
The surfaces we want to visualize are
defined as iso-value contours of a field
function

The function SF is the superposition of
local, monotonic decreasing kernel func-
tions K(x,xi) which are defined at a finite
number of nodes xi. Iterative techniques
must be employed for the intersection
test, in contrast to previous GPU based
ray casting engines where closed form
solutions were available. We use Newton
Iteration for the ray object intersection
test because of its quadratic conver-
gence and algorithmic simplicity.
Modern GPUs are designed to efficiently
display triangle-based geometry using
rasterization. This makes it necessary to
map the ray casting algorithm onto the
pipeline stages of current graphics hard-

ware (Figure 3). It is well known that each
eye ray is used to compute the color for
one screen pixel. Therefore, the ray
object intersection test can be computed
in the fragment shader. This is efficient
because
• the fragment processor is currently the
unit with the most processing power,
• the independence of the intersection
tests allows us to exploit the parallelism
of the fragment processor,
• the ray setup can be performed in the
rasterization unit by mapping ray direc-
tions to texture coordinates.
Similar to many GPGPU algorithms,
polygonal geometry has to be rendered
to invoke the computations. Rendering a
screen sized quad and intersecting every
object with every ray is inefficient, as
most objects cover only a small portion
of the screen. Therefore we render

polygonal convex hulls for the scene
entities. For each object this generates a
tight but complete set of candidate rays
which are likely to intersect the object.
For general node-based implicit surfaces
it is non-trivial to compute a convex hull.
Equation 1 can only be computed effi-
ciently for certain applications such as
physical simulations where a proximity
constraint on the nodes exists. We there-
fore propose a modified field function

for which the surface is bound by the
superposition of the convex hulls of the
local field functions (Figure 1).

Depending on the surface, often more
than 100 nodes have to be taken into
account when evaluating a surface point.
This is very expensive and, due to hard-
ware limitations, impossible to imple-
ment on current graphics hardware.
However, omitting many summands may
lead to non-smooth surfaces. We there-
fore sum up only the K largest terms and
approximate the contribution of the
remaining nodes by an ambient field.
This field is precomputed on the CPU
and stored in a volume texture. The res-
olution of the texture can be used to
trade performance for quality. The imple-
mentation of the Newton Iteration and
the generation of the initial guesses fol-
low those proposed in [1]

Raster Unit

Node-based implicit surfaces are a pop-
ular surface representation for modeling
and animation, especially for organic
shapes and natural phenomena. In this
poster we present a novel GPU-based ray
casting engine for the direct and efficient
visualization of these surfaces. Because

our approach is based on ray object
intersection tests, no intermediate sur-
face representation is necessary. This
reduces the memory requirements on
the GPU and the computational costs on
the CPU. Additionally, ray casting also
has the advantage that the results are

guaranteed to be pixel-accurate. For
small to medium-sized scenes our tech-
nique provides real time frame rates. For
scenes with many nearby nodes we
approximate the contribution of most of
the nodes by an ambient field. This pro-
vides interactive frame rates and smooth

surfaces even for complex scenes. We
demonstrate the applicability of our
method by visualizing a Lagrangian fluid
simulation, a problem for which existing
techniques are more complex and do not
provide our pixel-accurate results.

To demonstrate the applicability of our
ray casting engine we employ it to visual-
ize a Lagrangian fluid simulation, similar
to the one proposed by Müller et al. [2].
This is a particularly attractive example
because Lagrangian simulations are
node-based and lend naturally to an
implicit surface. For scenes with a limited
number of nodes where no ambient field
is needed, we achieve real-time frame

rates (Figure 4), for more complex scenes
where the ambient field is used we
achieve interactive frame rates (Figure 2).
Currently, the two main limitations are
• the use of the ambient field which has
to be computed on the CPU and which is
only an approximation,
• the not perfect convergence of the
Newton Iteration.
We believe that the next generation of

graphics hardware will provide the fea-
ture set and compute power to discard
the ambient field and significantly
improve the performance.
Avoiding pixel artifacts caused by failing
intersection tests will be one of the main
objectives of our future work; improving
the initial guesses for the Newton
Iteration is one possibility; an alternative
is to employ root finding algorithms

which are guaranteed to converge.
Another avenue for future work is to
explore other applications for our algo-
rithm, such as modeling systems or
blending polygons with implicit surfaces
[3]. We also plan to implement the
Lagrangian simulation on the GPU so
that physical simulation and visualization
run on the GPU.

GPU-Accelerated Ray Casting of Node-Based Implicit Surfaces

())1(.,∑=
i

iF xxKS

()

())2(
,

,
ˆ

2

∑
∑

=

i
i

i
i

F xxK

xxK
S

Introduction

Solution

Results
EExxppeerriimmeennttaall SSeettuupp

C++, OpenGL and GLSL •
Pentium D 3.2 GHz •

1 Gbyte of RAM •
Nvidia 7800 GT •

512 x 512 image resolution •

FFiigguurree 44:: Blending between
three nodes under the influ-
ence of attraction and repul-
sion forces and gravity, ren-
dered at 45 fps

FFiigguurree 33:: Mapping of the ray casting algorithm onto a GPU

FFiigguurree 22:: Liquid flowing into a tank,
together simulation and rendering
run at 5 fps with 100 nodes.

FFiigguurree 11:: Blending of nodes with
Equation 2 as field function.

RReeffeerreenncceess

[1] J. F. Blinn, A Generalization of
Algebraic Surface Drawing,
SIGGRAPH 1982.

[2] M. Müller, D. Charypar, M. Gross,
Particle-Based Fluid Simulation
for Interactive Applications, SCA
2003

[3] Karan Singh, R. Parent, Joining
Polyhedral Objects using
Implicitly Defined Surfaces, The
Visual Computer 17, 2001

Video Memory

Ray
Setup

Normal
Evaluation ShadingNewton Iteration

Fragment UnitVertex Unit

* {lessig,derek,karan}@dgp.toronto.edu

Christian Lessig*, Derek Nowrouzezahrai*, Karan Singh* – Dynamic Graphics Project – University of Toronto

Ray
Setup

