
1© Christian Lessig, 2022

Christian Lessig, Otto-von-Guericke-Universität Magdeburg

Representation learning 
for the Earth Sciences

scientific insight
improved applications



2© Christian Lessig, 2022

Motivation
 	◦ Large amounts of data available in the Earth sciences:

 	› ERA5: ≈6 PB 

 	› CMIP6: ≈100 PB

 	› MetOp-SG: 8 x 864 GB/day (80 Mbit/s)

 	› OCEAN5: ≈4 PB
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 	› ERA5: ≈6 PB 

 	› CMIP6: ≈100 PB

 	› MetOp-SG: 8 x 864 GB/day (80 Mbit/s)

 	› OCEAN5: ≈4 PB

 	◦ Observational or quasi-observational data with effects 
and phenomena not captured in, e.g.,	 analytic models

growing 
fast
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Motivation
 	◦ How to use this data for machine learning in the Earth 
sciences?

 	› Most data is unlabeled

 	› Super-computing infrastructure required for storing 
and processing

 	› Unclear how to ensure that learned models are  
physically consistent
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 	◦ Example: hurricane tracking

 	› Great importance for risk assess-
ment and climate projections

Motivation
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 	› NOAA HURDAT2 Atlantic hurricane 
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 	◦ Example: hurricane tracking

 	› Large importance for immediate   
effects and climate projections

 	› NOAA HURDAT2 Atlantic hurricane 
database: 6.5 MB 

Motivation

Can we use unlabeled ERA5 (or similar) to augment the 
very small amounts of labeled hurricane tracking data?
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Motivation
 	◦ Similar situation for other applications:

 	› Ozone and air pollution prediction

 	› Observations with missing data

 	› Classification of extreme events

 	› Prediction of extreme events

 	› ...
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Self-supervised representation learning

 	◦ Yoshua Bengio: “Humans develop representations and 
abstractions to enable problem-solving and reasoning; 
our computers should do the same.”1

 	◦ Yann LeCun: “Self-supervised learning: The dark matter 
of intelligence“2

1 http://www.iro.umontreal.ca/~bengioy/talks/icml2012-YB-tutorial.pdf 
2 https://ai.facebook.com/blog/self-supervised-learning-the-dark-matter-of-intelligence/
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Self-supervised representation learning

 	◦ Representation learning

 	› Learn a task-independent representation of the data 
in the feature space of the neural network 
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Visualizing and Understanding Convolutional Networks
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Figure 2. Visualization of features in a fully trained model. For layers 2-5 we show the top 9 activations in a random subset
of feature maps across the validation data, projected down to pixel space using our deconvolutional network approach.
Our reconstructions are not samples from the model: they are reconstructed patterns from the validation set that cause
high activations in a given feature map. For each feature map we also show the corresponding image patches. Note:
(i) the the strong grouping within each feature map, (ii) greater invariance at higher layers and (iii) exaggeration of
discriminative parts of the image, e.g. eyes and noses of dogs (layer 4, row 1, cols 1). Best viewed in electronic form.

From M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, editors, Computer 
Vision – ECCV 2014, pages 818–833, Cham, 2014. Springer International Publishing.

Self-supervised representation learning
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Self-supervised representation learning

 	◦ Representation learning

 	› Learn a task-independent representation of the data 
in the feature space of the neural network 

 	◦ Self-supervised training

 	› Train with “labels” intrinsic to the data 
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 	◦ Self-supervised pretext task: 

Self-supervised representation learning
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 	◦ Self-supervised pretext task: 
inpainting of randomly delet-
ed image parts1

1 D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros. Context encod-
ers: Feature learning by inpainting. In Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition (CVPR), June 2016.

Self-supervised representation learning



27© Christian Lessig, 2022

 	◦ Self-supervised pretext task: 
inpainting of randomly delet-
ed image parts1

1 D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros. Context encod-
ers: Feature learning by inpainting. In Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition (CVPR), June 2016.

Self-supervised representation learning



28© Christian Lessig, 2022

 	◦ Self-supervised pretext task: predicting deleted color 
and gray scale channels1

1 R. Zhang, P. Isola, and A. A. Efros. Split-brain autoencoders: Unsupervised learning by cross-channel prediction. In Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition (CVPR), July 2017.

Self-supervised representation learning
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Self-supervised representation learning

 	◦ BERT1

 	› Self-supervised representation learning for natural  
language processing (NLP)

 	› Very large transformer neural network with billions of 
parameters 

 	› Self-supervised training essentially only feasible op-
tion at this scale

1 J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep bidirectional transformers for language understanding, 2019.
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Self-supervised representation learning

 	◦ BERT1

Figure 1: Overall pre-training and fine-tuning procedures for BERT. Apart from output layers, the same architec-
tures are used in both pre-training and fine-tuning. The same pre-trained model parameters are used to initialize
models for different down-stream tasks. During fine-tuning, all parameters are fine-tuned. [CLS] is a special
symbol added in front of every input example, and [SEP] is a special separator token (e.g. separating ques-
tions/answers).

ing and auto-encoder objectives have been used
for pre-training such models (Howard and Ruder,
2018; Radford et al., 2018; Dai and Le, 2015).

2.3 Transfer Learning from Supervised Data

There has also been work showing effective trans-
fer from supervised tasks with large datasets, such
as natural language inference (Conneau et al.,
2017) and machine translation (McCann et al.,
2017). Computer vision research has also demon-
strated the importance of transfer learning from
large pre-trained models, where an effective recipe
is to fine-tune models pre-trained with Ima-
geNet (Deng et al., 2009; Yosinski et al., 2014).

3 BERT

We introduce BERT and its detailed implementa-
tion in this section. There are two steps in our
framework: pre-training and fine-tuning. Dur-
ing pre-training, the model is trained on unlabeled
data over different pre-training tasks. For fine-
tuning, the BERT model is first initialized with
the pre-trained parameters, and all of the param-
eters are fine-tuned using labeled data from the
downstream tasks. Each downstream task has sep-
arate fine-tuned models, even though they are ini-
tialized with the same pre-trained parameters. The
question-answering example in Figure 1 will serve
as a running example for this section.

A distinctive feature of BERT is its unified ar-
chitecture across different tasks. There is mini-

mal difference between the pre-trained architec-
ture and the final downstream architecture.

Model Architecture BERT’s model architec-
ture is a multi-layer bidirectional Transformer en-
coder based on the original implementation de-
scribed in Vaswani et al. (2017) and released in
the tensor2tensor library.1 Because the use
of Transformers has become common and our im-
plementation is almost identical to the original,
we will omit an exhaustive background descrip-
tion of the model architecture and refer readers to
Vaswani et al. (2017) as well as excellent guides
such as “The Annotated Transformer.”2

In this work, we denote the number of layers
(i.e., Transformer blocks) as L, the hidden size as
H , and the number of self-attention heads as A.3

We primarily report results on two model sizes:
BERTBASE (L=12, H=768, A=12, Total Param-
eters=110M) and BERTLARGE (L=24, H=1024,
A=16, Total Parameters=340M).

BERTBASE was chosen to have the same model
size as OpenAI GPT for comparison purposes.
Critically, however, the BERT Transformer uses
bidirectional self-attention, while the GPT Trans-
former uses constrained self-attention where every
token can only attend to context to its left.4

1https://github.com/tensorflow/tensor2tensor
2http://nlp.seas.harvard.edu/2018/04/03/attention.html
3In all cases we set the feed-forward/filter size to be 4H ,

i.e., 3072 for the H = 768 and 4096 for the H = 1024.
4We note that in the literature the bidirectional Trans-

1 J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep bidirectional transformers for language understanding, 2019.
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i.e., 3072 for the H = 768 and 4096 for the H = 1024.
4We note that in the literature the bidirectional Trans-

1 J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep bidirectional transformers for language understanding, 2019.

The sun was 
shining bright.
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for pre-training such models (Howard and Ruder,
2018; Radford et al., 2018; Dai and Le, 2015).
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Model Architecture BERT’s model architec-
ture is a multi-layer bidirectional Transformer en-
coder based on the original implementation de-
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of Transformers has become common and our im-
plementation is almost identical to the original,
we will omit an exhaustive background descrip-
tion of the model architecture and refer readers to
Vaswani et al. (2017) as well as excellent guides
such as “The Annotated Transformer.”2

In this work, we denote the number of layers
(i.e., Transformer blocks) as L, the hidden size as
H , and the number of self-attention heads as A.3

We primarily report results on two model sizes:
BERTBASE (L=12, H=768, A=12, Total Param-
eters=110M) and BERTLARGE (L=24, H=1024,
A=16, Total Parameters=340M).

BERTBASE was chosen to have the same model
size as OpenAI GPT for comparison purposes.
Critically, however, the BERT Transformer uses
bidirectional self-attention, while the GPT Trans-
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1https://github.com/tensorflow/tensor2tensor
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3In all cases we set the feed-forward/filter size to be 4H ,

i.e., 3072 for the H = 768 and 4096 for the H = 1024.
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1 J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep bidirectional transformers for language understanding, 2019.

The sun was 
shining bright.

Network predicts 
deleted word
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Figure 1: Overall pre-training and fine-tuning procedures for BERT. Apart from output layers, the same architec-
tures are used in both pre-training and fine-tuning. The same pre-trained model parameters are used to initialize
models for different down-stream tasks. During fine-tuning, all parameters are fine-tuned. [CLS] is a special
symbol added in front of every input example, and [SEP] is a special separator token (e.g. separating ques-
tions/answers).

ing and auto-encoder objectives have been used
for pre-training such models (Howard and Ruder,
2018; Radford et al., 2018; Dai and Le, 2015).

2.3 Transfer Learning from Supervised Data

There has also been work showing effective trans-
fer from supervised tasks with large datasets, such
as natural language inference (Conneau et al.,
2017) and machine translation (McCann et al.,
2017). Computer vision research has also demon-
strated the importance of transfer learning from
large pre-trained models, where an effective recipe
is to fine-tune models pre-trained with Ima-
geNet (Deng et al., 2009; Yosinski et al., 2014).

3 BERT

We introduce BERT and its detailed implementa-
tion in this section. There are two steps in our
framework: pre-training and fine-tuning. Dur-
ing pre-training, the model is trained on unlabeled
data over different pre-training tasks. For fine-
tuning, the BERT model is first initialized with
the pre-trained parameters, and all of the param-
eters are fine-tuned using labeled data from the
downstream tasks. Each downstream task has sep-
arate fine-tuned models, even though they are ini-
tialized with the same pre-trained parameters. The
question-answering example in Figure 1 will serve
as a running example for this section.

A distinctive feature of BERT is its unified ar-
chitecture across different tasks. There is mini-

mal difference between the pre-trained architec-
ture and the final downstream architecture.

Model Architecture BERT’s model architec-
ture is a multi-layer bidirectional Transformer en-
coder based on the original implementation de-
scribed in Vaswani et al. (2017) and released in
the tensor2tensor library.1 Because the use
of Transformers has become common and our im-
plementation is almost identical to the original,
we will omit an exhaustive background descrip-
tion of the model architecture and refer readers to
Vaswani et al. (2017) as well as excellent guides
such as “The Annotated Transformer.”2

In this work, we denote the number of layers
(i.e., Transformer blocks) as L, the hidden size as
H , and the number of self-attention heads as A.3

We primarily report results on two model sizes:
BERTBASE (L=12, H=768, A=12, Total Param-
eters=110M) and BERTLARGE (L=24, H=1024,
A=16, Total Parameters=340M).

BERTBASE was chosen to have the same model
size as OpenAI GPT for comparison purposes.
Critically, however, the BERT Transformer uses
bidirectional self-attention, while the GPT Trans-
former uses constrained self-attention where every
token can only attend to context to its left.4

1https://github.com/tensorflow/tensor2tensor
2http://nlp.seas.harvard.edu/2018/04/03/attention.html
3In all cases we set the feed-forward/filter size to be 4H ,

i.e., 3072 for the H = 768 and 4096 for the H = 1024.
4We note that in the literature the bidirectional Trans-

1 J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep bidirectional transformers for language understanding, 2019.

The sun was 
shining bright.

She is wearing 
a gray shirt

Network predicts 
deleted word

Network predicts 
deleted word
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Figure 1: Overall pre-training and fine-tuning procedures for BERT. Apart from output layers, the same architec-
tures are used in both pre-training and fine-tuning. The same pre-trained model parameters are used to initialize
models for different down-stream tasks. During fine-tuning, all parameters are fine-tuned. [CLS] is a special
symbol added in front of every input example, and [SEP] is a special separator token (e.g. separating ques-
tions/answers).

ing and auto-encoder objectives have been used
for pre-training such models (Howard and Ruder,
2018; Radford et al., 2018; Dai and Le, 2015).

2.3 Transfer Learning from Supervised Data

There has also been work showing effective trans-
fer from supervised tasks with large datasets, such
as natural language inference (Conneau et al.,
2017) and machine translation (McCann et al.,
2017). Computer vision research has also demon-
strated the importance of transfer learning from
large pre-trained models, where an effective recipe
is to fine-tune models pre-trained with Ima-
geNet (Deng et al., 2009; Yosinski et al., 2014).

3 BERT

We introduce BERT and its detailed implementa-
tion in this section. There are two steps in our
framework: pre-training and fine-tuning. Dur-
ing pre-training, the model is trained on unlabeled
data over different pre-training tasks. For fine-
tuning, the BERT model is first initialized with
the pre-trained parameters, and all of the param-
eters are fine-tuned using labeled data from the
downstream tasks. Each downstream task has sep-
arate fine-tuned models, even though they are ini-
tialized with the same pre-trained parameters. The
question-answering example in Figure 1 will serve
as a running example for this section.

A distinctive feature of BERT is its unified ar-
chitecture across different tasks. There is mini-

mal difference between the pre-trained architec-
ture and the final downstream architecture.

Model Architecture BERT’s model architec-
ture is a multi-layer bidirectional Transformer en-
coder based on the original implementation de-
scribed in Vaswani et al. (2017) and released in
the tensor2tensor library.1 Because the use
of Transformers has become common and our im-
plementation is almost identical to the original,
we will omit an exhaustive background descrip-
tion of the model architecture and refer readers to
Vaswani et al. (2017) as well as excellent guides
such as “The Annotated Transformer.”2

In this work, we denote the number of layers
(i.e., Transformer blocks) as L, the hidden size as
H , and the number of self-attention heads as A.3

We primarily report results on two model sizes:
BERTBASE (L=12, H=768, A=12, Total Param-
eters=110M) and BERTLARGE (L=24, H=1024,
A=16, Total Parameters=340M).

BERTBASE was chosen to have the same model
size as OpenAI GPT for comparison purposes.
Critically, however, the BERT Transformer uses
bidirectional self-attention, while the GPT Trans-
former uses constrained self-attention where every
token can only attend to context to its left.4

1https://github.com/tensorflow/tensor2tensor
2http://nlp.seas.harvard.edu/2018/04/03/attention.html
3In all cases we set the feed-forward/filter size to be 4H ,

i.e., 3072 for the H = 768 and 4096 for the H = 1024.
4We note that in the literature the bidirectional Trans-

1 J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep bidirectional transformers for language understanding, 2019.
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System Dev Test
EM F1 EM F1

Top Leaderboard Systems (Dec 10th, 2018)
Human - - 82.3 91.2
#1 Ensemble - nlnet - - 86.0 91.7
#2 Ensemble - QANet - - 84.5 90.5

Published
BiDAF+ELMo (Single) - 85.6 - 85.8
R.M. Reader (Ensemble) 81.2 87.9 82.3 88.5

Ours
BERTBASE (Single) 80.8 88.5 - -
BERTLARGE (Single) 84.1 90.9 - -
BERTLARGE (Ensemble) 85.8 91.8 - -
BERTLARGE (Sgl.+TriviaQA) 84.2 91.1 85.1 91.8

BERTLARGE (Ens.+TriviaQA) 86.2 92.2 87.4 93.2

Table 2: SQuAD 1.1 results. The BERT ensemble
is 7x systems which use different pre-training check-
points and fine-tuning seeds.

System Dev Test
EM F1 EM F1

Top Leaderboard Systems (Dec 10th, 2018)
Human 86.3 89.0 86.9 89.5
#1 Single - MIR-MRC (F-Net) - - 74.8 78.0
#2 Single - nlnet - - 74.2 77.1

Published
unet (Ensemble) - - 71.4 74.9
SLQA+ (Single) - 71.4 74.4

Ours
BERTLARGE (Single) 78.7 81.9 80.0 83.1

Table 3: SQuAD 2.0 results. We exclude entries that
use BERT as one of their components.

tuning data, we only lose 0.1-0.4 F1, still outper-
forming all existing systems by a wide margin.12

4.3 SQuAD v2.0

The SQuAD 2.0 task extends the SQuAD 1.1
problem definition by allowing for the possibility
that no short answer exists in the provided para-
graph, making the problem more realistic.

We use a simple approach to extend the SQuAD
v1.1 BERT model for this task. We treat ques-
tions that do not have an answer as having an an-
swer span with start and end at the [CLS] to-
ken. The probability space for the start and end
answer span positions is extended to include the
position of the [CLS] token. For prediction, we
compare the score of the no-answer span: snull =
S·C + E·C to the score of the best non-null span

12The TriviaQA data we used consists of paragraphs from
TriviaQA-Wiki formed of the first 400 tokens in documents,
that contain at least one of the provided possible answers.

System Dev Test

ESIM+GloVe 51.9 52.7
ESIM+ELMo 59.1 59.2
OpenAI GPT - 78.0

BERTBASE 81.6 -
BERTLARGE 86.6 86.3

Human (expert)† - 85.0
Human (5 annotations)† - 88.0

Table 4: SWAG Dev and Test accuracies. †Human per-
formance is measured with 100 samples, as reported in
the SWAG paper.

ˆsi,j = maxj�iS·Ti + E·Tj . We predict a non-null
answer when ˆsi,j > snull + ⌧ , where the thresh-
old ⌧ is selected on the dev set to maximize F1.
We did not use TriviaQA data for this model. We
fine-tuned for 2 epochs with a learning rate of 5e-5
and a batch size of 48.

The results compared to prior leaderboard en-
tries and top published work (Sun et al., 2018;
Wang et al., 2018b) are shown in Table 3, exclud-
ing systems that use BERT as one of their com-
ponents. We observe a +5.1 F1 improvement over
the previous best system.

4.4 SWAG

The Situations With Adversarial Generations
(SWAG) dataset contains 113k sentence-pair com-
pletion examples that evaluate grounded common-
sense inference (Zellers et al., 2018). Given a sen-
tence, the task is to choose the most plausible con-
tinuation among four choices.

When fine-tuning on the SWAG dataset, we
construct four input sequences, each containing
the concatenation of the given sentence (sentence
A) and a possible continuation (sentence B). The
only task-specific parameters introduced is a vec-
tor whose dot product with the [CLS] token rep-
resentation C denotes a score for each choice
which is normalized with a softmax layer.

We fine-tune the model for 3 epochs with a
learning rate of 2e-5 and a batch size of 16. Re-
sults are presented in Table 4. BERTLARGE out-
performs the authors’ baseline ESIM+ELMo sys-
tem by +27.1% and OpenAI GPT by 8.3%.

5 Ablation Studies

In this section, we perform ablation experiments
over a number of facets of BERT in order to better
understand their relative importance. Additional

Performance of fine-
tuned model on ques-
tion-answer benchmark
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Transformer neural networks
Published as a conference paper at ICLR 2021

Ours-JFT Ours-JFT Ours-I21k BiT-L Noisy Student
(ViT-H/14) (ViT-L/16) (ViT-L/16) (ResNet152x4) (EfficientNet-L2)

ImageNet 88.55± 0.04 87.76± 0.03 85.30± 0.02 87.54± 0.02 88.4/88.5⇤

ImageNet ReaL 90.72± 0.05 90.54± 0.03 88.62± 0.05 90.54 90.55
CIFAR-10 99.50± 0.06 99.42± 0.03 99.15± 0.03 99.37± 0.06 �
CIFAR-100 94.55± 0.04 93.90± 0.05 93.25± 0.05 93.51± 0.08 �
Oxford-IIIT Pets 97.56± 0.03 97.32± 0.11 94.67± 0.15 96.62± 0.23 �
Oxford Flowers-102 99.68± 0.02 99.74± 0.00 99.61± 0.02 99.63± 0.03 �
VTAB (19 tasks) 77.63± 0.23 76.28± 0.46 72.72± 0.21 76.29± 1.70 �
TPUv3-core-days 2.5k 0.68k 0.23k 9.9k 12.3k

Table 2: Comparison with state of the art on popular image classification benchmarks. We re-
port mean and standard deviation of the accuracies, averaged over three fine-tuning runs. Vision
Transformer models pre-trained on the JFT-300M dataset outperform ResNet-based baselines on all
datasets, while taking substantially less computational resources to pre-train. ViT pre-trained on the
smaller public ImageNet-21k dataset performs well too. ⇤Slightly improved 88.5% result reported
in Touvron et al. (2020).
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Figure 2: Breakdown of VTAB performance in Natural, Specialized, and Structured task groups.

model still took substantially less compute to pre-train than prior state of the art. However, we note
that pre-training efficiency may be affected not only by the architecture choice, but also other pa-
rameters, such as training schedule, optimizer, weight decay, etc. We provide a controlled study of
performance vs. compute for different architectures in Section 4.4. Finally, the ViT-L/16 model
pre-trained on the public ImageNet-21k dataset performs well on most datasets too, while taking
fewer resources to pre-train: it could be trained using a standard cloud TPUv3 with 8 cores in ap-
proximately 30 days.

Figure 2 decomposes the VTAB tasks into their respective groups, and compares to previous SOTA
methods on this benchmark: BiT, VIVI – a ResNet co-trained on ImageNet and Youtube (Tschannen
et al., 2020), and S4L – supervised plus semi-supervised learning on ImageNet (Zhai et al., 2019a).
ViT-H/14 outperforms BiT-R152x4, and other methods, on the Natural and Structured tasks. On the
Specialized the performance of the top two models is similar.

4.3 PRE-TRAINING DATA REQUIREMENTS

The Vision Transformer performs well when pre-trained on a large JFT-300M dataset. With fewer
inductive biases for vision than ResNets, how crucial is the dataset size? We perform two series of
experiments.

First, we pre-train ViT models on datasets of increasing size: ImageNet, ImageNet-21k, and JFT-
300M. To boost the performance on the smaller datasets, we optimize three basic regularization
parameters – weight decay, dropout, and label smoothing. Figure 3 shows the results after fine-
tuning to ImageNet (results on other datasets are shown in Table 5)2. When pre-trained on the
smallest dataset, ImageNet, ViT-Large models underperform compared to ViT-Base models, despite
(moderate) regularization. With ImageNet-21k pre-training, their performances are similar. Only
with JFT-300M, do we see the full benefit of larger models. Figure 3 also shows the performance

2Note that the ImageNet pre-trained models are also fine-tuned, but again on ImageNet. This is because the
resolution increase during fine-tuning improves the performance.

6

very large
transformer

large convolu-
tional network

1 A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houls-
by. An image is worth 16x16 words: Transformers for image recognition at scale. In International Conference on Learning Representations, 2021.
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46© Christian Lessig, 2022 Figure 1: Overall pre-training and fine-tuning procedures for BERT. Apart from output layers, the same architec-
tures are used in both pre-training and fine-tuning. The same pre-trained model parameters are used to initialize
models for different down-stream tasks. During fine-tuning, all parameters are fine-tuned. [CLS] is a special
symbol added in front of every input example, and [SEP] is a special separator token (e.g. separating ques-
tions/answers).

ing and auto-encoder objectives have been used
for pre-training such models (Howard and Ruder,
2018; Radford et al., 2018; Dai and Le, 2015).

2.3 Transfer Learning from Supervised Data

There has also been work showing effective trans-
fer from supervised tasks with large datasets, such
as natural language inference (Conneau et al.,
2017) and machine translation (McCann et al.,
2017). Computer vision research has also demon-
strated the importance of transfer learning from
large pre-trained models, where an effective recipe
is to fine-tune models pre-trained with Ima-
geNet (Deng et al., 2009; Yosinski et al., 2014).

3 BERT

We introduce BERT and its detailed implementa-
tion in this section. There are two steps in our
framework: pre-training and fine-tuning. Dur-
ing pre-training, the model is trained on unlabeled
data over different pre-training tasks. For fine-
tuning, the BERT model is first initialized with
the pre-trained parameters, and all of the param-
eters are fine-tuned using labeled data from the
downstream tasks. Each downstream task has sep-
arate fine-tuned models, even though they are ini-
tialized with the same pre-trained parameters. The
question-answering example in Figure 1 will serve
as a running example for this section.

A distinctive feature of BERT is its unified ar-
chitecture across different tasks. There is mini-

mal difference between the pre-trained architec-
ture and the final downstream architecture.

Model Architecture BERT’s model architec-
ture is a multi-layer bidirectional Transformer en-
coder based on the original implementation de-
scribed in Vaswani et al. (2017) and released in
the tensor2tensor library.1 Because the use
of Transformers has become common and our im-
plementation is almost identical to the original,
we will omit an exhaustive background descrip-
tion of the model architecture and refer readers to
Vaswani et al. (2017) as well as excellent guides
such as “The Annotated Transformer.”2

In this work, we denote the number of layers
(i.e., Transformer blocks) as L, the hidden size as
H , and the number of self-attention heads as A.3

We primarily report results on two model sizes:
BERTBASE (L=12, H=768, A=12, Total Param-
eters=110M) and BERTLARGE (L=24, H=1024,
A=16, Total Parameters=340M).

BERTBASE was chosen to have the same model
size as OpenAI GPT for comparison purposes.
Critically, however, the BERT Transformer uses
bidirectional self-attention, while the GPT Trans-
former uses constrained self-attention where every
token can only attend to context to its left.4

1https://github.com/tensorflow/tensor2tensor
2http://nlp.seas.harvard.edu/2018/04/03/attention.html
3In all cases we set the feed-forward/filter size to be 4H ,

i.e., 3072 for the H = 768 and 4096 for the H = 1024.
4We note that in the literature the bidirectional Trans-

The sun was 
shining bright.

She is wearing 
a gray shirt

Transformer neural networks

 	◦ BERT:



47© Christian Lessig, 2022

“The law will never be perfect, but its application should 
be just, this is what we are missing, in my opinion.”

Transformer neural networks

 	◦ BERT:



48© Christian Lessig, 2022

Transformer neural networks

Input-Input Layer5

The
Law
will
never
be
perfect
,
but
its
application
should
be
just
-
this
is
what
we
are
missing
,
in
my
opinion
.
<EOS>
<pad>

The
Law
will

never
be

perfect
,

but
its

application
should

be
just

-
this
is

what
we
are

missing
,

in
my

opinion
.

<EOS>
<pad>

Input-Input Layer5

The
Law
will
never
be
perfect
,
but
its
application
should
be
just
-
this
is
what
we
are
missing
,
in
my
opinion
.
<EOS>
<pad>

The
Law
will

never
be

perfect
,

but
its

application
should

be
just

-
this
is

what
we
are

missing
,

in
my

opinion
.

<EOS>
<pad>

Figure
5:

M
any

of
the

attention
heads

exhibitbehaviour
thatseem

s
related

to
the

structure
of

the
sentence.W

e
give

tw
o

such
exam

ples
above,from

tw
o

differentheads
from

the
encoderself-attention

atlayer5
of6.T

he
heads

clearly
learned

to
perform

differenttasks.

15

A. Vaswani, N. Shazeer, N. Parmar, J. Usz-
koreit, L. Jones, A. N. Gomez, L. Kaiser, and 
I. Polosukhin. Attention is all you need. In I. 
Guyon, U. V. Luxburg, S. Bengio, H. Wallach, 
R. Fergus, S. Vishwanathan, and R. Garnett, 
editors, Advances in Neural Information 
Processing Systems, volume 30. Curran As-
sociates, Inc., 2017.
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M. Caron, H. Touvron, I. Misra, H. Jegou, J. 
Mairal, P. Bojanowski, and A. Joulin. Emerg-
ing properties in self-supervised vision 
transformers. CoRR, abs/2104.14294, 2021.

Table 5: DAVIS 2017 Video object segmentation. We evaluate
the quality of frozen features on video instance tracking. We report
mean region similarity Jm and mean contour-based accuracy Fm.
We compare with existing self-supervised methods and a supervised
ViT-S/8 trained on ImageNet. Image resolution is 480p.

Method Data Arch. (J&F)m Jm Fm

Supervised

ImageNet INet ViT-S/8 66.0 63.9 68.1
STM [48] I/D/Y RN50 81.8 79.2 84.3

Self-supervised

CT [71] VLOG RN50 48.7 46.4 50.0
MAST [40] YT-VOS RN18 65.5 63.3 67.6
STC [37] Kinetics RN18 67.6 64.8 70.2
DINO INet ViT-S/16 61.8 60.2 63.4
DINO INet ViT-B/16 62.3 60.7 63.9
DINO INet ViT-S/8 69.9 66.6 73.1

DINO INet ViT-B/8 71.4 67.9 74.9

Figure 3: Attention maps from multiple heads. We consider
the heads from the last layer of a ViT-S/8 trained with DINO and
display the self-attention for [CLS] token query. Different heads,
materialized by different colors, focus on different locations that
represents different objects or parts (more examples in Appendix).

4.2.2 Discovering the semantic layout of scenes

As shown qualitatively in Figure 1, our self-attention maps
contain information about the segmentation of an image. In
this study, we measure this property on a standard benchmark
as well as by directly probing the quality of masks generated
from these attention maps.

Video instance segmentation. In Tab. 5, we evaluate the
output patch tokens on the DAVIS-2017 video instance seg-
mentation benchmark [52]. We follow the experimental pro-
tocol in Jabri et al. [37] and segment scenes with a nearest-
neighbor between consecutive frames; we thus do not train
any model on top of the features, nor finetune any weights
for the task. We observe in Tab. 5 that even though our
training objective nor our architecture are designed for dense
tasks, the performance is competitive on this benchmark.
Since the network is not finetuned, the output of the model
must have retained some spatial information. Finally, for
this dense recognition task, the variants with small patches
(“/8”) perform much better (+9.1% (J&F)m for ViT-B).

Probing the self-attention map. In Fig. 3, we show that
different heads can attend to different semantic regions of an
image, even when they are occluded (the bushes on the third
row) or small (the flag on the second row). Visualizations are
obtained with 480p images, resulting in sequences of 3601
tokens for ViT-S/8. In Fig. 4, we show that a supervised
ViT does not attend well to objects in presence of clutter
both qualitatively and quantitatively. We report the Jaccard
similarity between the ground truth and segmentation masks
obtained by thresholding the self-attention map to keep 60%
of the mass. Note that the self-attention maps are smooth
and not optimized to produce a mask. Nonetheless, we see
a clear difference between the supervised or DINO models
with a significant gap in terms of Jaccard similarities. Note
that self-supervised convnets also contain information about
segmentations but it requires dedicated methods to extract it
from their weights [31].

4.2.3 Transfer learning on downstream tasks

In Tab. 6, we evaluate the quality of the features pretrained
with DINO on different downstream tasks. We compare
with features from the same architectures trained with super-
vision on ImageNet. We follow the protocol used in Tou-
vron et al. [69] and finetune the features on each downstream
task. We observe that for ViT architectures, self-supervised
pretraining transfers better than features trained with su-
pervision, which is consistent with observations made on
convolutional networks [10, 33, 62]. Finally, self-supervised
pretraining greatly improves results on ImageNet (+1-2%).

5. Ablation Study of DINO

In this section, we empirically study DINO applied to
ViT. The model considered for this entire study is ViT-S. We
also refer the reader to Appendix for additional studies.

5.1. Importance of the Different Components

We show the impact of adding different components from
self-supervised learning on ViT trained with our framework.

 	◦ DINO (computer vision):
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Table 5: DAVIS 2017 Video object segmentation. We evaluate
the quality of frozen features on video instance tracking. We report
mean region similarity Jm and mean contour-based accuracy Fm.
We compare with existing self-supervised methods and a supervised
ViT-S/8 trained on ImageNet. Image resolution is 480p.

Method Data Arch. (J&F)m Jm Fm

Supervised

ImageNet INet ViT-S/8 66.0 63.9 68.1
STM [48] I/D/Y RN50 81.8 79.2 84.3

Self-supervised

CT [71] VLOG RN50 48.7 46.4 50.0
MAST [40] YT-VOS RN18 65.5 63.3 67.6
STC [37] Kinetics RN18 67.6 64.8 70.2
DINO INet ViT-S/16 61.8 60.2 63.4
DINO INet ViT-B/16 62.3 60.7 63.9
DINO INet ViT-S/8 69.9 66.6 73.1

DINO INet ViT-B/8 71.4 67.9 74.9

Figure 3: Attention maps from multiple heads. We consider
the heads from the last layer of a ViT-S/8 trained with DINO and
display the self-attention for [CLS] token query. Different heads,
materialized by different colors, focus on different locations that
represents different objects or parts (more examples in Appendix).

4.2.2 Discovering the semantic layout of scenes

As shown qualitatively in Figure 1, our self-attention maps
contain information about the segmentation of an image. In
this study, we measure this property on a standard benchmark
as well as by directly probing the quality of masks generated
from these attention maps.

Video instance segmentation. In Tab. 5, we evaluate the
output patch tokens on the DAVIS-2017 video instance seg-
mentation benchmark [52]. We follow the experimental pro-
tocol in Jabri et al. [37] and segment scenes with a nearest-
neighbor between consecutive frames; we thus do not train
any model on top of the features, nor finetune any weights
for the task. We observe in Tab. 5 that even though our
training objective nor our architecture are designed for dense
tasks, the performance is competitive on this benchmark.
Since the network is not finetuned, the output of the model
must have retained some spatial information. Finally, for
this dense recognition task, the variants with small patches
(“/8”) perform much better (+9.1% (J&F)m for ViT-B).

Probing the self-attention map. In Fig. 3, we show that
different heads can attend to different semantic regions of an
image, even when they are occluded (the bushes on the third
row) or small (the flag on the second row). Visualizations are
obtained with 480p images, resulting in sequences of 3601
tokens for ViT-S/8. In Fig. 4, we show that a supervised
ViT does not attend well to objects in presence of clutter
both qualitatively and quantitatively. We report the Jaccard
similarity between the ground truth and segmentation masks
obtained by thresholding the self-attention map to keep 60%
of the mass. Note that the self-attention maps are smooth
and not optimized to produce a mask. Nonetheless, we see
a clear difference between the supervised or DINO models
with a significant gap in terms of Jaccard similarities. Note
that self-supervised convnets also contain information about
segmentations but it requires dedicated methods to extract it
from their weights [31].

4.2.3 Transfer learning on downstream tasks

In Tab. 6, we evaluate the quality of the features pretrained
with DINO on different downstream tasks. We compare
with features from the same architectures trained with super-
vision on ImageNet. We follow the protocol used in Tou-
vron et al. [69] and finetune the features on each downstream
task. We observe that for ViT architectures, self-supervised
pretraining transfers better than features trained with su-
pervision, which is consistent with observations made on
convolutional networks [10, 33, 62]. Finally, self-supervised
pretraining greatly improves results on ImageNet (+1-2%).

5. Ablation Study of DINO

In this section, we empirically study DINO applied to
ViT. The model considered for this entire study is ViT-S. We
also refer the reader to Appendix for additional studies.

5.1. Importance of the Different Components

We show the impact of adding different components from
self-supervised learning on ViT trained with our framework.

 	◦ DINO (computer vision):
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Transformer neural networks

 	◦ Scale well to highly parallel training and billions of pa-
rameters, especially for sequential data

 	◦ Attention mechanism allows to model complex depen-
dencies in data

 	› Learned inner product in feature space with “legs” in 
input domain

 	› Direct interpretation of learned representations 
through attention maps
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How can we adapt these ideas to 
the Earth sciences?
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 	◦ Large amounts of data and growing fast:

 	› ERA5, OCEAN5, MetOp-SG, ...

 	› Unlabeled data 

 	› (Quasi-) observational data describing effects from 
the whole system

 	◦ Very limited amounts of labeled data for many appli-
cations

The facts
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AtmoDist

 	◦ Starting point:

 	› Good distance function is critical for many machine 
learning applications 

 	› Standard ones from mathematics are often of limited 
utility
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AtmoDist1

 	◦ Custom distance metric for vorticity + divergence (wind 
velocity vector field) 

 	◦ Application: GAN-based super-resolution/downscaling

 	› Recent work by Stengel et al.2 as baseline

1 S. Hoffmann and C. Lessig. Towards representation learning for atmospheric data. In NEURIPS 2021 Workshop on Climate Change (poster), 2021.
2 K. Stengel, A. Glaws, D. Hettinger, and R. N. King. Adversarial super-resolution of climatological wind and solar data. Proceedings of the National Acade-
my of Sciences, 117(29):16805–16815, 2020.
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AtmoDist

Compute distance 
there!

Feature space 
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 	◦ ERA51 provides well curated data set of (processed) at-
mospheric observations for training

 	› Vorticity and divergence

 	› One vertical layer (≈ 883 hPa)

 	› But unlabelled

AtmoDist

1 Hersbach et al., The ERA5 global reanalysis, Quarterly Journal of the Royal Meteorological Society, 146 (730), 2020.
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Super-resolution using AtmoDist

 	◦ Objective: down-scaling / upsampling of coarse fields
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Super-resolution using AtmoDist

 	◦ Objective: down-scaling / upsampling of coarse fields

 	◦ Comparison using and with the GAN of Stengel et al.1 

 	› Our content loss replaces mean squared error

1 K. Stengel, A. Glaws, D. Hettinger, and R. N. King. Adversarial super-resolution of climatological wind and solar data. Proceedings of the National Acade-
my of Sciences, 117(29):16805–16815, 2020.
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Super-resolution using AtmoDist
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Super-resolution using AtmoDist
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Super-resolution using AtmoDist

 	◦ Local statistics by averaging 
over super-resolution pre-
dictions for entire reanalysis 
data set

 	◦ 150 big cities as locations

Seattle
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A. Vaswani, N. Shazeer, N. Par-
mar, J. Uszkoreit, L. Jones, A. 
N. Gomez, L. Kaiser, and I. Po-
losukhin. Attention is all you 
need. In I. Guyon, U. V. Lux-
burg, S. Bengio, H. Wallach, R. 
Fergus, S. Vishwanathan, and R. 
Garnett, editors, Advances in 
Neural Information Processing 
Systems, volume 30. Curran As-
sociates, Inc., 2017.

M. Caron, H. Touvron, I. Mis-
ra, H. Jegou, J. Mairal, P. Bo-
janowski, and A. Joulin. Emerg-
ing properties in self-supervised 
vision transformers. CoRR, 
abs/2104.14294, 2021.

Table 5: DAVIS 2017 Video object segmentation. We evaluate
the quality of frozen features on video instance tracking. We report
mean region similarity Jm and mean contour-based accuracy Fm.
We compare with existing self-supervised methods and a supervised
ViT-S/8 trained on ImageNet. Image resolution is 480p.

Method Data Arch. (J&F)m Jm Fm

Supervised

ImageNet INet ViT-S/8 66.0 63.9 68.1
STM [48] I/D/Y RN50 81.8 79.2 84.3

Self-supervised

CT [71] VLOG RN50 48.7 46.4 50.0
MAST [40] YT-VOS RN18 65.5 63.3 67.6
STC [37] Kinetics RN18 67.6 64.8 70.2
DINO INet ViT-S/16 61.8 60.2 63.4
DINO INet ViT-B/16 62.3 60.7 63.9
DINO INet ViT-S/8 69.9 66.6 73.1

DINO INet ViT-B/8 71.4 67.9 74.9

Figure 3: Attention maps from multiple heads. We consider
the heads from the last layer of a ViT-S/8 trained with DINO and
display the self-attention for [CLS] token query. Different heads,
materialized by different colors, focus on different locations that
represents different objects or parts (more examples in Appendix).

4.2.2 Discovering the semantic layout of scenes

As shown qualitatively in Figure 1, our self-attention maps
contain information about the segmentation of an image. In
this study, we measure this property on a standard benchmark
as well as by directly probing the quality of masks generated
from these attention maps.

Video instance segmentation. In Tab. 5, we evaluate the
output patch tokens on the DAVIS-2017 video instance seg-
mentation benchmark [52]. We follow the experimental pro-
tocol in Jabri et al. [37] and segment scenes with a nearest-
neighbor between consecutive frames; we thus do not train
any model on top of the features, nor finetune any weights
for the task. We observe in Tab. 5 that even though our
training objective nor our architecture are designed for dense
tasks, the performance is competitive on this benchmark.
Since the network is not finetuned, the output of the model
must have retained some spatial information. Finally, for
this dense recognition task, the variants with small patches
(“/8”) perform much better (+9.1% (J&F)m for ViT-B).

Probing the self-attention map. In Fig. 3, we show that
different heads can attend to different semantic regions of an
image, even when they are occluded (the bushes on the third
row) or small (the flag on the second row). Visualizations are
obtained with 480p images, resulting in sequences of 3601
tokens for ViT-S/8. In Fig. 4, we show that a supervised
ViT does not attend well to objects in presence of clutter
both qualitatively and quantitatively. We report the Jaccard
similarity between the ground truth and segmentation masks
obtained by thresholding the self-attention map to keep 60%
of the mass. Note that the self-attention maps are smooth
and not optimized to produce a mask. Nonetheless, we see
a clear difference between the supervised or DINO models
with a significant gap in terms of Jaccard similarities. Note
that self-supervised convnets also contain information about
segmentations but it requires dedicated methods to extract it
from their weights [31].

4.2.3 Transfer learning on downstream tasks

In Tab. 6, we evaluate the quality of the features pretrained
with DINO on different downstream tasks. We compare
with features from the same architectures trained with super-
vision on ImageNet. We follow the protocol used in Tou-
vron et al. [69] and finetune the features on each downstream
task. We observe that for ViT architectures, self-supervised
pretraining transfers better than features trained with su-
pervision, which is consistent with observations made on
convolutional networks [10, 33, 62]. Finally, self-supervised
pretraining greatly improves results on ImageNet (+1-2%).

5. Ablation Study of DINO

In this section, we empirically study DINO applied to
ViT. The model considered for this entire study is ViT-S. We
also refer the reader to Appendix for additional studies.

5.1. Importance of the Different Components

We show the impact of adding different components from
self-supervised learning on ViT trained with our framework.
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Fluid flow
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Physics and Learning?

Scientific machine learning: 
use constraints from known 
models (e.g. symmetries) in 
the machine learning model

Observational data: avoid the 
(inductive) biases and con-
straints we have in analytic 
models in the learning

Attention maps:

 	◦ ensure physical validity of 
learned models

 	◦ understand physical systems?
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my opinion) great potential in the Earth sciences

 	› Large amounts of unlabeled data (and fast growing)

 	› Labeled data is scarce and difficult to obtain
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Summary

 	◦ Self-supervised representation learning offers (in      
my opinion) great potential in the Earth sciences

 	› Large amounts of unlabeled data (and fast growing)

 	› Labeled data is scarce and difficult to obtain

 	◦ Representation learning has the potential to provide 
new insights into spatio-temporal interactions
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Self-supervised representation learning

 	◦ DINO1

 	› Self-supervised representation learning for computer 
vision tasks 

 	› Vision transformer as neural network

 	› Training with unlabeled ImageNet dataset

 	› Student-teacher training with virtual prediction task

1 M. Caron, H. Touvron, I. Misra, H. Jegou, J. Mairal, P. Bojanowski, and A. Joulin. Emerging properties in self-supervised vision transformers. CoRR, 2021.
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Self-supervised representation learning

 	◦ DINO1

1 M. Caron, H. Touvron, I. Misra, H. Jegou, J. Mairal, P. Bojanowski, and A. Joulin. Emerging properties in self-supervised vision transformers. CoRR, 2021.

Supervised

DINO

Random Supervised DINO

ViT-S/16 22.0 27.3 45.9
ViT-S/8 21.8 23.7 44.7

Figure 4: Segmentations from supervised versus DINO. We vi-
sualize masks obtained by thresholding the self-attention maps to
keep 60% of the mass. On top, we show the resulting masks for
a ViT-S/8 trained with supervision and DINO. We show the best
head for both models. The table at the bottom compares the Jac-
card similarity between the ground truth and these masks on the
validation images of PASCAL VOC12 dataset.

Table 6: Transfer learning by finetuning pretrained models on

different datasets. We report top-1 accuracy. Self-supervised
pretraining with DINO transfers better than supervised pretraining.

Cifar10 Cifar100 INat18 INat19 Flwrs Cars INet

ViT-S/16

Sup. [69] 99.0 89.5 70.7 76.6 98.2 92.1 79.9
DINO 99.0 90.5 72.0 78.2 98.5 93.0 81.5

ViT-B/16

Sup. [69] 99.0 90.8 73.2 77.7 98.4 92.1 81.8
DINO 99.1 91.7 72.6 78.6 98.8 93.0 82.8

In Table 7, we report different model variants as we add
or remove components. First, we observe that in the absence
of momentum, our framework does not work (row 2) and
more advanced operations, SK for example, are required to
avoid collapse (row 9). However, with momentum, using
SK has little impact (row 3). In addtition, comparing rows 3
and 9 highlights the importance of the momentum encoder
for performance. Second, in rows 4 and 5, we observe that
multi-crop training and the cross-entropy loss in DINO are
important components to obtain good features. We also ob-
serve that adding a predictor to the student network has little
impact (row 6) while it is critical in BYOL to prevent col-
lapse [16, 30]. For completeness, we propose in Appendix B
an extended version of this ablation study.

Importance of the patch size. In Fig. 5, we compare the
k-NN classification performance of ViT-S models trained

Table 7: Important component for self-supervised ViT pre-

training. Models are trained for 300 epochs with ViT-S/16. We
study the different components that matter for the k-NN and linear
(“Lin.”) evaluations. For the different variants, we highlight the
differences from the default DINO setting. The best combination
is the momentum encoder with the multicrop augmentation and
the cross-entropy loss. We also report results with BYOL [30],
MoCo-v2 [15] and SwAV [10].

Method Mom. SK MC Loss Pred. k-NN Lin.

1 DINO X 7 X CE 7 72.8 76.1
2 7 7 X CE 7 0.1 0.1
3 X X X CE 7 72.2 76.0
4 X 7 7 CE 7 67.9 72.5
5 X 7 X MSE 7 52.6 62.4
6 X 7 X CE X 71.8 75.6

7 BYOL X 7 7 MSE X 66.6 71.4
8 MoCov2 X 7 7 INCE 7 62.0 71.6
9 SwAV 7 X X CE 7 64.7 71.8

SK: Sinkhorn-Knopp, MC: Multi-Crop, Pred.: Predictor
CE: Cross-Entropy, MSE: Mean Square Error, INCE: InfoNCE

Figure 5: Effect of

Patch Size. k-NN eval-
uation as a function of
the throughputs for dif-
ferent input patch sizes
with ViT-B and ViT-S.
Models are trained for
300 epochs.

with different patch sizes, 16 ⇥ 16, 8 ⇥ 8 and 5 ⇥ 5. We
also compare to ViT-B with 16⇥ 16 and 8⇥ 8 patches. All
the models are trained for 300 epochs. We observe that the
performance greatly improves as we decrease the size of the
patch. It is interesting to see that performance can be greatly
improved without adding additional parameters. However,
the performance gain from using smaller patches comes at
the expense of throughput: when using 5⇥5 patches, the
throughput falls to 44 im/s, vs 180 im/s for 8⇥8 patches.

5.2. Impact of the choice of Teacher Network

In this ablation, we experiment with different teacher
network to understand its role in DINO. We compare models
trained for 300 epochs using the k-NN protocol.

Building different teachers from the student. In
Fig. 6(right), we compare different strategies to build the
teacher from previous instances of the student besides the

Performance of fine-
tuned model on classi-
fication
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AtmoDist: network
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