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Let                                       Then the linear N-term 
Fourier series approximation      satisfies:
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Mallat (2009):

456 CHAPTER 9 Approximations in Bases

Piecewise Regular Signals
Piecewise regular signals define a first simple model where nonlinear wavelet
approximations considerably outperform linear approximations. We consider sig-
nals with a finite number of singularities and that are uniformly regular between
singularities.Theorem 9.12 characterizes the linear and nonlinear wavelet approxi-
mation error decay for such signals.

Theorem 9.12. If f has K discontinuities on [0, 1] and is uniformly Lipschitz � between
these discontinuities, with 1/2���q, then

�l(M, f )�O(K ∥ f ∥2
C� M�1) and �n(M, f )�O(∥ f ∥2

C� M�2�). (9.42)

Proof. We distinguish type I wavelets �j,n for n∈ Ij , with a support including a point where
f is discontinuous, from type II wavelets for n∈ IIj , with a support that is included in a
domain where f is uniformly Lipschitz �.

Let C be the support size of �. At a scale 2 j , each wavelet �j,n has a support of size
C2 j ,translated by 2 jn.Thus,there are at most |Ij |�C K type I wavelets �j,n with supports
that include at least one of the K discontinuities of f . Since ∥ f ∥� �∥ f ∥C� , (9.41) shows
for ��0 that there exists B0 such that |⟨ f , �j,n⟩|�B0 ∥ f ∥C� 2 j/2.

At fine scales 2 j , there are much more type II wavelets n∈ IIj , but this number |IIj | is
smaller than the total number 2�j of wavelets at this scale. Since f is uniformly Lipschitz
� on the support of �j,n, the right inequality of (9.22) proves that there exists B such
that

|⟨ f , �j,n⟩|�B ∥ f ∥C� 2 j(��1/2). (9.43)

This linear approximation error from M �2�k wavelets satisfies

�l(M, f )�
�

j�k

⎛

⎝
�

n∈Ij

|⟨ f , �j,n⟩|2 �
�

n∈IIj

|⟨ f , �j,n⟩|2
⎞

⎠

�
�

j�k

�
C K B2

0 ∥ f ∥2
C� 2 j �2�j B2 ∥ f ∥2

C� 2(2��1)j
�

�∥ f ∥2
C� 2 C K B2

0 2k �∥ f ∥2
C� (1�2�2�)�1 B2 22�k.

This inequality proves that for ��1/2 the error term of type I wavelets dominates, and
�l(M, f )�O(∥ f ∥2

C� K M�1).
To compute the nonlinear approximaton error �(M, f ), we evaluate the decay of

ordered wavelet coefficients. Let f r
B[k]� ⟨ f , �jk,nk ⟩ be the coefficient of rank k:| f r

B[k]|�
| f r

B[k�1]| for k�1. Let f r
B,1[k] and f r

B,II [k] be the values of the wavelet coefficient of
rank k in the type I and type II wavelets.

For l �0,there are at most l K C type I coefficients at scales 2 j �2�l and type I wavelet
coefficients satisfy |⟨ f , �j,n⟩|�B0∥ f ∥C� 2�l/2 at scales 2 j �2�l . It results that

f r
B,I [lKC]�B0 ∥ f ∥C� 2�l/2,

so f r
B,I [k]�O(∥ f ∥C� 2�k/(2KC)) has an exponential decay.
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Discontinuity:
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CURVELETS AND EDGES 225

f(x,y)

FIGURE 1.1. Typical element from our edge model.

define C2
0(A) to be the collection of twice continuously differentiable functions

supported strictly inside [0, 1]2.

DEFINITION 1.1 Let E2(A) denote the collection of functions f on R
2 that are

supported in the square [0, 1]2 and obey

(1.10) f = f0 + f1 · 1B

where B ∈ STAR2(A) and each fi ∈ C2
0(A). We speak of E2(A) as consisting of

functions that are C2 away from a C2 edge.

Figure 1.1 gives a graphical indication of a typical element of E2(A).

1.6 Sparsity and Nonlinear Approximation

Let f be an object that is C2 away from a C2 edge. The main result of this
paper is that the curvelet coefficient sequence (θµ)µ∈M of f is in some sense as

sparse as if f were not singular.

THEOREM 1.2 Let E2(A) be the collection (1.10) of objects that are C2 away from

a C2 curve. Define |θ |(n) to be the nth largest entry in the coefficient sequence

(|θµ|)µ∈M in the curvelet system. Then

(1.11) sup
f ∈E2(A)

|θ |(n) ≤ C · n− 3
2 · (log n)

3
2 .

There is a natural companion to this theorem. Let f C
n be the n-term approxi-

mation of f obtained by extracting from the curvelet series (1.7) the terms corre-
sponding to the n largest coefficients. The approximation error obeys

∥

∥ f − f C
n

∥

∥

2

L2
≤

∑

m>n

|θ |2(m) ,

and therefore the rate of decay (1.11) gives the following result:

THEOREM 1.3 Under the assumptions of Theorem 1.2, the n-term approximation

f C
n obtained by simple thresholding in a curvelet frame achieves

(1.12)
∥

∥ f − f C
n

∥

∥

2

L2
≤ C · n−2 · (log n)3.

Candès & Donoho (2004):
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Figure 2. Di↵erent orientations for directional wavelets for
j = 3 in the frequency (top) and spatial (bottom) domains.
As shown in Sec 2.2.2 and Sec. 3, significant coefficients are
only obtained when a flow has anisotropic structures aligned
with the wavelet.

where the hm+σ(|x|) are the inverse Hankel transforms of ĥ(|⇠|). For the
Simoncelli window [25] these also have closed form expressions, which are
available in the reference implementation.90

Eq. 4 defines a family of wavelet functions that is by construction diver-
gence free and whose angular localization can be controlled using the βm, see
Fig. 1 for examples. We will return to suitable choices of the angular local-
ization at the end of the section. In the special case when γ̂(✓⇠) is isotropic,

i.e. βm = δ0m, one obtains ~ (x) = ĥ1(|x|)~e✓x . This is an isotropic, divergence95

free vector field in space that can be interpreted as an isolated vortex, see
Fig. 1, left.

2.2.1. Properties of wavelets. A critical property of the wavelet defined in
Eq. 3 is that these generate a Parseval tight frame for the space L

div
2 (R2,2)

of divergence free vector fields with finite L2-norm. Hence, most of the con-100

veniences of an orthonormal basis are available and in particular primary
and dual frame functions coincide and Parseval’s identity holds so that the
norm of the expansion coefficients equals those of the signal. See for example
Daubechies classical treatise [9, Ch. 3] or the expository articles by Kovacevic
and Chebira [17, 18] for more details on frames.105

Proposition 1. Let Uj be the (Mj ⇥ 2Nj + 1)-dimensional matrix formed by

the angular localization coefficients β
j,t

n
= β

j

n
e
−int(2⇡/Mj) for the Mj di↵erent

orientations, and let Dj be a diagonal matrix of size (2Nj + 1)⇥ (2Nj + 1).

When the Caldèron admissibility condition
P

j2Z
��ĥ(2−j

|⇠|)
��2 = 1, 8⇠ 2 R2

is

satisfied and U
H

j
Uj = Dj with tr(Dj) = 1 for all levels j, then any divergence
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free vector field ~u(x) 2 L
div
2 (R2,2) has the representation

~u(x) =
X

j2Z

X

k2Z2

MjX

t=1

⌦
~u(y), ~ j,k,t(y)

↵
~ j,k,t(x) (5a)

with frame functions

~ j,k,t(x) =
2j

2⇡
~ 
�
R2⇡t/Mj

(2jx− k)
�

(5b)

where ~ (x) is given by Eq. 4 and R2⇡t/Mj
is the rotation by 2⇡t/Mj.

Proof. Taking the Fourier transform of Eq. 5a, using Parseval’s theorem, and
with Eq. 3 one obtains

û(⇠)~e✓ =
X

j2Z

X

k2Z2

MjX

t=1

D
û(⌘)~e✓,  ̂j,k,t(⌘)~e✓

E
 ̂j,k,t(⇠)~e✓ (6a)

=
X

j2Z

X

k2Z2

MjX

t=1

D
û(⌘),  ̂j,k,t(⌘)

E
 ̂j,k,t(⇠)

| {z }
scalar polar wavelet expansion of û(⇠)

~e✓ (6b)

with the inner product in the second line now being those for scalar functions

and ~̂u(⌘) = û(⌘)~e✓ for some scalar û(⌘) by the divergence freedom of ~u(x).
In Eq. 6b, ~e✓ is fixed and the other terms provide a scalar polar wavelet
expansion of the scalar magnitude function û(⇠). Since the proposition uses110

the same assumptions required for scalar polar wavelets to form a Parseval
tight frame, see [29, Proposition 4.1] for the isotropic case and [29, Proposition
4.2] for the anisotropic one, the result follows. ⇤

As usual, in practice one uses scaling functions φs(x) for a signal’s low
frequency part and a variation of Proposition 1 holds in this case. Next to115

being Parseval tight, our divergence free wavelets satisfy other useful prop-
erties:

1. Intuitive correspondence: The isotropic frame functions can be inter-
preted as isolated vortices and the directional wavelets are similar to
flows along boundaries.120

2. Ideal divergence freedom: Our wavelets are divergence free in the ideal,

analytic sense and, with ĥ(|⇠|) from [25], which yields a closed form
expression for the radial windows hm(|x|) in the spatial domain, they
can be evaluated to arbitrary precision.

3. Analytic, polar frequency representation: The analytic, polar separable125

construction of ~̂ (⇠) enables the closed form computation of di↵erential
operators such as curl, i.e. the vorticity of the fluid velocity vector field.

4. Closed form spatial representation: The wavelets have closed form ex-
pressions in the spatial domain, which are useful for example for recon-
struction and interpolation [21] and to compute advection.130
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Figure 4. Left: Discontinuous, scalar signal f(x) with nor-
mal pointing towards (1, 1) around the origin. The ellipses
indicate directional wavelets aligned (red) and unaligned
(cyan) with the discontinuity. Right: Conceptual view of the

localized Fourier transform cfφ. It decays slowly only along

the directions ⇠̄ ⇡ ~n. Hence, a wavelet  ̂(⇠) supported suf-

ficiently far from the origin will overlap cfφ only when its
orientation is aligned with the direction of slow decay, and
hence with the normal of the discontinuity. We refer to [27,
Ch. XIV] and [16, Vol. 1, Ch. VIII] for precise statements
about the local Fourier transform of discontinuous signals
and to [7] for their approximation using wavelet-like func-
tions.

obtains

us =
⌦
û(⇠)~e✓⇠ , −i γ̂s(✓⇠) ĥ(2

js |⇠|)~e✓⇠
↵

(7b)

=
⌦
û(⇠) , −i γ̂s(✓⇠) ĥ(2

js |⇠|)
↵

(7c)

with the inner product in the second line again being those for scalar func-
tions. Thus, with suitable angular window functions, e.g. ones corresponding
to steerable filters or wavelets [24, 15, 26, 29] (for which, at least empirically,
the angular sensitivity is well established) our directional, divergence free145

wavelets detect oriented features in a flow. For wavelets aligned with, e.g.
the wake behind an object, the frame coecients us will thus have a larger
magnitude than for unaligned ones. A numerical demonstration is shown in
Fig. 9.

Moreover, since γ̂j(✓⇠) ĥ(2
j

|⇠|) is a scalar, curvelet-like function exist-150

ing results for curvelets [5, Thm. 1.2, Thm. 1.3] imply the following.

Proposition 2. Let ~u(x) 2 L
div
2 (R2,2) be a C

2
-smooth divergence free vector

field away from C
2
discontinuities with F

1(û) 2 E
2(A) [5, Def. 1], which

we write as ~u 2 E
2
div(A). When the windows γ̂j(✓⇠) and ĥ(|⇠|) satisfy the

admissibility conditions of second generation curvelets [5, Sec. 2], then the

Divergence Free Polar Wavelets 9

n-largest coecient |us|n in the coecient sequence (|us|)n satisfies

sup
~u2E2

div(A)

|us|n  C · n
−3/2 (log n)3/2. (8)

Critical for the above result is that the radial and angular windows sat-
isfy a parabolic scaling law so that the size of the wavelets in the spatial
domain is approximately 2−j/2

⇥ 2−j and they can be defined on a grid with
a corresponding anisotropic spacing. In the frequency domain, the angular155

windows thereby get narrower as j increases and they “zoom in” on a direc-
tion of slow decay. Next to the sparsity results in Proposition 2, this implies
a stronger notion of angular selectivity than provided by classical steerable
filters and wavelets where the support of the angular window is typically
independent of the radial level [29].160

Interestingly, in the vector-valued case one has an additional degree of
freedom not present in the scalar setting. For real-valued signals, the Fourier
transform is symmetric around the origin and hence ~e✓⇠ can point either in the
same or opposite directions in the two half-spaces, see the last two columns

in Fig. 1, top. The two choices yield starkly di↵erent spatial wavelets ~ s(x):165

when ~e✓⇠ points in opposite directions one obtains a shear-like behavior while
a consistent direction of ~e✓⇠ yields a localized uni-directional streaming-like
flow, see again the two rightmost columns in Fig. 1. Directional wavelets
corresponding to the two behaviors are conveniently modeled using Fourier
series coefficients βm that are nonzero only for even m, which yields shear-like170

flows, or nonzero only for odd m, for streaming-like flows, see Fig. 5.

2.3. Divergence free polar wavelets in 3D

To carry the foregoing construction over to three dimensions, we need an
equivalent of the tangent vector ~e✓⇠ , which was the crucial ingredient ensuring

divergence freedom in R2
x
. By the Hedgehog theorem, however, any smoothly175

changing basis tangential to the sphere will become singular at some point
on S

2. We escape the theorem with the following construction.

Proposition 3. Let ~⌧a be the tangent vector field of S
2
induced by the longi-

tudal geographic coordinate φa with respect to the a
th

axis, i.e. ~⌧a = @/@φa.

Then for every ! 2 S
2
the set

H(!) =
�
~⌧1(!), ~⌧2(!), ~⌧3(!)

 
(9)

forms a Parseval tight frame for T!S
2
. We will refer to H as the Hedgehog

frame.

The proposition can be checked by an explicit calculation and, in a more180

general form, can also be found in [14]. Intuitively, it holds because the three
vectors compensate each other, e.g. ~⌧3 vanishes at the North pole but this is
exactly where ~⌧1 and ~⌧2 form an orthonormal basis.

With the Hedgehog frame, we can proceed as before to construct a
divergence free wavelet frame: we choose a vectorial part that is inherently
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Figure 5. Examples for coecients βm that define the an-
gular localization windows γ̂(✓⇠). Functions yielding a shear-
like flow have βm that are non-zero only for even m (blue)
while those yielding a streaming-like flow behavior have
nonzero βm only for odd m (yellow).

tangential to the frequency sphere, namely ~⌧a, and obtain angular localization
with a scalar window function. Our mother wavelets are thus defined as

~̂ a(⇠) =  ̂a(⇠)~⌧a = −i

 
LX

l=0

lX

m=−l

lm ylm(⇠̄)

!
ĥ(|⇠|)~⌧a (10)

with now one for each coordinate axis. By expanding ~⌧a into spherical har-

monics, the spatial representation ~ a(⇠) can be computed in closed form
using a calculation analogous to those in two dimensions, see Appendix B.2
for details. It is given by

~ 3(x) =
2
p
3

X

l,m

lm

l+1X

l2=l−1

i
l2 hl2

(|x|)
X

σ2±1

G
l2,m+σ

lm;1σ yl2,m+σ(x̄)

0

@
−1
iσ

0

1

A (11)

and analogously for the other two coordinate axes. Here the G
l2,m+σ

lm;1σ are
spherical harmonics product coecients, see Appendix A.3. We also again185

have that the spatial representation of an isotropic wavelet ~̂ a(⇠) = ĥ(|⇠|)~⌧a
is isotropic in space, i.e. ~ a(x) = −

p
2/⇡ h1

�
|x|

�
~⌧a, with isotropy now around

the a
th axis.

2.3.1. Properties of wavelets. As in the scalar case, under suitable admissi-
bility conditions the just defined wavelets form a Parseval tight frame for the190

space L
div
2 (R3,3) of divergence free vector fields in R3 with finite L2-norm.

Proposition 4. Let wj,t be the (Lj + 1)2-dimensional vector formed by the

rotated angular localization coecients 
j,t

lm
=

P
l

m0=−l
W (λt)

m
0

l,m
l,m0 for a

localization window centered at λt, where W (λt)
m

l,m
is the Wigner-D ma-

trix implementing rotation in the spherical harmonics domain, and let G
lm

be the (Lj + 1)2 ⇥ (Lj + 1)2 dimensional matrix formed by the spherical

harmonics product coecients for fixed (l,m). When the Caldèron conditionP
j2Z

��ĥ(2−j
|⇠|)

��2 = 1, 8⇠ 2 R3
is satisfied and δl,0δm,0 =

PMj

t=0 wj,t G
lm

wj,t
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(where δi,j is the Kronecker delta) then any ~u(x) 2 L
div
2 (R3,3) has the repre-

sentation

~u(x) =
3X

a=1

X

j2Z

X

k2Z3

MjX

t=1

⌦
~u(y), ~ a

j,k,t
(y)

↵
~ 
a

j,k,t
(x) (12a)

with frame functions

~ 
a

j,k,t
(x) =

23j/2

(2⇡)3/2
~ a

�
Rλt(2

j
x− k)

�
, (12b)

for ~ a(x) defined in Eq. 11 and Rλt
the rotation from the North pole to λt.

Proof. Taking the Fourier transform of Eq. 12a, using Parseval’s theorem,
and with Eq. 10 we obtain

~̂u(x) =

3X

a=1

X

j2Z

X

k2Z3

MjX

t=1

D
~̂u(⌘) ,  ̂j,k,t(⌘)~⌧a(⌘)

E
 ̂
a

j,k,t
(⇠)~⌧a(⇠) (13a)

=

3X

a=1

X

j2Z

X

k2Z3

MjX

t=1

D
ûa(⌘) ,  ̂jkt(⌘)

E
 ̂
a

jkt
(⇠)

| {z }
scalar polar wavelet frame for ûa(⌘)

~⌧a(⇠). (13b)

Here ûa(⌘) = ~̂u(⌘) · ~⌧a(⌘), i.e. the pointwise projection of the vector ûa(⌘)

onto the Hedgehog frame vector ~⌧a(⌘) at ⌘, so that ~̂u(⌘) =
P

a
ûa(⌘)~⌧a(⌘)

by the tight frame property of the ~⌧a. For the coordinate function ûa(⇠) one195

has a scalar polar wavelet frame expansion. Since the proposition uses the
same conditions that are required for scalar polar wavelets in R3 to form a
Parseval tight frame, the result follows from the existing proofs for the scalar
case. See [32, Proposition 4.1] for the isotropic result and [32, Theorem 2.4]
for those for the anisotropic case. ⇤200

The three dimensional divergence free wavelets have the same useful
properties we already observed in two dimensions, in particular they are
divergence free in an ideal, analytic sense, they have closed form expressions
in frequency and space, a multi-resolution structure and fast transforms.

2.4. Fast Transform205

The fast wavelet transform provides an ecient means to obtain the wavelet
coecients of a signal, in our case a fluid velocity vector field, without the
need to use numerical quadrature. It proceeds by splitting the signal fj+1

at scale j + 1 into a low frequency part fj on level j, represented by scal-
ing function coecients, and a high frequency part, represented by wavelet
coecients. By linearity it suces to determine the projection for the basis
functions, which are described by the filter taps

↵j,k =
D
~φj,0(x), ~φj+1,k(x)

E
(14a)
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5C. Lessig, “PsiEC: A Local Spherical Exterior Calculus,” Submitt. to Appl. Comput. Harmon. Anal., https://arxiv.org/abs/1811.12269, 2018.

        : Local spectral exterior calculus5
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Summary
  ◦ Tight frames of divergence free wavelets

  – Flexible angular localization

  – Closed form expressions in spatial and 
frequencey domain

  – Quasi optimal approximation properties 
in 2D

  – Intuitive correspondence to natural flow 
phenomena
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Open Questions
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Open Questions
  ◦ Compactly supported polar wavelets
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Open Questions
  ◦ Compactly supported polar wavelets
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Open Questions
  ◦ Compactly supported polar wavelets

  ◦ Boundary layer theory and curvelet-like 
anisotropic wavelets

  ◦ Approximation properties and imple-
mentation of 3D div-free wavelets
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