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Objective
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o Superresolution

o Progressive

o Varying resolution
o Parallelizable
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Plan of attack

1. What's the cost of the last bounce?

2. But what has this to do with sampling?
3. And what about the function space?

4. How many rays do we need?

5. What has all of this to do with deep learning?
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What's the cost of the last bounce?

C=N-C,
[ \

Number of Cost per
pixels pixel
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Number of “pixels”

Locality: varying resolution Hierarchical:
progressive
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Computational costs
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Computational costs

C=N-C,
[

Number of
"pixels”

- Use sparse, adaptive
Image representation

\

Cost per
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minimize by
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Cost per “pixel”

Example: wavelet basis
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Example: wavelet basis
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Cost per “pixel”

Example: wavelet basis

Multi-res structure: can be solved in O(n) time using multi-grid.
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Cost per “pixel”

Example: wavelet basis

Multi-res structure: can be solved in time using multi-grid.

optimal
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What's the cost of the last bounce?

C=N-C,
[

\
Number of  Cost per
“pixels” pixel

minimize by

- Use sparse, adaptive
Image representation
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What's the cost of the last bounce?

C=N-C,
[

\
Number of  Cost per
“pixels” pixel

minimize by

> Use sparse, adaptive o Use at least n samples
Image representation > Solve using multi-grio
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But what has this to do with sampling?
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H(X) is Hilbert and ¢, (f) continuous, then

Vi € X, Ika(z) € H(X) - km‘(az), f(x)> — (%)

reproducing kernel
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Example: H([—1,1]) = span,,_;...y{ Pn(x) }
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Reproducing kernel Hilbert spaces

H(X) is Hilbert and ¢, (f) continuous, then

o e X B € HX) ¢ (k@) 1) = F(@
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Reproducing kernel Hilbert spaces
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Reproducing kernel Hilbert spaces
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| et {)\Z}, A€ X s, t.

span(ky, (z)) = H(X)

!

1kx: ()} forms a basis / frame for H(X)
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Reproducing kernel Hilbert spaces
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Reproducing kernel Hilbert spaces
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Reproducing kernel Hilbert spaces
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Reproducing kernel Hilbert spaces

1.5
'1 |
0.5 N
- \ 2
0 - T — )] . :
- 0= Y 0w
1=1
-0.5 |
-1 +
1.5

© Christian Lessig, 2016



© Christian Lessig, 2016

Example: H([—1,1]) = span,,_;...y{ Pn(x) }

2.0-

1.0-

| g : X
- -0.8 -0.6 -0.4 -0. . 0.4 0.6
-1.0-

-2.0-

0.8

|\



Example: H([—1,1]) = span,,_;...y{ Pn(x) }

1.9 F

0.5 1

-0.5

© Christian Lessig, 2016 104



Reproducing kernel Hilbert spaces

1.5
'1 |
0.5 N
- \ 2
0 - T — )] . :
- 0= Y 0w
1=1
-0.5 |
-1 +
1.5

© Christian Lessig, 2016



Reproducing kernel Hilbert spaces
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Reproducing kernel Hilbert spaces

Let { N}, A € X s. t. 1kx, ()} forms a basis / frame for H(X)

fx) = Z f(N\) ki(z)

reproducing kernel frame <> sampling theorem
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Reproducing kernel Hilbert spaces

Let { N}, A € X s. t. 1kx, ()} forms a basis / frame for H(X)

N
f(x) =) f(N)ki(z)
i=1
reproducing kernel frame <> sampling theorem

Shannon:  f(z) = .Z f(#) sinc(x — 4)

11—
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Reproducing kernel Hilbert spaces

Let { N}, A € X s. t. 1kx.(2)} forms a basis / frame for H(X)

fx) = Z f(N\) ki(z)

reproducing kernel frame <> sampling theorem

o arbitrary locations

o non-bandlimited functions

o over-sampling

o arbitrary domains

o optimal locations for setting
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But what has this to do with sampling?
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But what has this to do with sampling?
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But what has this to do with sampling?

sampling theorem
for sparse image
representation
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But what has this to do with sampling?
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But what has this to do with sampling?
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1=1 for sparse image
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o optimal reconstruction kernels
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But what has this to do with sampling?

flx) = Z f(X) ki() sampling theorem f(x) = Z fi di(x)

i=1 for sparse image
representation

optimal reconstruction kernels
designed for non-bandlimited signals
designed for non-uniform locations
allows to optimize sampling locations

O O O O
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Recipe

1. Find (approximate) tight function space
2. Sample function

3. Construct reproducing kernel basis
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And what's the right space?
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And what's the right space?

fz) =

""""""
depends on ‘ ,‘ E
image function
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And what's the right space?
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And what's the right space?
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Image generation
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Image generation

© Christian Lessig, 2016



iImage generation




iImage generation
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iImage generation

curvelet / shearlet / contourlet
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Image generation
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iImage generation
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iImage generation
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iImage generation

- L g om, m . ., - - - T T LI LA T T 1 S L .o . L LR .
=L = P = - ST et . .o . -t LI L 1 .

1 ~ . 'If'I-'|-i'. PR L R T T I T L L -"F:..._.:: - " -:_" L L T o T TR T R P ;.-. ~

- . . . o . " - ., . LI [l B B SRR o T I, 10 . L. . 1 . .
"\:._-:_'- - I_.- |-.__'.-..-"."-. =" '-.'.:-ll--. i | r—_ll _...:'_.- L e s o K - -_.'lI . _-"-:_ "'i.'__ Tk 1 = '.-_—'-."__ .l-l'.l_..- T EANLELa | '._-...-_ -

- . oL T B L L T o T N R AT - - T e S L S ! - : ! =" ="

— "aa r . e oalged Bon e o Rl LI Y P HE .- . ."

i ' '..|. - .-..r.::__..:-__ ey IV e 4
J:.'i.-"ﬁ;.-..r_u. -1 TeoE - .
1 AL

e Lk

192



© Christian Lessig, 2016

iImage generation

193



iImage generation

© Christian Lessig, 2016 194



iImage generation

1. Find (approximate) tight function space
2. Sample function

3. Construct reproducing kernel basis
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Image generation
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How many rays do we need?

» As many as there are nonzero coefticients in the sparsest
signal representation (times a small constant). «
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How many rays do we need?

» As many as there are nonzero coefticients in the sparsest
signal representation (times a small constant). «

Recipe:
1. Find (approximate) tight function space

2. Sample function

3. Construct reproducing kernel basis
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We show how the success of deep learning depends not only on mathematics but also on physics:
although well-known mathematical theorems guarantee that neural networks can approximate arbi-
trary functions well, the class of functions of practical interest can be approximated through “cheap
learning” with exponentially fewer parameters than generic ones, because they have simplifying
properties tracing back to the laws of physics. The exceptional simplicity of physics-based functions
hinges on properties such as symmetry, locality, compositionality and polynomial log-probability,
and we explore how these properties translate into exceptionally simple neural networks approximat-
ing both natural phenomena such as images and abstract representations thereof such as drawings.
We further argue that when the statistical process generating the data is of a certain hierarchi-
cal form prevalent in physics and machine-learning, a deep neural network can be more efficient
than a shallow one. We formalize these claims using information theory and discuss the relation
to renormalization group procedures. Various “no-flattening theorems” show when these efficient
deep networks cannot be accurately approximated by shallow ones without efficiency loss — even

for linear networks.

I. INTRODUCTION

Deep learning works remarkably well, and has helped dra-
matically improve the state-of-the-art in areas ranging
from speech recognition, translation and visual object
recognition to drug discovery, genomics and automatic
game playing [1]. However, it is still not fully under-
stood why deep learning works so well. In contrast to
GOFAI (“good old-fashioned AI”) algorithms that are
hand-crafted and fully understood analytically, many al-
gorithms using artificial neural networks are understood
only at a heuristic level, where we empirically know that
certain training protocols employing large data sets will
result in excellent performance. This is reminiscent of the
situation with human brains: we know that if we train
a child according to a certain curriculum, she will learn
certain skills — but we lack a deep understanding of how
her brain accomplishes this.

This makes it timely and interesting to develop new an-
alytic insights on deep learning and its successes, which
is the goal of the present paper. Such improved under-
standing is not only interesting in its own right, and for
potentially providing new clues about how brains work,
but it may also have practical applications. Better under-
standing the shortcomings of deep learning may suggest
ways of improving it, both to make it more capable and
to make it more robust [2].

A. The swindle: why does “cheap learning” work?

Throughout this paper, we will adopt a physics perspec-
tive on the problem, to prevent application-specific de-
tails from obscuring simple general results related to dy-
namics, symmetries, renormalization, etc., and to exploit

useful similarities between deep learning and statistical
mechanics.

For concreteness, let us focus on the task of approximat-
ing functions. As illustrated in Figure|1, this covers most
core sub-fields of machine learning, including unsuper-
vised learning, classification and prediction. For exam-
ple, if we are interested in classifying faces, then we may
want our neural network to implement a function where
we feed in an image represented by a million greyscale
pixels and get as output the probability distribution over
a set of people that the image might represent.

p(x.y)

Unsupervised
learning

p(xly) p(ylx)

Classification Prediction

FIG. 1: Neural networks can approximate probability dis-
tributions. Given many samples of random vectors x and
y, both classification and prediction involve viewing y as a
stochastic function of x and attempting to estimate the prob-
ability distributions for x given y and y given x, respectively.
In contrast, unsupervised learning attempts to approximate
the joint probability distribution of x and y without making
any assumptions about causality. In all three cases, the neu-
ral network searches for patterns in the data that can be used
to better model the probability distribution.

When investigating the quality of a neural net, there are
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