How many rays do we need?

Christian Lessig
Otto-von-Guericke-Universitat Magdeburg

Objective

© Christian Lessig, 2016

Objective

v ©

O

*

Rectilinear transport in
known scene

© Christian Lessig, 2016

Objective

Rectilinear transport in
known scene

© Christian Lessig, 2016

Objective

feHC Ly,dim(H) < oo

Rectilinear transport in
known scene

© Christian Lessig, 2016

Objective

G

(close-to-) optimal for

N\

J =TIl <e

feHC Ly,dim(H) < oo

Rectilinear transport in
known scene

© Christian Lessig, 2016

Objective

G

minimal # of rays for

N\

J =TIl <e

feHC Ly,dim(H) < oo

Rectilinear transport in
known scene

© Christian Lessig, 2016

Objective

G
minimal # of rays for
f-fllsN®

feHC Ly,dim(H) < oo

Rectilinear transport in
known scene

© Christian Lessig, 2016

Objective

G

, minimal # of rays for
- f-fl SN

o Superresolution

o Progressive

o Varying resolution
o Parallelizable

feHC Ly,dim(H) < oo

Rectilinear transport in
known scene

© Christian Lessig, 2016

Plan of attack

1. What's the cost of the last bounce?

2. But what has this to do with sampling?
3. And what about the function space?

4. How many rays do we need?

5. What has all of this to do with deep learning?

© Christian Lessig, 2016

What's the cost of the last bounce?

C=N-C,
[\

Number of Cost per
pixels pixel

© Christian Lessig, 2016

© Christian Lessig, 2016

Number of “pixels”

12

© Christian Lessig, 2016

Number of “pixels”

compression

13

© Christian Lessig, 2016

Number of “pixels”

100%

compression

€..; = 6.44 x 10~*

8.48%

14

© Christian Lessig, 2016

Number of “pixels”

100%

compression

15

© Christian Lessig, 2016

Number of “

100%

DIXE

|SII

compression

wavelets (quasi)
curvelets
shearlets
contourlets

f—f

SN

16

Number of “pixels”

Number of “pixels”

© Christian Lessig, 2016

Number of “pixels”

© Christian Lessig, 2016

Number of “pixels”

© Christian Lessig, 2016

Number of “pixels”

© Christian Lessig, 2016

Number of “pixels”

© Christian Lessig, 2016

Number of “pixels”

© Christian Lessig, 2016

Number of “pixels”

Hierarchical:
progressive

© Christian Lessig, 2016

Number of “pixels”

Locality: varying resolution Hierarchical:
progressive

© Christian Lessig, 2016

Number of “pixels”

108 3

X— #pixels

- X— #nnz coeffs
107 3
106 3
10° F
10* 3

¢ e
102 | | | | |
256 512 1024 2048 4096

© Christian Lessig, 2016

Number of “pixels”

108 3

X— #pixels

- X— #nnz coeffs
107 3
106 3
10° F
ot super-resolution

¢ e
102 | | | | |
256 5H12 1024 2048 4096

© Christian Lessig, 2016

© Christian Lessig, 2016

Number of

1]

DIXE

s

XK

X

XK

#pixels
#nnz indoor
#nnz foliage

super-resolution

206 512 1024

2048

4096

28

Number of “pixels”

© Christian Lessig, 2016

Number of “pixels”

© Christian Lessig, 2016

Number of “pixels”

Bj """"""
depends on

image function

Computational costs

C=N-C,
[\

Number of Cost per
“pixels” pixel

© Christian Lessig, 2016

© Christian Lessig, 2016

Computational costs

C=N-C,
[

Number of
"pixels”

- Use sparse, adaptive
Image representation

\

Cost per
pixel

minimize by

33

Cost per “pixel”

© Christian Lessig, 2016

Cost per “pixel”

© Christian Lessig, 2016

Cost per “pixel”

© Christian Lessig, 2016

Cost per “pixel”

© Christian Lessig, 2016

Cost per “pixel”

© Christian Lessig, 2016

Cost per “pixel”

Cost per “pixel”

© Christian Lessig, 2016

Cost per “pixel”

© Christian Lessig, 2016

Cost per “pixel”

Cost per “pixel”

Cost per “pixel”

> fidi(z)
1€L
gbg.(.a;l) (f:1
bn1(Tm) Gnlam)) NI
~—~
i

Cost per “pixel”

© Christian Lessig, 2016

Cost per “pixel”

© Christian Lessig, 2016

Cost per “pixel”

pseudo
Inverse

© Christian Lessig, 2016

Cost per “pixel”

Example: pixel basis

O1(r1) @2(x1)

Cost per “pixel”

Example: pixel basis

xi1(r1) xo(z1)

Xn—1(Tm)

Xn(Tm)

Cost per “pixel”

Example: pixel basis

T —

o O

Cost per “pixel”

Example: pixel basis

Cost per “pixel”

Example: pixel basis

Cost per “pixel”

Example: pixel basis

/N, 1/N, ...
1/Ny 1/N,

/N, 1/N,

Cost per “pixel”

Example: pixel basis

1/N, 1/N,

1/N,

1/N,

Cost per “pixel”

Example: wavelet basis

V1(w1) Yo

Cost per “pixel”

Example: wavelet basis

© Christian Lessig, 2016

Cost per “pixel”

Example: wavelet basis

© Christian Lessig, 2016

© Christian Lessig, 2016

Cost per “pixel”

Example: wavelet basis

Multi-res structure: can be solved in O(n) time using multi-grid.

58

© Christian Lessig, 2016

Cost per “pixel”

Example: wavelet basis

Multi-res structure: can be solved in time using multi-grid.

optimal

59

What's the cost of the last bounce?

C=N-C,
[

\
Number of Cost per
“pixels” pixel

minimize by

- Use sparse, adaptive
Image representation

© Christian Lessig, 2016

© Christian Lessig, 2016

What's the cost of the last bounce?

C=N-C,
[

\
Number of Cost per
“pixels” pixel

minimize by

> Use sparse, adaptive o Use at least n samples
Image representation > Solve using multi-grio

61

But what has this to do with sampling?

(1} ew

© Christian Lessig, 2016

But what has this to do with sampling?

(1} ew

© Christian Lessig, 2016

But what has this to do with sampling?

© Christian Lessig, 2016

But what has this to do with sampling?

{f(%:)}

|
"\
%
=
N\
~h
N—
H/_/

But what has this to do with sampling?

But what has this to do with sampling?

But what has this to do with sampling?

f(x) = Lout ()

0. is a continuous functional

© Christian Lessig, 2016

But what has this to do with sampling?

f(x) = Lous ()

0. is a continuous functional

© Christian Lessig, 2016

Reproducing kernel Hilbert spaces

H(X) is Hilbert and ¢, (f) continuous, then

© Christian Lessig, 2016

Reproducing kernel Hilbert spaces

H(X) is Hilbert and ¢, (f) continuous, then

Vi € X, Ika(z) € H(X) - <km(m), f(x)> — (%)

Reproducing kernel Hilbert spaces

H(X) is Hilbert and ¢, (f) continuous, then

Vi € X, Ika(z) € H(X) - km‘(az), f(x)> — (%)

reproducing kernel

© Christian Lessig, 2016

© Christian Lessig, 2016

Example: H([—1,1]) = span,,_;...y{ Pn(x) }

1.9 F

0.5 1

-0.5 -
A=

/3

© Christian Lessig, 2016

Example: H([—1,1]) = span,,_;...y{ Pn(x) }

-1 08 -06 -04 -02 0 02 04 06

I
0.8

Example: H([—1,1]) = span,,_;...y{ Pn(x) }

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

© Christian Lessig, 2016

Example: H([—1,1]) = span,,_;...y{ Pn(x) }

2.5

1.9 F

0.5 1

-0.5

-1.5

© Christian Lessig, 2016

Example: H([—1,1]) = span,,_;...y{ Pn(x) }

2.5
1.9 F

0.5 1

-0.5

-1.5

© Christian Lessig, 2016

I
0.8

© Christian Lessig, 2016

Example: H([—1,1]) = span,,_;...y{ Pn(x) }

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

0.8

© Christian Lessig, 2016

Example: H([—1,1]) = span,,_;...y{ Pn(x) }

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

0.8

© Christian Lessig, 2016

Example: H([—1,1]) = span,,_;...y{ Pn(x) }

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

0.8

Reproducing kernel Hilbert spaces

H(X) is Hilbert and ¢, (f) continuous, then

Vi € X, Ika(z) € H(X) - <km(m), f(x)> — (%)

Reproducing kernel Hilbert spaces

H(X) is Hilbert and ¢, (f) continuous, then

o e X B € HX) ¢ (k@) 1) = F(@

© Christian Lessig, 2016

Reproducing kernel Hilbert spaces

| et {)\Z}, A€ X

© Christian Lessig, 2016

Reproducing kernel Hilbert spaces

| et {)\Z}, A€ X s, t.

span(ky, (z)) = H(X)

© Christi

an Lessig, 2016

Example: H([—1,1]) = span,,_;...y{ Pn(x) }

2.0-
1.0-
| X | X | | X |
1 0.8 0.6 -0.4 02 O 0.2 0.4 0.6 0.8
-1.0-

-2.0-

85

© Christian Lessig, 2016

Example: H([—1,1]) = span,,_;...y{ Pn(x) }

2.0-

1.0-

| g : X
- -0.8 -0.6 -0.4 -0. . 0.4 0.6
-1.0-

-2.0-

0.8

|\

Reproducing kernel Hilbert spaces

| et {)\Z}, A€ X s, t.

span(ky, (z)) = H(X)

Reproducing kernel Hilbert spaces

| et {)\Z}, A€ X s, t.

span(ky, (z)) = H(X)

spanning set

© Christian Lessig, 2016

Reproducing kernel Hilbert spaces

| et {)\Z}, A€ X s, t.

span(ky, (z)) = H(X)

spanning set

© Christian Lessig, 2016

Reproducing kernel Hilbert spaces

| et {)\Z}, A€ X s, t.

span(ky, (z)) = H(X)

spanning set

© Christian Lessig, 2016

Reproducing kernel Hilbert spaces

| et {)\Z}, A€ X s, t.

span(ky, (z)) = H(X)

Nno spanning set

© Christian Lessig, 2016

© Christian Lessig, 2016

Example: H([—1,1]) = span,,_;...y{ Pn(x) }

2.0-

1.0-

| g : X
- -0.8 -0.6 -0.4 -0. . 0.4 0.6
-1.0-

-2.0-

0.8

|\

© Christi

an Lessig, 2016

Example: H([—1,1]) = span,,_;...y{ Pn(x) }

2.0-
1.0-
| | X | X | | \>< | |
-1 -0.8 -0.6 -0.4 -02 O 0.2 0.4 0.6 0.8
-1.0-

-2.0-

93

© Christian Lessig, 2016

Example: H([—1,1]) = span,,_;...y{ Pn(x) }

Reproducing kernel Hilbert spaces

| et {)\Z}, A€ X s, t.

span(ky, (z)) = H(X)

Reproducing kernel Hilbert spaces

| et {)\Z}, A€ X s, t.

span(ky, (z)) = H(X)

!

1kx: ()} forms a basis / frame for H(X)

Reproducing kernel Hilbert spaces

| et {)\Z}, A€ X s, t.

span(ky, (z)) = H(X)

!

1kx: ()} forms a basis / frame for H(X)

f@) =Y fika,(a)

© Christian Lessig, 2016

Reproducing kernel Hilbert spaces

1.5

'1 -

0.5 F

0 -

-0.5

-1 F

-1.5

-0.5

0.5

Reproducing kernel Hilbert spaces

1.5

il A

0.5 F

2
| -~ v = Z{v, e;) €
i=1

-0.5

-1 F

-1.5

© Christian Lessig, 2016

Reproducing kernel Hilbert spaces

1.5
1 L
0.5 -
2
1=1
-0.5 -
1+
-1.5

© Christian Lessig, 2016

Reproducing kernel Hilbert spaces

1.5
i
0.5 F

2
o| v = Z(v, 7)) uy
os) / i=1
15

© Christian Lessig, 2016

Reproducing kernel Hilbert spaces

1.5
'1 |
0.5 N
- \ 2
0 - T —)] . :
- 0= Y 0w
1=1
-0.5 |
-1 +
1.5

© Christian Lessig, 2016

© Christian Lessig, 2016

Example: H([—1,1]) = span,,_;...y{ Pn(x) }

2.0-

1.0-

| g : X
- -0.8 -0.6 -0.4 -0. . 0.4 0.6
-1.0-

-2.0-

0.8

|\

Example: H([—1,1]) = span,,_;...y{ Pn(x) }

1.9 F

0.5 1

-0.5

© Christian Lessig, 2016 104

Reproducing kernel Hilbert spaces

1.5
'1 |
0.5 N
- \ 2
0 - T —)] . :
- 0= Y 0w
1=1
-0.5 |
-1 +
1.5

© Christian Lessig, 2016

Reproducing kernel Hilbert spaces

1.5
'1 |
0.5 N
- \ 2
0 - T — :)] .
- 0= Y0, w)
1=1
-0.5 |
-1 +
1.5

© Christian Lessig, 2016

Reproducing kernel Hilbert spaces

Let { N}, A € X s. t. 1kx, ()} forms a basis / frame for H(X)

flz) = Zf Ex (2)

Reproducing kernel Hilbert spaces

Let { N}, A € X s. t. 1kx, ()} forms a basis / frame for H(X)

Reproducing kernel Hilbert spaces

Let { N}, A € X s. t. 1kx, ()} forms a basis / frame for H(X)

Reproducing kernel Hilbert spaces

Let { N}, A € X s. t. 1kx, ()} forms a basis / frame for H(X)

Reproducing kernel Hilbert spaces

Let { N}, A € X s. t. 1kx, ()} forms a basis / frame for H(X)

Reproducing kernel Hilbert spaces

Let { N}, A € X s. t. 1kx, ()} forms a basis / frame for H(X)

Reproducing kernel Hilbert spaces

Let { N}, A € X s. t. 1kx, ()} forms a basis / frame for H(X)

fx) = Z f(\) k()

Reproducing kernel Hilbert spaces

Let { N}, A € X s. t. 1kx, ()} forms a basis / frame for H(X)

fx) = Z f(\) k()

reproducing kernel frame

Reproducing kernel Hilbert spaces

Let { N}, A € X s. t. 1kx, ()} forms a basis / frame for H(X)

fx) = Z f(N\) ki(z)

reproducing kernel frame <> sampling theorem

© Christian Lessig, 2016

Reproducing kernel Hilbert spaces
Let { N}, A € X s. t. 1kx.(2)} forms a basis / frame for H(X)
N ~
f(x) =) f(N)ki(z)
i=1

reproducing kernel frame <> sampling theorem

Shannon: f(z) = .Z f(#) sinc(x — 4)

11— —C0

Reproducing kernel Hilbert spaces

Let { N}, A € X s. t. 1kx, ()} forms a basis / frame for H(X)

N
f(x) =) f(N)ki(z)
i=1
reproducing kernel frame <> sampling theorem

Shannon: f(z) = .Z f(#) sinc(x — 4)

11—

O

- Z <f(y>7 sinc(y — Z)> sinc(x — 1)

11— — OO

Reproducing kernel Hilbert spaces

Let { N}, A € X s. t. 1kx, ()} forms a basis / frame for H(X)

fx) = Z f(N\) ki(z)

reproducing kernel frame <> sampling theorem

© Christian Lessig, 2016

Reproducing kernel Hilbert spaces

Let { N}, A € X s. t. 1kx, ()} forms a basis / frame for H(X)

fx) = Z f(N\) ki(z)

reproducing kernel frame <> sampling theorem

o arbitrary locations

© Christian Lessig, 2016

Reproducing kernel Hilbert spaces
Let { N}, A € X s. t. 1kx; (%)} forms a basis / frame for H(X)

fx) = Z f(N\) ki(z)

reproducing kernel frame <> sampling theorem

o arbitrary locations
o non-bandlimited functions

© Christian Lessig, 2016

Reproducing kernel Hilbert spaces

Let { N}, A € X s. t. 1kx, ()} forms a basis / frame for H(X)

fx) = Z f(N\) ki(z)

reproducing kernel frame <> sampling theorem

o arbitrary locations
o non-bandlimited tfunctions
o over-sampling

© Christian Lessig, 2016

Reproducing kernel Hilbert spaces

Let { N}, A € X s. t. 1kx, ()} forms a basis / frame for H(X)

fx) = Z f(N\) ki(z)

reproducing kernel frame <> sampling theorem

o arbitrary locations

o non-bandlimited functions
o over-sampling

o arbitrary domains

© Christian Lessig, 2016

Reproducing kernel Hilbert spaces

Let { N}, A € X s. t. 1kx.(2)} forms a basis / frame for H(X)

fx) = Z f(N\) ki(z)

reproducing kernel frame <> sampling theorem

o arbitrary locations

o non-bandlimited functions

o over-sampling

o arbitrary domains

o optimal locations for setting

© Christian Lessig, 2016

But what has this to do with sampling?

B™ f(z;)

<h
|

© Christian Lessig, 2016

But what has this to do with sampling?

B™ f(z;)

<h
|

o} ex

© Christian Lessig, 2016

But what has this to do with sampling?

B™ f(z;)

<h
|

© Christian Lessig, 2016

But what has this to do with sampling?

fi=B" f(xi)
f(x:) =B f;
Fa) =D FO0) — T) =

© Christian Lessig, 2016

But what has this to do with sampling?

B™ f(z;)

basis

© Christian Lessig, 2016

But what has this to do with sampling?

basis

© Christian Lessig, 2016

But what has this to do with sampling?

sampling theorem
for sparse image
representation

change of

basis

© Christian Lessig, 2016

But what has this to do with sampling?

sampling theorem
for sparse image
representation

© Christian Lessig, 2016

But what has this to do with sampling?

flr) = Z f(N) k() sampling theorem
1=1 for sparse image
representation

o optimal reconstruction kernels

© Christian Lessig, 2016

But what has this to do with sampling?

flx) = Z f(X) ki() sampling theorem f(x) = Z fi di(x)

i=1 for sparse image
representation

o optimal reconstruction kernels
o designed for non-bandlimited signals

© Christian Lessig, 2016

But what has this to do with sampling?

flx) = Z f(X) ki() sampling theorem f(x) = Z fi di(x)

i=1 for sparse image
representation

o optimal reconstruction kernels
o designed for non-bandlimited signals
o designed for non-unitform locations

© Christian Lessig, 2016

But what has this to do with sampling?

flx) = Z f(X) ki() sampling theorem f(x) = Z fi di(x)

i=1 for sparse image
representation

optimal reconstruction kernels
designed for non-bandlimited signals
designed for non-uniform locations
allows to optimize sampling locations

O O O O

© Christian Lessig, 2016

Recipe

1. Find (approximate) tight function space
2. Sample function

3. Construct reproducing kernel basis

© Christian Lessig, 2016

Recipe

1. Find (approximate) tight function space
2. Sample function

3. Construct reproducing kernel basis

© Christian Lessig, 2016

And what's the right space?

© Christian Lessig, 2016

And what's the right space?

N

v'v

© Christian Lessig, 2016

And what's the right space?

AN

v'vv'v

© Christian Lessig, 2016

And what's the right space?

AN

v'vv'vv'v

© Christian Lessig, 2016

And what's the right space?
¢

And what's the right space?
¢

I I |

NVATIVALIYA

AN NN

V"V"V"

[N N

And what's the right space?
¢

i

V";"A‘"A

e =

I I

AVATIVALIYA

N AN NN

V"V"V"

[A

And what's the right space?

§

11 S N I N I M

1 S S (N

MRl

L
]
MIAVATRIAVAIIAVA

M EE NN

|
|

And what's the right space?
¢

Y B e

/S

K O

© Christian Lessig, 2016

© Christian Lessig, 2016

And what's the right space?

\
T
Py T

A

And what's the right space?
¢

e =

L A

And what's the right space?
¢

e =

L A

And what's the right space?
¢

e =

L A

And what's the right space?
¢

e =

L A

© Christian Lessig, 2016

And what's the right space?

ﬂ

U

|

RIAVA

V"

ﬁ

ﬂ

s

YAalllva

NN AN A

ﬁ

ﬂ

ﬁ

V"V"V"V"V"

And what's the right space?

© Christian Lessig, 2016

And what's the right space?

fz) =

""""""
depends on ‘ ,‘ E
image function

© Christian Lessig, 2016

And what's the right space?
¢

LN

© Christian Lessig, 2016

And what's the right space?

S T

LN

© Christian Lessig, 2016

Image generation

© Christian Lessig, 2016

Image generation

© Christian Lessig, 2016

Image generation

vy

A

© Christian Lessig, 2016

Image generation

vy

A

© Christian Lessig, 2016

Image generation

vy

A

© Christian Lessig, 2016

Image generation

vy

A

© Christian Lessig, 2016

Image generation

vy

A

© Christian Lessig, 2016

Image generation

vy

A\

© Christian Lessig, 2016

Image generation

vy

A\

© Christian Lessig, 2016

Image generation

vy

A\

© Christian Lessig, 2016

Image generation

© Christian Lessig, 2016

Image generation

© Christian Lessig, 2016

Image generation

© Christian Lessig, 2016

Image generation

© Christian Lessig, 2016

Image generation

© Christian Lessig, 2016

Image generation

© Christian Lessig, 2016

Image generation

© Christian Lessig, 2016

Image generation

© Christian Lessig, 2016

Image generation

© Christian Lessig, 2016

iImage generation

iImage generation

© Christian Lessig, 2016 177

iImage generation

curvelet / shearlet / contourlet

© Christian Lessig, 2016 178

Image generation

curvelet / shearlet / contourlet

© Christian Lessig, 2016 179

Image generation

© Christian Lessig, 2016

iImage generation

© Christian Lessig, 2016

iImage generation

© Christian Lessig, 2016

iImage generation

© Christian Lessig, 2016

iImage generation

© Christian Lessig, 2016

iImage generation

© Christian Lessig, 2016

iImage generation

2o

iImage generation

éf/

© Christian Lessig, 2016

iImage generation

188

iImage generation

2o

iImage generation

© Christian Lessig, 2016 190

© Christian Lessig, 2016

iImage generation

Ay
.i:_:.:

R

L

L

L2
1
L

n e
]

"

L

-"

" an
a |_.__-.':-. HE R

R
-]
R
A
.._..-EE.:TI-I_.... L

.
HE NI

¥ e e tmp Ta) AT L .':
i A D

.
o AN

L L] L]
R A LT
Ty, . L
) -._.:I:-'..: - :_. et ':-.|-.'|: .:-_. -

LTS - . o om
..-.I "L :-".. .-_. .
Tl
=L L

::l:':l-_ _;..._....l ._-_ -
e .

S e]
—|.t. ||r_'|'.-l: S
o __-_:-_-."..'_--. .
.lll ll. .. "

- - " []
raesetet 27
2 o
SEEE AL

; .f:.;lltl'-rf:-‘" ::-: -
il Dkl Dt e L AL

. .
A e i:-'-_'-

R R TR T Ay

191

© Christian Lessig, 2016

iImage generation

- L g om, m . ., - - - T T LI LA T T 1 S L .o . L LR .
=L = P = - ST et . .o . -t LI L 1 .

1 ~ . 'If'I-'|-i'. PR L R T T I T L L -"F:..._.:: - " -:_" L L T o T TR T R P ;.-. ~

- . . . o . " - ., . LI [l B B SRR o T I, 10 . L. . 1 . .
"\:._-:_'- - I_.- |-.__'.-..-"."-. =" '-.'.:-ll--. i | r—_ll _...:'_.- L e s o K - -_.'lI . _-"-:_ "'i.'__ Tk 1 = '.-_—'-."__ .l-l'.l_..- T EANLELa | '._-...-_ -

- . oL T B L L T o T N R AT - - T e S L S ! - : ! =" ="

— "aa r . e oalged Bon e o Rl LI Y P HE .- . ."

i ' '..|. - .-..r.::__..:-__ ey IV e 4
J:.'i.-"ﬁ;.-..r_u. -1 TeoE - .
1 AL

e Lk

192

© Christian Lessig, 2016

iImage generation

193

iImage generation

© Christian Lessig, 2016 194

iImage generation

1. Find (approximate) tight function space
2. Sample function

3. Construct reproducing kernel basis

© Christian Lessig, 2016

Image generation

© Christian Lessig, 2016

How many rays do we need?

© Christian Lessig, 2016

How many rays do we need?

» As many as there are nonzero coefticients in the sparsest
signal representation (times a small constant). «

© Christian Lessig, 2016

How many rays do we need?

» As many as there are nonzero coefticients in the sparsest
signal representation (times a small constant). «

Recipe:
1. Find (approximate) tight function space

2. Sample function

3. Construct reproducing kernel basis

© Christian Lessig, 2016

What has this all to do with deep learning?

© Christian Lessig, 2016

© Christian Lessig, 2016

What has this all to do with deep learning?

1608.08225v1 [cond-mat.dis-nn] 29 Aug 2016

arxiv

Why does deep and cheap learning work so well?

Henry W. Lin and Max Tegmark
Dept. of Physics, Harvard University, Cambridge, MA 02138 and
Dept. of Physics & MIT Kavli Institute, Massachusetts Institute of Technology, Cambridge, MA 02139

(Dated: August 31, 2016)

We show how the success of deep learning depends not only on mathematics but also on physics:
although well-known mathematical theorems guarantee that neural networks can approximate arbi-
trary functions well, the class of functions of practical interest can be approximated through “cheap
learning” with exponentially fewer parameters than generic ones, because they have simplifying
properties tracing back to the laws of physics. The exceptional simplicity of physics-based functions
hinges on properties such as symmetry, locality, compositionality and polynomial log-probability,
and we explore how these properties translate into exceptionally simple neural networks approximat-
ing both natural phenomena such as images and abstract representations thereof such as drawings.
We further argue that when the statistical process generating the data is of a certain hierarchi-
cal form prevalent in physics and machine-learning, a deep neural network can be more efficient
than a shallow one. We formalize these claims using information theory and discuss the relation
to renormalization group procedures. Various “no-flattening theorems” show when these efficient
deep networks cannot be accurately approximated by shallow ones without efficiency loss — even

for linear networks.

I. INTRODUCTION

Deep learning works remarkably well, and has helped dra-
matically improve the state-of-the-art in areas ranging
from speech recognition, translation and visual object
recognition to drug discovery, genomics and automatic
game playing [1]. However, it is still not fully under-
stood why deep learning works so well. In contrast to
GOFAI (“good old-fashioned AI”) algorithms that are
hand-crafted and fully understood analytically, many al-
gorithms using artificial neural networks are understood
only at a heuristic level, where we empirically know that
certain training protocols employing large data sets will
result in excellent performance. This is reminiscent of the
situation with human brains: we know that if we train
a child according to a certain curriculum, she will learn
certain skills — but we lack a deep understanding of how
her brain accomplishes this.

This makes it timely and interesting to develop new an-
alytic insights on deep learning and its successes, which
is the goal of the present paper. Such improved under-
standing is not only interesting in its own right, and for
potentially providing new clues about how brains work,
but it may also have practical applications. Better under-
standing the shortcomings of deep learning may suggest
ways of improving it, both to make it more capable and
to make it more robust [2].

A. The swindle: why does “cheap learning” work?

Throughout this paper, we will adopt a physics perspec-
tive on the problem, to prevent application-specific de-
tails from obscuring simple general results related to dy-
namics, symmetries, renormalization, etc., and to exploit

useful similarities between deep learning and statistical
mechanics.

For concreteness, let us focus on the task of approximat-
ing functions. As illustrated in Figure|1, this covers most
core sub-fields of machine learning, including unsuper-
vised learning, classification and prediction. For exam-
ple, if we are interested in classifying faces, then we may
want our neural network to implement a function where
we feed in an image represented by a million greyscale
pixels and get as output the probability distribution over
a set of people that the image might represent.

p(x.y)

Unsupervised
learning

p(xly) p(ylx)

Classification Prediction

FIG. 1: Neural networks can approximate probability dis-
tributions. Given many samples of random vectors x and
y, both classification and prediction involve viewing y as a
stochastic function of x and attempting to estimate the prob-
ability distributions for x given y and y given x, respectively.
In contrast, unsupervised learning attempts to approximate
the joint probability distribution of x and y without making
any assumptions about causality. In all three cases, the neu-
ral network searches for patterns in the data that can be used
to better model the probability distribution.

When investigating the quality of a neural net, there are

H. W. Lin and M. Tegmark, Why

does deep and cheap learning
work so well?, Aug. 2016.

201

What has this all to do with deep learning?

M. A. Ranzato, A. Krizhevsky, ana

G. E. Hinton, Factored 3-Way Re-
stricted Boltzmann Machines For

Modeling Natural Images, in Al-
STATS2010, 2010.

© Christian Lessig, 2016 202

What has this all to do with deep learning?

M. A. Ranzato, A. Krizhevsky, and G. E. Hinton, “Factored 3-Way Restricted Boltzmann Ma- J. Ma and G. Plonka, “"The Curvelet Transform,” IEEE Signal Process. Mag., vol. 27, no. 2,
chines For Modeling Natural Images,” in AISTATS2010, 2010. pp. 118-133, Mar. 2010.

© Christian Lessig, 2016 203

What has this all to do with deep learning?

Deep learning L ocal frequency analysis

© Christian Lessig, 2016

What has this all to do with deep learning?

Deep learning L ocal frequency analysis

Explanation:
Renormalization group

E.g. P. Mehta and D. J. Schwab, “An exact mapping between the Variational Renor-
malization Group and Deep Learning,” Oct. 2014.

© Christian Lessig, 2016 205

What has this all to do with deep learning?

Deep learning L ocal frequency analysis

Explanation: Explanation:
Renormalization group Microlocal analysis

E.g. P. Mehta and D. J. Schwab, “An exact mapping between the Variational Renor- E.g. E. J. Candés and D. L. Donoho, “Continuous curvelet transform: |. Resolution of
malization Group and Deep Learning,” Oct. 2014. the Wavetront Set,” Appl. Comput. Harmon. Anal., vol. 19, no. 2, pp. 162-197, Sep.
2005.

© Christian Lessig, 2016 206

What has this all to do with deep learning?

Deep learning L ocal frequency analysis

Explanation: Explanation:
Renormalization group Microlocal analysis

E.g. P. Mehta and D. J. Schwab, “An exact mapping between the Variational Renor- E.g. E. J. Candés and D. L. Donoho, “Continuous curvelet transform: |. Resolution of
malization Group and Deep Learning,” Oct. 2014. the Wavetront Set,” Appl. Comput. Harmon. Anal., vol. 19, no. 2, pp. 162-197, Sep.
2005.

Quasi eigenfunctions for
ight transport

© Christian Lessig, 2016 207

What has this all to do with deep learning?

Deep learning L ocal frequency analysis

Explanation: Explanation:

Renormalization group Microlocal analysis

E.g. P. Mehta and D. J. Schwab, “An exact mapping between the Variational Renor- E.g. E. J. Candés and D. L. Donoho, “Continuous curvelet transform: |. Resolution of

malization Group and Deep Learning,” Oct. 2014. the Wavetront Set,” Appl. Comput. Harmon. Anal., vol. 19, no. 2, pp. 162-197, Sep.
2005.

Connection?

Quasi eigenfunctions for
ight transport

© Christian Lessig, 2016 208

What has this all to do with deep learning?

Deep learning L ocal frequency analysis

Explanation: Explanation:
Renormalization group Microlocal analysis

E.g. P. Mehta and D. J. Schwab, “An exact mapping between the Variational Renor- E.g. E. J. Candés and D. L. Donoho, “Continuous curvelet transform: |. Resolution of
malization Group and Deep Learning,” Oct. 2014. the Wavetront Set,” Appl. Comput. Harmon. Anal., vol. 19, no. 2, pp. 162-197, Sep.
2005.

Fredenhagen and co-workers:
the renormalization groups arise
from microlocal analysis

E.g. R. Brunetti, M. Dutsch, and K. Fredenhagen, "Perturbative algebraic quantum

field theory and the renormalization groups,” Adv. Theor. Math. Phys., vol. 13, no. 5,
pp. 1541-1599, 2009.

Quasi eigenfunctions for
ight transport

© Christian Lessig, 2016 209

How many rays do we need?

» As many as there are nonzero coefticients in the sparsest
signal representation (times a small constant). «

Recipe:
1. Find (approximate) tight function space

2. Sample function

3. Construct reproducing kernel basis

© Christian Lessig, 2016

Reproducing kernel Hilbert spaces

f(z) da

X

© Christian Lessig, 2016

Reproducing kernel Hilbert spaces

/X f(z)dr = /X Z f(z:)ki(z) dz

Reproducing kernel Hilbert spaces

/X f(z)dr = /X Z f(z:)ki(z) dz
— Z () /X ki (x) do

Reproducing kernel Hilbert spaces

Reproducing kernel Hilbert spaces

