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 	◦ GAN-based super-resolution:1

1 C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi. Photo-realistic single image super-resolu-
tion using a generative adversarial network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017.

Motivation

SRResNet SRGAN-MSE SRGAN-VGG22 SRGAN-VGG54 original HR image

Figure 6: SRResNet (left: a,b), SRGAN-MSE (middle left: c,d), SRGAN-VGG2.2 (middle: e,f) and SRGAN-VGG54
(middle right: g,h) reconstruction results and corresponding reference HR image (right: i,j). [4⇥ upscaling]

Table 2: Comparison of NN, bicubic, SRCNN [9], SelfExSR [31], DRCN [34], ESPCN [48], SRResNet, SRGAN-VGG54
and the original HR on benchmark data. Highest measures (PSNR [dB], SSIM, MOS) in bold. [4⇥ upscaling]

Set5 nearest bicubic SRCNN SelfExSR DRCN ESPCN SRResNet SRGAN HR
PSNR 26.26 28.43 30.07 30.33 31.52 30.76 32.05 29.40 1
SSIM 0.7552 0.8211 0.8627 0.872 0.8938 0.8784 0.9019 0.8472 1
MOS 1.28 1.97 2.57 2.65 3.26 2.89 3.37 3.58 4.32

Set14

PSNR 24.64 25.99 27.18 27.45 28.02 27.66 28.49 26.02 1
SSIM 0.7100 0.7486 0.7861 0.7972 0.8074 0.8004 0.8184 0.7397 1
MOS 1.20 1.80 2.26 2.34 2.84 2.52 2.98 3.72 4.32

BSD100

PSNR 25.02 25.94 26.68 26.83 27.21 27.02 27.58 25.16 1
SSIM 0.6606 0.6935 0.7291 0.7387 0.7493 0.7442 0.7620 0.6688 1
MOS 1.11 1.47 1.87 1.89 2.12 2.01 2.29 3.56 4.46

increase the performance of SRResNet, however, come at
the cost of longer training and testing times (c.f . supple-
mentary material). We further found SRGAN variants of
deeper networks are increasingly difficult to train due to the
appearance of high-frequency artifacts.

Of particular importance when aiming for photo-realistic
solutions to the SR problem is the choice of the content loss
as illustrated in Figure 6. In this work, we found l

SR

V GG/5.4

to yield the perceptually most convincing results, which
we attribute to the potential of deeper network layers to
represent features of higher abstraction [68, 65, 40] away
from pixel space. We speculate that feature maps of these
deeper layers focus purely on the content while leaving the
adversarial loss focusing on texture details which are the
main difference between the super-resolved images without

the adversarial loss and photo-realistic images. We also
note that the ideal loss function depends on the application.
For example, approaches that hallucinate finer detail might
be less suited for medical applications or surveillance. The
perceptually convincing reconstruction of text or structured
scenes [31] is challenging and part of future work. The
development of content loss functions that describe image
spatial content, but more invariant to changes in pixel space
will further improve photo-realistic image SR results.

5. Conclusion

We have described a deep residual network SRRes-

Net that sets a new state of the art on public benchmark
datasets when evaluated with the widely used PSNR mea-
sure. We have highlighted some limitations of this PSNR-
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Visualizing and Understanding Convolutional Networks

Layer 2

Layer 1
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Layer 4 Layer 5

Figure 2. Visualization of features in a fully trained model. For layers 2-5 we show the top 9 activations in a random subset
of feature maps across the validation data, projected down to pixel space using our deconvolutional network approach.
Our reconstructions are not samples from the model: they are reconstructed patterns from the validation set that cause
high activations in a given feature map. For each feature map we also show the corresponding image patches. Note:
(i) the the strong grouping within each feature map, (ii) greater invariance at higher layers and (iii) exaggeration of
discriminative parts of the image, e.g. eyes and noses of dogs (layer 4, row 1, cols 1). Best viewed in electronic form.

From M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, editors, Computer 
Vision – ECCV 2014, pages 818–833, Cham, 2014. Springer International Publishing.
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Figure 2. Visualization of features in a fully trained model. For layers 2-5 we show the top 9 activations in a random subset
of feature maps across the validation data, projected down to pixel space using our deconvolutional network approach.
Our reconstructions are not samples from the model: they are reconstructed patterns from the validation set that cause
high activations in a given feature map. For each feature map we also show the corresponding image patches. Note:
(i) the the strong grouping within each feature map, (ii) greater invariance at higher layers and (iii) exaggeration of
discriminative parts of the image, e.g. eyes and noses of dogs (layer 4, row 1, cols 1). Best viewed in electronic form.

From M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, editors, Computer 
Vision – ECCV 2014, pages 818–833, Cham, 2014. Springer International Publishing.
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Figure 2. Visualization of features in a fully trained model. For layers 2-5 we show the top 9 activations in a random subset
of feature maps across the validation data, projected down to pixel space using our deconvolutional network approach.
Our reconstructions are not samples from the model: they are reconstructed patterns from the validation set that cause
high activations in a given feature map. For each feature map we also show the corresponding image patches. Note:
(i) the the strong grouping within each feature map, (ii) greater invariance at higher layers and (iii) exaggeration of
discriminative parts of the image, e.g. eyes and noses of dogs (layer 4, row 1, cols 1). Best viewed in electronic form.

From M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, editors, Computer 
Vision – ECCV 2014, pages 818–833, Cham, 2014. Springer International Publishing.
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of feature maps across the validation data, projected down to pixel space using our deconvolutional network approach.
Our reconstructions are not samples from the model: they are reconstructed patterns from the validation set that cause
high activations in a given feature map. For each feature map we also show the corresponding image patches. Note:
(i) the the strong grouping within each feature map, (ii) greater invariance at higher layers and (iii) exaggeration of
discriminative parts of the image, e.g. eyes and noses of dogs (layer 4, row 1, cols 1). Best viewed in electronic form.
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 	◦ GAN-based super-resolution:1

1 C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi. Photo-realistic single image super-resolu-
tion using a generative adversarial network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017.

SRResNet SRGAN-MSE SRGAN-VGG22 SRGAN-VGG54 original HR image

Figure 6: SRResNet (left: a,b), SRGAN-MSE (middle left: c,d), SRGAN-VGG2.2 (middle: e,f) and SRGAN-VGG54
(middle right: g,h) reconstruction results and corresponding reference HR image (right: i,j). [4⇥ upscaling]

Table 2: Comparison of NN, bicubic, SRCNN [9], SelfExSR [31], DRCN [34], ESPCN [48], SRResNet, SRGAN-VGG54
and the original HR on benchmark data. Highest measures (PSNR [dB], SSIM, MOS) in bold. [4⇥ upscaling]

Set5 nearest bicubic SRCNN SelfExSR DRCN ESPCN SRResNet SRGAN HR
PSNR 26.26 28.43 30.07 30.33 31.52 30.76 32.05 29.40 1
SSIM 0.7552 0.8211 0.8627 0.872 0.8938 0.8784 0.9019 0.8472 1
MOS 1.28 1.97 2.57 2.65 3.26 2.89 3.37 3.58 4.32

Set14

PSNR 24.64 25.99 27.18 27.45 28.02 27.66 28.49 26.02 1
SSIM 0.7100 0.7486 0.7861 0.7972 0.8074 0.8004 0.8184 0.7397 1
MOS 1.20 1.80 2.26 2.34 2.84 2.52 2.98 3.72 4.32

BSD100

PSNR 25.02 25.94 26.68 26.83 27.21 27.02 27.58 25.16 1
SSIM 0.6606 0.6935 0.7291 0.7387 0.7493 0.7442 0.7620 0.6688 1
MOS 1.11 1.47 1.87 1.89 2.12 2.01 2.29 3.56 4.46

increase the performance of SRResNet, however, come at
the cost of longer training and testing times (c.f . supple-
mentary material). We further found SRGAN variants of
deeper networks are increasingly difficult to train due to the
appearance of high-frequency artifacts.

Of particular importance when aiming for photo-realistic
solutions to the SR problem is the choice of the content loss
as illustrated in Figure 6. In this work, we found l

SR

V GG/5.4

to yield the perceptually most convincing results, which
we attribute to the potential of deeper network layers to
represent features of higher abstraction [68, 65, 40] away
from pixel space. We speculate that feature maps of these
deeper layers focus purely on the content while leaving the
adversarial loss focusing on texture details which are the
main difference between the super-resolved images without

the adversarial loss and photo-realistic images. We also
note that the ideal loss function depends on the application.
For example, approaches that hallucinate finer detail might
be less suited for medical applications or surveillance. The
perceptually convincing reconstruction of text or structured
scenes [31] is challenging and part of future work. The
development of content loss functions that describe image
spatial content, but more invariant to changes in pixel space
will further improve photo-realistic image SR results.

5. Conclusion

We have described a deep residual network SRRes-

Net that sets a new state of the art on public benchmark
datasets when evaluated with the widely used PSNR mea-
sure. We have highlighted some limitations of this PSNR-

Motivation
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Motivation
 	◦ Neural style transfer:1

1 L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer using convolutional neural networks. In Proceedings of the IEEE Conference on Computer Vision 
and Pattern Recognition (CVPR), June 2016.

D

B

F

A

C

E

Figure 3. Images that combine the content of a photograph with the style of several well-known artworks. The images were created by

finding an image that simultaneously matches the content representation of the photograph and the style representation of the artwork.

The original photograph depicting the Neckarfront in Tübingen, Germany, is shown in A (Photo: Andreas Praefcke). The painting that

provided the style for the respective generated image is shown in the bottom left corner of each panel. B The Shipwreck of the Minotaur

by J.M.W. Turner, 1805. C The Starry Night by Vincent van Gogh, 1889. D Der Schrei by Edvard Munch, 1893. E Femme nue assise by

Pablo Picasso, 1910. F Composition VII by Wassily Kandinsky, 1913.

2418
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Motivation
 	◦ Pretext task: inpainting of ran-
domly deleted image parts1

1 D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros. Context encod-
ers: Feature learning by inpainting. In Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition (CVPR), June 2016.
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Motivation
 	◦ Pretext task: predicting deleted color and gray scale 
channels1

1 R. Zhang, P. Isola, and A. A. Efros. Split-brain autoencoders: Unsupervised learning by cross-channel prediction. In Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition (CVPR), July 2017.
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Atmospheric data

 	◦ Wind field, vorticity, divergence, temperature, 
geopotential height, precipitation, ... 

 	◦ Image-like in grid representation 

 	› With usual issues but good starting point

 	◦ ERA5 provides well curated data set for training

 	› Contains effects we cannot model

 	› But unlabelled
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AtmoDist1

 	◦ Custom distance metric for vorticity + divergence 
(wind velocity vector field) 

1 S. Hoffmann and C. Lessig. Towards representation learning for atmospheric data. In NEURIPS 2021 Workshop on Climate Change (poster), 2021.
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AtmoDist1

 	◦ Custom distance metric for vorticity + divergence 
(wind velocity vector field) 

 	◦ GAN-based super-resolution / downscaling as  
validation application

 	› Recent work by Stengel et al.2 as baseline

1 S. Hoffmann and C. Lessig. Towards representation learning for atmospheric data. In NEURIPS 2021 Workshop on Climate Change (poster), 2021.
2 K. Stengel, A. Glaws, D. Hettinger, and R. N. King. Adversarial super-resolution of climatological wind and solar data. Proceedings of the National Acade-
my of Sciences, 117(29):16805–16815, 2020.
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1 D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros. Context encod-
ers: Feature learning by inpainting. In Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition (CVPR), June 2016.

AtmoDist

What pretext 
task can we use?
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AtmoDist: data

 	◦ ERA51 reanalysis 1979-2006

 	› Training: 1979-1998; Evaluation: 1999-2006 
(58,440 training slices and 17,536 evaluation ones)

1 Hersbach et al., The ERA5 global reanalysis, Quarterly Journal of the Royal Meteorological Society, 146 (730), 2020.
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AtmoDist: data

 	◦ ERA51 reanalysis 1979-2006

 	› Training: 1979-1998; Evaluation: 1999-2006 
(58,440 training slices and 17,536 evaluation ones)

 	› Vorticity and divergence

1 Hersbach et al., The ERA5 global reanalysis, Quarterly Journal of the Royal Meteorological Society, 146 (730), 2020.
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AtmoDist: data
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AtmoDist: data

 	◦ ERA51 reanalysis 1979-2006

 	› Training: 1979-1998; Evaluation: 1999-2006 
(58,440 training slices and 17,536 evaluation ones)

 	› Vorticity and divergence

 	› 1280 × 2560 grids sampled into 160 x 160 patches

1 Hersbach et al., The ERA5 global reanalysis, Quarterly Journal of the Royal Meteorological Society, 146 (730), 2020.
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AtmoDist: data

 	◦ ERA51 reanalysis 1979-2006

 	› Training: 1979-1998; Evaluation: 1999-2006 
(58,440 training slices and 17,536 evaluation ones)

 	› Vorticity and divergence

 	› 1280 × 2560 grids sampled into 160 x 160 patches

 	› One vertical layer (≈ 883 hPa)

1 Hersbach et al., The ERA5 global reanalysis, Quarterly Journal of the Royal Meteorological Society, 146 (730), 2020.
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AtmoDist: network
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AtmoDist: network
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AtmoDist: network
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AtmoDist: network
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AtmoDist: network
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AtmoDist: training

 	◦ 23 classes with max. time 
difference of 69 hours

 	◦ Pre-training with subset of 
data to improve conver-
gence
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AtmoDist: evaluation
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AtmoDist: evaluation
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AtmoDist: evaluation
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AtmoDist: evaluation
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AtmoDist: evaluation
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AtmoDist: evaluation
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 	◦ Objective: down-scaling / upsampling of coarse fields

 	◦ Comparison using and with the GAN of Stengel et al.1 

1 K. Stengel, A. Glaws, D. Hettinger, and R. N. King. Adversarial super-resolution of climatological wind and solar data. Proceedings of the National Acade-
my of Sciences, 117(29):16805–16815, 2020.

2 C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi. Photo-realistic single image su-
per-resolution using a generative adversarial network. In Proceedings of CVPR, July 2017.
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Super-resolution using AtmoDist

 	◦ Objective: down-scaling / upsampling of coarse fields

 	◦ Comparison using and with the GAN of Stengel et al.1 

 	› GAN is based on SRGAN2 for natural images

 	› Our content loss replaces mean squared error

 	› Only 4X super-resolution in our work

1 K. Stengel, A. Glaws, D. Hettinger, and R. N. King. Adversarial super-resolution of climatological wind and solar data. Proceedings of the National Acade-
my of Sciences, 117(29):16805–16815, 2020.

2 C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi. Photo-realistic single image su-
per-resolution using a generative adversarial network. In Proceedings of CVPR, July 2017.
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Super-resolution using AtmoDist
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Super-resolution using AtmoDist
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Super-resolution using AtmoDist
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Super-resolution using AtmoDist
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Super-resolution using AtmoDist

 	◦ Local statistics by averaging 
over super-resolution pre-
dictions for entire reanalysis 
data set

 	◦ 150 big cities as locations
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Super-resolution using AtmoDist

 	◦ Local statistics by averaging 
over super-resolution pre-
dictions for entire reanalysis 
data set

 	◦ 150 big cities as locations
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Super-resolution using AtmoDist
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Summary

 	◦ Custom loss functions for atmospheric data are possible 
and useful

 	› Prediction of time difference is an effective pretext task

 	› Applicable to wide range of data sets

 	◦ Super-resolution using AtmoDist improves quantitative 
and qualitative results

 	› Local statistics still need more work
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Outlook: applications

 	◦ Super-resolution / downscaling

 	› Larger amplification factor

 	› Adapted to local regions / specific phenomena

 	◦ Detection of atmospheric patterns

 	› Extreme events, blocking, ...

 	◦ Hybrid dynamical core for GCMs

 	◦ Applications directly addressing climate change
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Outlook: custom loss functons

 	◦ Other / more atmospheric fields 

 	› Separate dynamic variables and tracers?

 	› More vertical layers

 	◦ Transfer learning / refinement to local regions

 	› Train with only local data in a final training phase

 	◦ Shift in distribution (e.g. global warming)

 	› Parametrized model?
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 	◦ Un-/semi-supervised learning has significant potential 
for atmospheric data  
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Outlook: representation learning

 	◦ Un-/semi-supervised learning has significant potential 
for atmospheric data  

 	› Side-steps need for labelling of data

 	› Generically used for pre-training with natural images

 	◦ Integrate heterogeneous data sources

 	› Reanalysis and simulations

 	› High frequency, high resolution satellite data
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Outlook: theoretical foundations

 	◦ Theoretical integration of analytic models and machine 
learning

 	› E.g. predict effective network architecture

 	◦ Consistency, stability, and convergence for (hybrid) 
simulations

 	◦ Predict effectiveness of learning / data for climate  
dynamics
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AtmoDist: https://arxiv.org/abs/2109.09076
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