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Motivation

  ◦ Climate simulation model that integrates analytic 
(pde) model and statistical model

  – Model uncertainties

  – Model unresolved scales

  – Account for limitations of analytic model

  – Correct for discretization artifacts
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Motivation

  ◦ Statistical model

  – Generic model that is flexible and does not suffer 
from (too much) model bias

  – Parameters determined based on data, e.g. using 
Bayesian ansatz

  – Largely associated with high frequency / fine scale 
behavior
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Analytic model

  ◦ Objectives:

  – Adaptive / multi-scale (with explicit representation of 
different scales)

  – Preserve the advantages of spectral models as much 
as possible

  – Should allow for structure preservation (i.e. should re-
spect the structure of exterior calculus)
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Spectral exterior calculus

ylm(✓,φ) = Clm Plm(cos ✓) eim

How can this be extended 
to arbitrary forms?

How can we construct a 
1-form from a 0-form?
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Spectral exterior calculus

: spectral (discrete) differential forms
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Spectral exterior calculus
vorticity, divergence
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Spectral exterior calculus

  ◦ Sobolev spaces on the sphere
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Spectral exterior calculus

  ◦ Sobolev spaces on the sphere

  ◦ Homogeneous Sobolev spaces on the sphere

squared weight introduce by d 
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Spectral exterior calculus
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Spectral exterior calculus
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Spectral exterior calculus
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Spectral exterior calculus

tight frame in dual frame in 



47© Christian Lessig, 2019

Spectral exterior calculus



48© Christian Lessig, 2019

Spectral exterior calculus



49© Christian Lessig, 2019

Spectral exterior calculus



50© Christian Lessig, 2019

Spectral exterior calculus



51© Christian Lessig, 2019

Spectral exterior calculus



52© Christian Lessig, 2019

Spectral exterior calculus



53© Christian Lessig, 2019

Spectral exterior calculus



54© Christian Lessig, 2019

Spectral exterior calculus



55© Christian Lessig, 2019

Spectral exterior calculus
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defined
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Spectral exterior calculus

Not intrinsically
defined (except 
for finite spaces)
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Spectral exterior calculus
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1-form γ with the 2-form ! = ↵ ^ β is a 3-form µ = γ ^ ! (also
called volume-form) on R which is analogous to the scalar triple
product of three vectors.

A discrete treatment of the wedge operator can be found
in [Hirani 2003]. Here, we only need to introduce the no-
tion of a discrete primal-dual wedge product: given a pri-
mal k-cochain γ and a dual (n-k)-cochain !, the discrete
wedge product γ ^ ! is an n-form (or a volume-form).
For instance, in the example depicted in the inset,
the wedge product of the primal 1-cochain with
the dual 1-cochain is a 2-form associated with the
diamond region defined by the convex hull of the
union between the primal and dual edge (see in-
set).

5 Metric-Dependent Operators on Forms

Notice that up to now, we did not assume that a metric was avail-
able, i.e., we never required anything to be measured. However,
such a metric is necessary for many purposes. For instance, sim-
ulating the behavior of objects around us requires measurements
of various parameters in order to be able to model laws of motion,
and compare the numerical results of simulations. Consequently, a
certain number of operations on forms can only be defined once a
metric is known, as we shall see in this section.

5.1 Notion of Metric and Inner Product

A metric is, roughly speaking, a nonnegative function that describes
the “distance” between neighboring points of a given space. For
example, the Euclidean metric assigns to any two points in the Eu-
clidean space R3, say X = (x1, x2, x3) and Y = (y1, y2, y3), the
number:

d(X,Y)=kX − Yk=
p

(x1−y1)2 + (x2−y2)2 + (x3−y3)2

defining the “standard” distance between any two points in R3. This
metric then allows one to measure length, area, and volume. The
Euclidean metric can be expressed as the following quadratic form:

gEuclid =

0

@
1 0 0
0 1 0
0 0 1

1

A.

Indeed, the reader can readily verify that this matrix g satisfies:
d2(X,Y) = (X − Y)tg(X − Y). Notice also that this metric
induces an inner product of vectors. Indeed, for two vectors u and
v, we can use the matrix g to define:

u · v = utg v.

Once again, the reader is invited to verify that this equality does
correspond to the traditional dot product when g is the Euclidean
metric. Notice that on a non-flat manifold, subtraction of two
points is only possible for points infinitesimally close to each other,
thus the metric is actually defined pointwise for the tangent space
at each point: it does not have to be constant. Finally, notice
that a volume form can be induced from a metric by defining
µn =

p
det(g) dx1

^ · · · ^ dxn.

5.2 Discrete Metric

In the discrete setting presented in this paper, we only need to mea-
sure length, area, and volume of the simplices and dual cells (note

these different notions of sizes depending on dimension will be de-
noted “intrinsic volumes” for generality). We therefore do not have
a full-blown notion of a metric, only a discrete metric. Obviously,
if one were to use a finer mesh, more information on the metric
would be available: having more values of length, area, and vol-
ume in a neighborhood provides a better approximation of the real,
continuous metric.

5.3 The Differential Hodge Star

Let us go back for a minute to the differential case to explain a new
concept. Recall that the metric defines an inner product for vectors.
This notion also extends to forms: given a metric, one can define
the product of two k-forms 2 ⌦k(M) which will measure, in a
way, the projection of one onto the other. A formal definition can
be found in [Abraham et al. 1988]. Given this inner product denoted
h , i, we can introduce an operator ?, called the Hodge star, that
maps a k-form to a complementary (n-k)-form:

? : ⌦k(M) ! ⌦n−k(M),

and is defined to satisfy the following equality:

↵ ^ ?β = h↵, βi µn

for any pair of k-forms ↵ and β (recall that µn is the volume form
induced by the metric g). However, notice that the wedge product
is very special here: it is the product of k-form and a (n-k)-form,
two complementary forms. This fact will drastically simplify the
discrete counterpart of the Hodge star, as we now cover.

d d d

0-forms (vertices) 1-forms (edges) 2-forms (faces) 3-forms (tets)

d d d

Figure 13: On the first line, the ‘primal’ chain complex is depicted and on
the second line we see the dual chain complex (i.e., cells, faces, edges and
vertices of the Voronoi cells of each vertex of the primal mesh).

5.4 Discrete Hodge Star

In the discrete setting, the Hodge star becomes easier: we only
need to define how to go from a primal k-cochain to a dual (n-k)-
cochain, and vice-versa. By definition of the dual mesh, k-chains
and dual (n-k)-chains are represented by vectors of the same di-
mension. Similarly to the discrete exterior derivative (coboundary)
operator, we may use a matrix (this time of size |K

k
| ⇥ |K

k
|) to

represent the Hodge star. Now the question is: what should the
coefficients of this matrix be?

For numerical purposes we want it to be symmetric, positive def-
inite, and sometimes, even diagonal for faster computations. One
such diagonal Hodge star can be defined with the diagonal elements
as the ratio of intrinsic volumes of a k-simplex and its dual (n-k)-
simplex. In other words, we can define the discrete Hodge star
through the following simple rule:

1

|σk|

Z

k

! =
1

| ⇤ σk|

Z

⇤k

?! (7)

Spectral exterior calculus

  ◦ Discrete exterior calculus:

M. Desbrun, E. Kanso, and Y. Tong, “Discrete Differential Forms for Computational Modeling,” in SIGGRAPH ’06: ACM SIGGRAPH 2006 Courses, 2006, pp. 39–54.
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frequency 



62© Christian Lessig, 2019

Local spectral exterior calculus

  ◦ Idea: “seed“ construction 
from 0-form basis functions 
well localized in space and 
frequency 



63© Christian Lessig, 2019

Local spectral exterior calculus

  ◦ Idea: “seed“ construction 
from 0-form basis functions 
well localized in space and 
frequency 



64© Christian Lessig, 2019

Local spectral exterior calculus

  ◦ Idea: “seed“ construction 
from 0-form basis functions 
well localized in space and 
frequency 



65© Christian Lessig, 2019

Local spectral exterior calculus

  ◦ Idea: “seed“ construction 
from 0-form basis functions 
well localized in space and 
frequency 



66© Christian Lessig, 2019

Local spectral exterior calculus

  ◦ Idea: “seed“ construction 
from 0-form basis functions 
well localized in space and 
frequency 

  – Compromise between 
spatial and frequency     
localization



67© Christian Lessig, 2019

Local spectral exterior calculus

  ◦ Idea: “seed“ construction 
from 0-form basis functions 
well localized in space and 
frequency 

  – Compromise between 
spatial and frequency     
localization



68© Christian Lessig, 2019

● ● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
10 20 30 40

l

0.2

0.4

0.6

0.8

1.0

Spherical wavelets



69© Christian Lessig, 2019

● ● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
10 20 30 40

l

0.2

0.4

0.6

0.8

1.0

Spherical wavelets

0.5 1.0 1.5 2.0 2.5 3.0
θ

0.5

1.0

1.5

2.0



70© Christian Lessig, 2019

● ● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●■ ■ ■

■
■ ■

■
■

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■
10 20 30 40

l

0.2

0.4

0.6

0.8

1.0

Spherical wavelets

0.5 1.0 1.5 2.0 2.5 3.0
θ

-1

1

2

3

0.5 1.0 1.5 2.0 2.5 3.0
θ

0.5

1.0

1.5

2.0



71© Christian Lessig, 2019

● ● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●■ ■ ■

■
■ ■

■
■

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■◆ ◆ ◆ ◆ ◆
◆

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆
10 20 30 40

l

0.2

0.4

0.6

0.8

1.0

Spherical wavelets

0.5 1.0 1.5 2.0 2.5 3.0
θ

-2

2

4

6

8

0.5 1.0 1.5 2.0 2.5 3.0
θ

-1

1

2

3

0.5 1.0 1.5 2.0 2.5 3.0
θ

0.5

1.0

1.5

2.0



72© Christian Lessig, 2019

● ● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●■ ■ ■

■
■ ■

■
■

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■◆ ◆ ◆ ◆ ◆
◆

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲
▲

▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲
10 20 30 40

l

0.2

0.4

0.6

0.8

1.0

Spherical wavelets

0.5 1.0 1.5 2.0 2.5 3.0
θ

-5

5

10

15

20

25

0.5 1.0 1.5 2.0 2.5 3.0
θ

-2

2

4

6

8

0.5 1.0 1.5 2.0 2.5 3.0
θ

-1

1

2

3

0.5 1.0 1.5 2.0 2.5 3.0
θ

0.5

1.0

1.5

2.0



73© Christian Lessig, 2019

● ● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●■ ■ ■

■
■ ■

■
■

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■◆ ◆ ◆ ◆ ◆
◆

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲
▲

▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼

10 20 30 40
l

0.2

0.4

0.6

0.8

1.0

. . . 
0.5 1.0 1.5 2.0 2.5 3.0

θ

-5

5

10

15

20

25

0.5 1.0 1.5 2.0 2.5 3.0
θ

-2

2

4

6

8

0.5 1.0 1.5 2.0 2.5 3.0
θ

-1

1

2

3

0.5 1.0 1.5 2.0 2.5 3.0
θ

0.5

1.0

1.5

2.0

Spherical wavelets



74© Christian Lessig, 2019

Spherical wavelets

● ● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
10 20 30 40

l

0.2

0.4

0.6

0.8

1.0

0.5 1.0 1.5 2.0 2.5 3.0
θ

0.5

1.0

1.5

2.0

  ◦ Window functions form by 
construction a continuous 
frame:

  ◦ Discretization by sampling 
frame



75© Christian Lessig, 2019

Spherical wavelets

● ● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
10 20 30 40

l

0.2

0.4

0.6

0.8

1.0

0.5 1.0 1.5 2.0 2.5 3.0
θ

0.5

1.0

1.5

2.0

  ◦ Window functions form by 
construction a continuous 
frame:

  ◦ Discretization by sampling 
frame

  – We also allow for weight
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  ◦ Locations are notoriously hard to construct

  – Theoretically even existence is still open

  – Numerical algorithms are very expensive

Spherical wavelets
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  ◦ Parseval tight frame for 

  ◦ Compactly supported in spectral domain 
and exponential decay in spatial

  ◦ Fast transform (no pole problem)

Spherical wavelets1,2

1. J. D. McEwen, C. Durastanti, and Y. Wiaux, “Localisation of directional scale-discretised wavelets on the sphere,” Appl. Comput. Harmon. Anal., 2016.
2. F. J. Narcowich, P. Petrushev, and J. D. Ward, “Localized Tight Frames on Spheres,” SIAM J. Math. Anal., vol. 38, no. 2, pp. 574–594, Jan. 2006.
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Anisotropic spherical wavelets

  ◦ Effective representation of singular / high-frequency 
features in two dimensions requires anisotropic repre-
sentation system

  – Fefferman (second dyadic decomposition), Candes 
& Donoho (curvelets), steerable wavelets (Simoncelli, 
Freeman, Perona, Adelson)
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Anisotropic spherical wavelets

  ◦ Our construction naturally extends to this case:

  – Isotropic wavelets
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  – Anisotropic wavelets
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: local spectral exterior calculus
vorticity, divergence
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: local spectral exterior calculus in      1,2

1. C. Lessig, “PsiEC: A Local Spherical Exterior Calculus,” Submitt. to Appl. Comput. Harmon. Anal., 2018.
2. C. Lessig, “Divergence Free Polar Wavelets for the Analysis and Representation of Fluid Flows,” J. Math. Fluid Dyn., vol. 21, no. 18, 2019.
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: local spectral exterior calculus in      1,2

1. C. Lessig, “PsiEC: A Local Spherical Exterior Calculus,” Submitt. to Appl. Comput. Harmon. Anal., 2018.
2. C. Lessig, “Divergence Free Polar Wavelets for the Analysis and Representation of Fluid Flows,” J. Math. Fluid Dyn., vol. 21, no. 18, 2019.
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: local spectral exterior calculus in      1,2
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1. C. Lessig, “PsiEC: A Local Spherical Exterior Calculus,” Submitt. to Appl. Comput. Harmon. Anal., 2018.
2. C. Lessig, “Divergence Free Polar Wavelets for the Analysis and Representation of Fluid Flows,” J. Math. Fluid Dyn., vol. 21, no. 18, 2019.



100© Christian Lessig, 2019

: local spectral exterior calculus in      1,2

-π π

-π

π

1. C. Lessig, “PsiEC: A Local Spherical Exterior Calculus,” Submitt. to Appl. Comput. Harmon. Anal., 2018.
2. C. Lessig, “Divergence Free Polar Wavelets for the Analysis and Representation of Fluid Flows,” J. Math. Fluid Dyn., vol. 21, no. 18, 2019.

Construct in Fourier 
domain
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: local spectral exterior calculus in      1,2

  ◦ Stokes’ theorem:

sum should be sparse
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  ◦ Complete exterior calculus for S2

  – Laplace-Beltrami for 1-forms

  ◦ Anisotropic wavelets on S2: Stokes’ theorem

  ◦ Spherical t-designs of arbitrary order on S2

  – Existence, efficient algorithms for construction

  ◦ Local spectral exterior calculus for arbitray manifolds

  ◦ Approximation rates for k-form wavelets

: local spectral exterior calculus
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analytic pde model

(based on Psiec)

neural network

Ansatz
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  ◦ Statistical model

  – Generic model that is flexible and does not suffer 
from (too much) model bias

  – Parameters determined based on data, e.g. using 
Bayesian ansatz

  – Largely associated with high frequency / fine scale 
behavior

Motivation
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Statistical model

  ◦ Neural network

  – Well suited to model nonlinear behavior

  – Generic, i.e. can represent large class of “systems“

  – Efficient algorithms for training, well developed soft-
ware libraries, ...
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Statistical model

  ◦ Usage:
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Statistical model

  ◦ Neural network: how to explain mechanics & symmetry 
to a neural network?
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  ◦ Neural network: how to explain mechanics & symmetry 
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Statistical model

  ◦ Neural network: how to explain mechanics & symmetry 
to a neural network?

  – Uncertainties, sub-scale models, ... should still respect  
(geometric) structure of physical system (e.g. com-
pressible fluids)
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Statistical model

  ◦ Neural network: how to explain mechanics & symmetry 
to a neural network?

  – Uncertainties, sub-scale models, ... should still respect  
(geometric) structure of physical system (e.g. com-
pressible fluids)

  – Unaccounted physical effects might (and in general 
will) require different structure



119© Christian Lessig, 2019

Statistical model

How to explain exterior calculus to a neural network?
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How to explain exterior calculus to a neural network?
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Statistical model

=> Perform training on coefficients of wavelet 
      differential forms
        - Neural net respects de Rahm complex

How to explain exterior calculus to a neural network?
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Statistical model

How to explain exterior calculus to a neural network?

=> Perform training on coef-
ficients of wavelet differential 
forms
  - Neural net respects de 
    Rahm complex
  - Wavelets provide de-
    correlation in space and 
    frequency
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How to explain geometric dynamics to a neural network?
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Statistical model

How to explain geometric dynamics to a neural network?

  ◦ Neural network should implement 
a symplectic map: symplectic neu-
ral net

  – Can this be done similar to sym-
plectic time integrators?

  – How to integrate stochasticity?
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analytic pde model

(based on Psiec)

neural network

Ansatz
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analytic pde model

neural network

Ansatz
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Outlook

  ◦ How closely couple analytic and data-driven compo-
nent?

  ◦ How much physics should the neural network know 
about?

  – We would look like to model things not modelled by 
the usual mechanical models

  ◦ Symplectic neural nets
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Slides:
http://graphics.cs.uni-magdeburg.de/talks/mpe_london.pdf

Questions and Comments


