

# Applying Ray Tracing Based Reconstruction to Particle Image Velocimetry Measurements of Gaseous Flow in Packed Beds

C. Velten<sup>1\*,</sup> M. Ebert<sup>2</sup>, C. Lessig<sup>2</sup> and K. Zähringer<sup>1</sup>

\*christin.velten@ovgu.de

<sup>1</sup> Laboratory of Fluid Dynamics and Technical Flows, University of Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany

<sup>2</sup> Department of Computer Science, University of Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany





#### Introduction

# Flow field measurement in packed beds

- Gaseous flow strongly impacts on processes inside packed beds: heat and mass transfer, turbulence
- Intrusive measurement methods change the flow field



#### Introduction

# Flow field measurement in packed beds

- Gaseous flow strongly impacts on processes inside packed beds: heat and mass transfer, turbulence
- Intrusive measurement methods change the flow field
- Transparent geometries for optical measurement techniques introduce distortions
  - → Incorrect results e.g. for velocity calculation via PIV



RUHR UNIVERSITÄT BOCHUM



#### Introduction

# Flow field measurement in packed beds

- Gaseous flow strongly impacts on processes inside packed beds: heat and mass transfer, turbulence
- Intrusive measurement methods change the flow field
- Transparent geometries for optical measurement techniques introduce distortions
  - → Incorrect results e.g. for velocity calculation via PIV
    - Solution: correct distorted particle images using ray tracing
    - Application to more complex measurement setting



## **Experimental Setup**



#### **Bulk Reactor**

- Optical access through transparent material (acrylic glass and N-BK7 40mm spheres as packing material)
- Body centred cubic packing (bcc)
- Flow inlet conditions defined by a diffusor, honeycombs, irregular 4mm glass sphere packing and a 4mm hole pattern



## **Experimental Setup**



## **PIV Setup**

R - Bulk reactor (bcc) M – Mirror

C - Imager LX 8M camera O - Light sheet optics

L - Nd:YAG PIV-laser

T - 3D-traversing unit DEHS tracer







## Image Acquisition - Calibration



Calibration target Type 106-10 from LaVision

## **Calibration Image**

 Commercial calibration target in the measurement plane for calculation of initial pinhole calibration parameters



Ray tracing reference image



ArUco Marker

## Ray Tracing Reference Images

- Custom made target
   (checkerboard pattern/ ArUco marker) in background and measurement plane
- Allows for pose estimation and optical verification of simulation setup





## **Calibration**

## Calibration

- Best results when using a combination of commercial software (DaVis) and OpenCV library:
  - Commercial calibration target to determine focal length and optical centre
  - Ray tracing reference target for distortion parameters and pose estimation (orientation)



All Parameters known to simulate the 3D scene



Marker detection on the ray tracing reference target



# **Sanity Check**







Captured image



## Good Agreement between simulation and acquired image





## **Image Acquisition - Particle Fields**

## Tracer Particle Field Images

- Double frame images of tracer particles in the flow illuminated in the measurement plane behind two spheres by a light sheet
  - Distortion effects behind the spheres are clearly visible



Apply correction to the particle fields



Particle field image (one frame)



## Ray Tracing Based Reconstruction – Image Correction



Principle of the ray tracing based reconstruction – forward pass

## **Image Correction**

- Reconstruct light field on the investigation plane
- Use ray differentials as weighting for samples



## Ray Tracing Based Reconstruction – Image Correction



Principle of the ray tracing based reconstruction – backward pass

## **Image Correction**

- Reconstruct light field on the investigation plane
- Use ray differentials as weighting for samples
- Backward ray tracing step to remove distortions





# Ray Tracing Based Reconstruction – Image Correction



Image Correction



Corrected particle field image (one frame)

Particle field image (one frame)



#### **Vector Field Calculation**

## **Processing**

- Reimport of corrected images to PIV-software (DaVis)
- Application of masks and time filters to remove areas where no evaluation is possible (reflections, no measurement signal, no reconstruction)
- Vector field calculation by a classical cross-correlation method with decreasing interrogation windows, 50% overlap and post processing



Averaged flow field of the main velocity component above 17 layers of spheres for particle Reynolds number 200 to 500 after ray tracing based reconstruction







#### **Validation**



#### Results

- No significant influence of the correction on the results for the freeboard flow
  - Averaged relative differences between uncorrected and corrected freeboard flow results do not exceed 0.08%, especially in the rim region, due to incorrect mask function
- Distorted region is corrected and matches well the freeboard flow
- Perspective applied to centred sphere allows for correction of rim region



#### **Conclusion and Outlook**

#### Conclusion

- Application of ray tracing PIV on the surface of a bcc spherical packing
- Presentation of a complete correction routine
- Extension of previously used correction method
- Successful validation by comparison between the flow field of the free board and distorted regions behind the top layer spheres

#### **Outlook**

- Application of the method to volumetric measurement techniques
- Access to the interstices inside the packed bed
- Investigation of perspective to recover highly distorted regions
- Further optimization and enhancement of the ray tracing based correction routine





## Thank you for your attention!

• "Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project-ID 422037413 – TRR 287"

