an indication of the storage requirements although it is an
upper bound since our wavelet representation only provides the
transform coding step of a full compression scheme and we do not
consider blocking, quantization, entropy coding and other aspects
that are critical in practical compression algorithms.

5.3 Simple experiments
To demonstrate the correctness of the sheared local Fourier slice
equation as well as to gain some understanding of various concep-
tual aspects we performed experiments on two dimensional signals
yielding a one dimensional projection.

Basic veri�cation. We veri�ed the correctness of the local Fourier
slice equation using the sheared projection of a two dimensional
Gaussian for which an analytic solution exists. As shown in Fig 7, our
reconstruction matches the analytic one very well with a maximum
error on 1.86 ⇥ 10−6. This is of the same order as the reconstruction
error of the 2D input signal, and hence attributable to inaccuracies
in the transform yielding the wavelet coe�cients.

Basic veri�cation. To obtain insights on the behavior of our tech-
nique for “natural images” as well as to understand the e�ect of
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their duals  ̃
r,⌫

jk
(!) form Gelfand frames, see e.g. [40, 100], a concept closely related1034

to the Stevenson frames [93, 9] that we use. Stevenson’s original work [93] was, in1035

fact, similar to ours in that he was also interested in the Galerkin-type discretization1036

of operator equations. We believe that the Gelfand frame perspective can also be1037

beneficial for  ec(S2) but we leave a detailed investigation to future work.1038

Remark 4.15. In Remark 4.12 we showed that anisotropic di↵erential form wave-1039

lets could be useful for the numerical realization of Stokes’ theorem in  ec(S2).1040

Similar to the scalar case, cf. Sec. 3.3, such form wavelets can be obtained with1041

a straightforward extension of the  
r,⌫

jk
(!) presented above by introducing mother1042

window coefficients j,t

lm
= 

j

l
β
j,t

m
with a dependence on the azimuthal spherical har-1043

monics parameter m. We hope to address anisotropic di↵erential form wavelets in1044

future work.1045

5.  ec(S2)-based Simulation of the Rotating Shallow Water Equations.1046

In the following we will use the local spectral exterior calculus  ec(S2) that we in-1047

troduced in the last section to develop a discretization of the rotating shallow water1048

equations. Numerical results for standard test cases as well as simple forecast exper-1049

iments will be presented.1050

5.1. Exterior Calculus Formulation of the Shallow Water Equations.1051

The shallow water equations in vorticity-divergence form are given by (e.g. [105])1052

⇣̇ = −r · (⇣ + f) ~u(5.1a)1053

µ̇ = r⇥ (⇣ + f) ~u−∆
|~u|2
2

−∆g(h+ he)(5.1b)1054

ḣ = −r · (h ~u)(5.1c)10551056

where h is the depth of the fluid and he the orography of the earth, g denotes the1057

gravitational constant, and f is the Coriolis parameter that accounts for the rotating1058

frame. The vorticity ⇣ and divergence µ of the fluid velocity ~u 2 X(S2) are1059

⇣ = r⇥ ~u µ = r · ~u.(5.1d)10601061

The potentials associated with ⇣ and µ are the stream function ⇠ and the velocity1062

potential χ, respectively. These are given by1063

∆⇠ = ⇣ ∆χ = µ.(5.1e)10641065

They enable one to write the velocity vector field as ~u = r?⇠ +rχ where r? is the1066

skew-gradient. To simplify notation, we will write in the following ⌘ = ⇣ + f .1067

By associating the velocity vector field ~u 2 X(S2) with the velocity 1-form u
[ 21068

⌦1(S2) the shallow water equation can be written using exterior calculus. It can be1069

shown that Eqs. 5.1a- 5.1c are then equivalent to1070

⇣̇ = −d(?⇣ ^ ?u
[)(5.2a)1071

µ̇ = −d(?⇣ ^ u
[)−∆hhu[

, u
[ii − g∆(h+ he)(5.2b)1072

ḣ = −d(?h ^ ?u
[).(5.2c)10731074

This manuscript is for review purposes only.
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Fig. 6. Wavelets  j0(✓,φ) and their profiles  j0(✓, 0) for j = 1 to j = 6 based on the windows
from [73]. The direct comparison to Fig. 2 shows the correspondence between the e↵ective support
of the wavelets and the density of the point set over which they are supported.

The above theorem ensures that arbitrary signals f 2 L2(S
2) can be represented446

using the discrete spherical wavelets in Eq. 3.10 and that the representation a↵ords447

many of the conveniences of an orthonormal basis, such as that primary and dual448

frame functions coincide and that Parseval’s identity holds.449

Example 3.5 (Shannon wavelet). The simplest example of wavelets satisfying our450

requirements are the spherical Shannon wavelets. Their scaling functions are given451

by452

̄
j

l
=

(
1 l < 2dj−1/2e

0 otherwise
(3.15)453

454

where d·e refers to the ceiling operation. The wavelets are then 
j

l
= ̄

j+1
l

 ̄
j

l
. As455

in the Euclidean case, because the windows defined by the ̄
j

l
are not smooth in the456
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Fig. 9. Visualization of exact and co-exact 1-form mother wavelets,  1,d
j (!) (top) and  

1,
j (!)

(bottom), respectively, for j = 1, 2, 3, 4. The exact ones correspond to curl free vector fields and they
are close to a perfect, localized sink at the North pole. Correspondingly, the co-exact wavelets are
isomorphic to divergence free vector fields and they are close to a perfect, localized vortex around
the pole.
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are close to a perfect, localized sink at the North pole. Correspondingly, the co-exact wavelets are
isomorphic to divergence free vector fields and they are close to a perfect, localized vortex around
the pole.
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Fig. 11. Experimental results the 6th (top) and 7th (bottom) standard test by Williamson et
al. [105]. From left to right we show the deviation of vorticity ⇣, divergence µ, and depth h from a
reference solution obtained with DWD-shallow with Lmax = 128.

For time stepping we use a simple leapfrog scheme with Robertson smoothing,1136

which provided sufficiently accurate solutions in our numerical experiments.1137

5.3. Experiments. In the following we report on experimental results for our1138

 ec(S2)-based discretization of the shallow water equations for the standard tests1139

proposed by Williamson et al. [105] as well as short-time forecast experiments.1140

5.3.1. Implementation. We developed a C++ implementation of Eqs. 5.8,1141

which we will refer to as  -shallow. The reported results are for J = 5. As ref-1142

erence we use our own spectral implementation, named SH-shallow, based on [19]1143

with libsharp [85] for the fast spherical harmonics transform. To have a fair compar-1144

ison, we chose the bandlimit of the spectral model to match the largest representable1145

frequency of  -shallow, i.e. Lmax = 2j . We also compared to the implementation by1146

Hack and Jakob [52], in the adaptation developed for the verification of the ICON1147

model [62]. We denote it as DWD-shallow. All experiments were performed in double1148

precision.1149

5.3.2. Standard test cases. We considered test cases 2, 6, 7 and from [105],1150

which have been widely used in the literature to assess the correctness of simulations1151

of the shallow water equations.1152

Test case 2. This test is a steady state solution with vanishing divergence. It has1153

a parameter ↵ that is the angle between the rotation axis and the up axis. Varying1154

↵ tests the isotropy of the model, e.g. if flows over the pole can be represented as1155

accurately as those along the equator. Fig. 10 shows the norm of the deviations of1156

vorticity, divergence and geopotential from the initial value for a 10 day simulation.1157

All three implementations preserve the initial values to high accuracy, i.e. they provide1158

good simulations of the expected steady state. The slightly larger error for  -shallow1159

compared to SH-shallow results from the fact that the tight frame property is enforced1160

numerically and a residual slightly larger than machine precision remains at the end of1161

the optimization. In contrast, libsharp, used in SH-shallow, performs highly accurate1162

spherical harmonics transforms with an error on the order of machine precision.1163
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Fig. 12. Change in energy E and enstrophy E for the the 6th test by Williamson et al. [105].

Test case 6. Fig. 11 shows results for test case 6, which is a Rossby-Hurrwitz1164

wave. No analytic solution is available in this case so we used DWD-shallow with1165

Lmax = 128 as such. The results demonstrate that the  ec(S2)-discretization provides1166

accuracy comparable with those obtained by our spectral implementation for all three1167

prognostic variables ⇣, µ, and h.1168

Test case 7. The test considers physical initial conditions for January 1979. We1169

again use DWD-shallow with Lmax = 128 as reference. Although a slight deviation of1170

the solution of  -shallow can be seen over time, it remains sufficiently close to provide1171

accurate predictions.1172

Energy and enstrophy. In Fig. 12 we show the change in energy E = 1
2 hhu

[
, u

[ii1173

and enstrophy E = 1
2 hh⇣, ⇣ii for test case 6, i.e. the Rossby-Hurrwitz wave, for  -1174

shallow. The result demonstrate excellent conservation properties for our implemen-1175

tation based on  ec(S2), as one would expect with its respect for exterior calculus.1176

A theoretical analysis of the conservation properties of  -shallow will be presented in1177

a forthcoming publication.1178

5.3.3. Forecast experiments. To obtain some insight on the performance of1179

our discretization under more realistic conditions we performed forecast experiments1180

using reanalysis data (ERA-Interim [34]). We used each time slice available in the1181

data set as initial condition and ran the simulation for 6 hours. We then compared1182

the forecast to the data for the time point in the reanalysis. As naive base line we1183

used the persistent forecast where the data is kept constant over the 6 hour period.1184

In Fig. 13 we report the di↵erence between forecast and reanalysis data for the1185

year 1979; analogous ones hold for other years. The plots show that our simulations1186

provide substantial improvements over a naive forecast especially for vorticity. For1187

divergence there is a smaller improvement and  -shallow is less accurate than SH-1188

shallow.1189

6. Future Work. The presented results provide many avenues for future work.1190

Our long term objective is the development of a data-assisted dynamical core for the1191

prediction of climate statistics. For this, we want to extend the discretization of the1192

shallow water equations developed in Sec. 5.2 to one for the hydrostatic primitive1193

equations and couple it to neural networks that ensures the correct prediction of lo-1194

cal statistics. Preliminary experiments indicate that the di↵erential form wavelets1195

provide a useful representation of the data for the neural networks, which also en-1196

sures that these respect the basic physical principles encoded in the Hodge-Helmholtz1197

decomposition.1198

Our local spectral exterior calculus for the sphere  ec(S2) can be developed fur-1199

ther in di↵erent directions. Currently, we only consider di↵erential forms, analogous1200
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Fig. 9. Visualization of exact and co-exact 1-form mother wavelets,  1,d
j (!) (top) and  

1,
j (!)

(bottom), respectively, for j = 1, 2, 3, 4. The exact ones correspond to curl free vector fields and they
are close to a perfect, localized sink at the North pole. Correspondingly, the co-exact wavelets are
isomorphic to divergence free vector fields and they are close to a perfect, localized vortex around
the pole.
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Figure 6: Architectural design of temporal convolution network model. (a) Comparison between regular and
causal + dilated convolution. (b) Residual block comprises of two convolution layers. (c) The overall design
with a series of stacked residual blocks whose dilation rate grows exponentially with layers.

• Regularization: TCN employs dropout layers [20] as the primary regularization mechanism to prevent
overfitting. The dropout layers are inserted after each temporal convolution operation in the residual
blocks and randomly zeroes out any channel in the output with a fixed probability p. This operation
forces the neurons to learn robust features that work well with many dierent random subsets of other
neurons.

• Weight normalization: The convolution filters in TCNs are weight normalized, meaning that the length
and direction of the weight vectors are decoupled [19]. This has been shown to improve the conditioning
of the optimization problem and accelerate the training process noticeably.

3.3 Parameter optimization

Training the TCN is equivalent to finding the weights and biases (collectively denoted by ) that minimize a
loss function, which evaluates the fit of the model to the data. Denoting the target output by {y0, ..., yT ≠1}
and the corresponding model prediction by {ŷ0, ..., ŷT ≠1}, the cost function J is usually defined as the
average of the errors committed for each training case and each time step:

J () = 1
T

ÿ

i

L
!
ŷi(), yi

"
, (7)

where P measures the penalty for a single point. For real-valued predictions, the mean absolute error (MAE)
and mean squared error (MSE) are commonly used:

PMAE(ŷi, yi) = 1
m

ÿ

j

|ŷi,j ≠ yi,j |, (8a)

PMSE(ŷi, yi) = 1
m

ÿ

j

(ŷi,j ≠ yi,j)2, (8b)
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Figure 15: Time series of vorticity for Berlin, London and Rome showing reanalysis data, conditioning and 3
samples drawn (all 5 levels are included) for year 2013.

Figure 16: Probability density function (pdf) of the vorticity at three major European cities (Berlin, London
and Rome). The densities are computed for the 5-year period from 2013 to 2017. 9 separate sample trajectories
are used for those that involve sampling.
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(bottom), respectively, for j = 1, 2, 3, 4. The exact ones correspond to curl free vector fields and they
are close to a perfect, localized sink at the North pole. Correspondingly, the co-exact wavelets are
isomorphic to divergence free vector fields and they are close to a perfect, localized vortex around
the pole.
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• Regularization: TCN employs dropout layers [20] as the primary regularization mechanism to prevent
overfitting. The dropout layers are inserted after each temporal convolution operation in the residual
blocks and randomly zeroes out any channel in the output with a fixed probability p. This operation
forces the neurons to learn robust features that work well with many dierent random subsets of other
neurons.

• Weight normalization: The convolution filters in TCNs are weight normalized, meaning that the length
and direction of the weight vectors are decoupled [19]. This has been shown to improve the conditioning
of the optimization problem and accelerate the training process noticeably.

3.3 Parameter optimization

Training the TCN is equivalent to finding the weights and biases (collectively denoted by ) that minimize a
loss function, which evaluates the fit of the model to the data. Denoting the target output by {y0, ..., yT ≠1}
and the corresponding model prediction by {ŷ0, ..., ŷT ≠1}, the cost function J is usually defined as the
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Figure 15: Time series of vorticity for Berlin, London and Rome showing reanalysis data, conditioning and 3
samples drawn (all 5 levels are included) for year 2013.

Figure 16: Probability density function (pdf) of the vorticity at three major European cities (Berlin, London
and Rome). The densities are computed for the 5-year period from 2013 to 2017. 9 separate sample trajectories
are used for those that involve sampling.
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• Regularization: TCN employs dropout layers [20] as the primary regularization mechanism to prevent
overfitting. The dropout layers are inserted after each temporal convolution operation in the residual
blocks and randomly zeroes out any channel in the output with a fixed probability p. This operation
forces the neurons to learn robust features that work well with many dierent random subsets of other
neurons.

• Weight normalization: The convolution filters in TCNs are weight normalized, meaning that the length
and direction of the weight vectors are decoupled [19]. This has been shown to improve the conditioning
of the optimization problem and accelerate the training process noticeably.

3.3 Parameter optimization

Training the TCN is equivalent to finding the weights and biases (collectively denoted by ) that minimize a
loss function, which evaluates the fit of the model to the data. Denoting the target output by {y0, ..., yT ≠1}
and the corresponding model prediction by {ŷ0, ..., ŷT ≠1}, the cost function J is usually defined as the
average of the errors committed for each training case and each time step:
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Summary

  ◦        : A local spectral exterior calculus

  › Discretization of de Rham complex using differential form 
wavelets

  › Exterior calculus and sparsity are in a natural way com-
patible

  › Local support needed for practicality
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Figure 6: Magnitude of the velocity field for the channel for flow with one obstacle at
time t = 9 for a.) a multigrid solution with L + 1 levels, b.) DNN-MG, c.) a
multigrid solution with L levels.

frequency fluctuations that are not visible in the coarse mesh solution. In particular in
the vicinity of the obstacle the quality of the solution is strongly enhanced with distinct
features in the wake being apparent in the DNN-MG simulation.
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Figure 7: The lift functional on the sequence of spatially refined finite element meshes
from Table 1 reveals a frequency shift which is depending on the spatial finite
element discretization. We show the startup phase [0, 3] and the interval [9, 10],
where the flow is fully developed.
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from Table 1 reveals a frequency shift which is depending on the spatial finite
element discretization. We show the startup phase [0, 3] and the interval [9, 10],
where the flow is fully developed.
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Figure 6: Magnitude of the velocity field for the channel for flow with one obstacle at
time t = 9 for a.) a multigrid solution with L + 1 levels, b.) DNN-MG, c.) a
multigrid solution with L levels.

frequency fluctuations that are not visible in the coarse mesh solution. In particular in
the vicinity of the obstacle the quality of the solution is strongly enhanced with distinct
features in the wake being apparent in the DNN-MG simulation.
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Figure 8: Drag (top) and lift (bottom) functionals for the channel with one obstacle for
the coarse mesh solution, the fine mesh solution and DNN-MG.
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Figure 9: Comparison of the wall-clock times of the di↵erent mehods

6.5 Timings

The use of the DNN-MG method in applications is only meaningful when it not only
improves the accuracy compared to a coarse mesh solution (as demonstrated in the last
subsection) but also reduces the computation time compared to solving on a finer mesh.
As shown in Figure 9, DNN-MG saves 55% of the wall clock time required for a fine mesh
solution. It hence indeed improves the computational efficiency. Compared to solving
on a coarse mesh, the runtime increases by 37%, but with an improved accuracy for
DNN-MG. Fig. 9 also shows that the evaluation of the neural network requires only 2%
of the DNN-MG runtime and a substantial amount of time is spent on data conversion
between the multigrid framework and the neural network and other auxiliary tasks.
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