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Example applications
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Can we train one neural network model that encapsulates all Earth system dynamics by
self-supervised training on large amounts of spatio-temporal observations?

Motivation Benefits
 Availability of petabytes of unlabelled observational and e Pre-trained network can be used with small computational
quasi-observational data costs for a wide range of applications
— Data contains critical information, e.g. about unresolved — Highly compact representation of ERAS with O(GB)
process and their feedbacks to coarser scales — Better accuracy than directly training for application
o Self-supervised, large scale representation learning allows — Amortize training costs on very large data sets

one to make use of this data and amortizes training costs — Weather forecasting, climate projections, downscaling, ...

— Methodology has led to breakthroughs in natural lan-
guage processing and computer vision (e.g. GPT-3)

» Possible new scientific insights by accessing the spatio-tem-
poral interactions encoded in the network (e.g. attention)

Proot-of-concept: train one transformer neural network on O(TB) of ERAS reanalysis data

Multiformer Training
e Transformer-based architecture Self-supervised training with spa-  Training with ensemble of tail networks to learn
— Scales well to very large datasets tio-temporal extension of BERT statistical representation of quasi-chaotic atmo-
— Local network applied to neigh-  masked language model: spheric dynamics and improve training behaviour:

bourhood in space-time
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Results for vorticity, 975 hPa, 0.25° (smoothed with 5x5 box filter)
Example for predictions Ensemble loss Zero-shot forecasting performance
Prediction I_Drediction per grid point (linearized) MSE test loss error error
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