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Fluid simulation

  ◦ Incompressible Navier-Stokes equations:
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Divergence freedom
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Fluid simulation

  ◦ Incompressible Navier-Stokes equations:

needs to be re-enforced 
after every time step 
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Fluid simulation

  ◦ Incompressible Navier-Stokes equations in vorticity form:
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Fluid simulation

  ◦ Representation of velocity and vorticity:

Enforces much of the intrinsic 
structure of imcompressible fluids
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Fluid simulation

  ◦ How to construct divergence free basis functions?

  – Analytic form for simple geometries (square, disk, ...)

  – Numerical computation for meshed domains
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Fluid simulation

4 •

..
Fig. 4. Laplacian eigenfunctions have a correspondence with spatial
scales of vorticity, allowing basis coefficients to be interpreted as a dis-
crete spectrum of vorticity. The right of the spectrum corresponds to larger
magnitudes of eigenvalues and smaller scale vortices.

fields Φk to be divergence free and satisfy a free slip condition at
the boundary. Hence our basis fields are completely characterized
by

∆Φk = λkΦk

div (Φk) = 0

Φk · n = 0 at @D (1)

where λk are eigenvalues and n is a vector normal to the boundary.
The eigenfunctions of the Laplacian operator ∆ are domain de-

pendent. For many simple domains, functions satisfying Eq. 1 have
closed form expressions, which are available for example in the
physics literature where they describe the magnetic fields of elec-
tromagnetic resonators [Cheng 1999]. For instance, on a ⇡ ⇥ ⇡

square domain, Laplacian eigenfunctions satisfying Eq. 1 have the
closed form expressions

Φk =
1

k2
1 + k2

2

(k2 sin(k1x) cos(k2y)ax

−k1 cos(k1x) sin(k2y)ay) , (2)

where k = (k1, k2) 2 Z2 is a tuple of integers known as the
vector wave number. The vector fields Φk are Laplacian eigenfunc-
tions with eigenvalues λk = −(k2

1 + k
2
2). Examples are plotted in

Figure 4. We will continue to use the square domain as a concrete,
illustrative example throughout the text, although closed form ex-
pressions also exist for many other domains including a 3-D rect-
angular prism [de Witt 2010], a disc, the surface of a sphere, or a
planar region with a wrap around boundary condition.

For our simulation method, we also require the vorticity field
! = curl (u) and a vorticity basis {φk} with φk = curlΦk. For
example, the vorticity basis fields associated with Eq. 2 are just the
curl of the velocity basis functions and given by

φk = sin(k1x) sin(k2y)az. (3)

One can verify that the φk are also Laplacian eigenfunctions of the
domain. However, as u and ! are orthogonal, the vorticity basis
functions have only a normal component at the boundary, and hence
satisfy

∆φk = λkφk

φk ⇥ n = 0 at @D. (4)

3.1 Basis Field Properties

We summarize some additional interesting and useful properties of
our basis. One can verify that the example expressions of Eqs. 2
and 3 satisfy all the properties listed below.

Velocity-Vorticity Duality. In general, reconstructing a velocity
field from a vorticity field is computationally expensive, typically
involving the use of the Biot-Savart Law [Angelidis et al. 2006;
Weißmann and Pinkall 2010]. The key benefit of a representation in

Laplacian eigenfunctions is that the inverse operator curl −1 applied
to vorticity basis functions yields a simple expression:

Φk = curl −1
φk

= curl −1

✓
1

λk

∆φk

◆

=
1

λk

curl −1
�
−curl 2φk

�

= − 1

λk

curlφk. (5)

A further important observation is that due to linearity of the curl
operator, the expansion of the vorticity ! in the φi basis shares the
same coefficients as the expansion of the velocity u in the Φk basis

! = curlu = curl
NX

i

!iΦi =

NX

i

!icurlΦi =

NX

i

!iφi.

This is notable since a single coefficient vector w =
[!1 !2 . . . !N ] uniquely identifies both the fluid’s velocity u
and its vorticity !. Either field can be easily reconstructed from the
basis coefficients !i.

Orthogonality. Laplacian eigenfunctions on a domain form an
orthogonal set. The total energy of a signal expressed in an orthog-
onal basis is the sum of the squares of its coefficients by Parseval’s
identity. The fluid’s kinetic energy can thus be calculated as

Z

D

kuk2 =

NX

i

!
2
i .

Spatial scales of vorticity. As shown in Figure 4, larger eigen-
values of the Laplacian correspond to fields with smaller vortices.
Basis coefficients can be interpreted as a discrete spatial spectrum
of the fluid with higher “frequencies” corresponding to smaller
scales of vorticity. This notion has been previously applied by Stam
and Fiume using a Fourier basis to generate procedural stochastic
turbulence [Stam and Fiume 1993].

A decomposition into a spectrum of vorticity is important for at
least two reasons. First, because computations require our basis to
be finite, this ordered structure provides a principle by which to se-
lect the finite set. In choosing to truncate the spectrum at some finite
N , the error we incur is well defined: we lose the ability to sim-
ulate vortices smaller than a given scale. Second, combined with
orthogonality, our basis delivers a means of controlling the energy
at different scales of vorticity by adjusting the magnitude of the
basis coefficients. We use this property in Section 4 to accurately
model viscous energy decay. It could also be used to initialize or
arbitrarily change a fluid’s turbulent spectrum.

Closed form expressions. For some simple domains, the ba-
sis fields have closed form expressions. This allows the velocity to
be evaluated at any spatial coordinate without the need for a vox-
elized grid or interpolation. A grid may still be used for visualiza-
tion, for example to track density or subsample the velocity from
the closed form expressions to accelerate particle advection. How-
ever, this grid is independent of the simulation, and its resolution
may be changed without changing the performance or behavior of
the underling simulation. Although the benefits of closed form ex-
pressions are limited to simple geometries, a 2-D rectangle and 3-
D rectangular cavity both represent typical simulation domains. In
Section 8 we compute basis fields numerically for general meshed
domains through a discrete vector Laplacian operator.
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  ◦ Divergence free basis functions for unit square:

from T. de Witt, C. Lessig, and E. Fiume, “Fluid Simulation Using Laplacian Eigenfunctions,” ACM Trans. Graph., vol. 31, no. 1, pp. 1–11, Jan. 2012.
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Fluid simulation

  ◦ Fluid simulation using Laplacian eigenfunctions:

Video
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Fluid simulation

  ◦ Fluid simulation using Laplacian eigenfunctions:

+ Analytical divergence freedom

+ Efficient and simple (no pressure projection)

+ Plausible flows with few degrees of freedom
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Fluid simulation

  ◦ Fluid simulation using Laplacian eigenfunctions:

+ Analytical divergence freedom

+ Efficient and simple (no pressure projection)

+ Plausible flows with few degrees of freedom

− Fixed geometry 

− Global support of basis functions (e.g. difficult 
to resolve turbulent details)



39© Christian Lessig, 2018

How to construct a local divergence 
free representation for velocity?



40© Christian Lessig, 2018

How to construct a local divergence 
free representation for velocity?



41© Christian Lessig, 2018

How to construct a local divergence 
free representation for velocity?

(that preserves all the other advantages)
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Divergence freedom

  ◦ Divergence free basis:

...
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in the spatial domain
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Wavelets

forms a tight frame 
in the spatial domain like an orthonormal 

basis but redundant
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  ◦ Spatial representation:

Jacobi-Anger 
formula:

Divergence free wavelets
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Finer and finer vortices 
on finer and finer grids

Divergence free wavelets

Proposition:
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Fig. 11. Reconstruction of a divergence free vector field (bo�om le�) with isotropic wavelets with an increasing number of levels (from le� to right); the error
is shown in the top row and the reconstructed vector field in the bo�om. In this example already the second wavelet level is su�icient to completely represent
the signal in the interior. The boundaries cannot be fully resolved even with four levels. Hence the need for directional wavelets, whose application is shown in
the right most row. The insets show the frame coe�icients of the field at each level. It is apparent how their spatial distribution aligns with intuitive features in
the flow field.

closest to it. This is possible because of the redundancy of the an-
gular frames, which means that nearby directions will pick up a
signi�cant amount of data that is also represented by its neighbours.
Our approach for working with directional wavelets is hence to use
a priori information about the sparsity avoid unnecessary computa-
tions. This is to be contrasted with the usual approach used in image
compression, and that is also typically used for wavelet methods in
computational �uid dynamics [Schneider and Vasilyev 2010], where
the sparsity is determined a posterior from a dense representation
of the data.

Directional boundary wavelets provide a rather unconventional
way to enforce no-slip boundary conditions. While not perfect with
a �nest level of 3 our results demonstrate that they provide a feasible
approach, in particular for computer graphics applications.

6.2 Simulation
In Fig. 14 we provide a still sequence of a �uid simulation in 2D.
Each time step took approximately 600 ms and since we currently
do not exploit sparsity very much the run time scales quadratically

Fig. 12. Reconstruction of the vector field in Fig. 11 with isotropic wavelets
up to level 2 (le�) and also with directional wavelets in the top right for
x1 2 [0,  ] and x2 ⇡  (right). The inset figures show the local magnitude
of the error (with ( ,  ) straight ahead). Clearly visible is a drastic error
reduction in the local region where the boundary wavelets are used. They
hence provide an e�ective means to describe no-slip boundary flows.

with the number of frame coe�cients. Fig. 14 also shows a �ow �eld
in three dimensions obtained with basis functions up to level 2. As
can be seen that even with this relatively modest number of levels
highly turbulent behaviour can be attained. Videos are available in
the supplementary material.

7 CONCLUSION
We introduced an intuitive and mathematically expedient dual pair
of frame representations for a �uid’s velocity and vorticity �elds.
The frame functions are localized in space and frequency and corre-
spond to natural �ow phenomena such as vorticies, no-slip boundary
conditions and streaming. Because the velocity basis functions are
by construction divergence free, we can simulate in the vorticity for-
mulation where no pressure projection step is required. We obtain
the frames from a construction in the Fourier domain that respects
the inherent geometric structure. One of the resulting bene�ts is
that almost all calculations can be performed in closed form.
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Fig. 13. Magnitude of basis coe�icient as a function of the orientation for
directional wavelets. The test flow we used is along a vertical boundary
(corresponding to 0 degrees in the plot) with a sharp drop o� in the velocity
field, as is common for no-slip boundary conditions [Schlichting andGersten
2017]. Visible is the directional selectivity of the wavelets and how the
angular localization increases as a function of the level j .
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Fig. 11. Reconstruction of a divergence free vector field (bo�om le�) with isotropic wavelets with an increasing number of levels (from le� to right); the error
is shown in the top row and the reconstructed vector field in the bo�om. In this example already the second wavelet level is su�icient to completely represent
the signal in the interior. The boundaries cannot be fully resolved even with four levels. Hence the need for directional wavelets, whose application is shown in
the right most row. The insets show the frame coe�icients of the field at each level. It is apparent how their spatial distribution aligns with intuitive features in
the flow field.

closest to it. This is possible because of the redundancy of the an-
gular frames, which means that nearby directions will pick up a
signi�cant amount of data that is also represented by its neighbours.
Our approach for working with directional wavelets is hence to use
a priori information about the sparsity avoid unnecessary computa-
tions. This is to be contrasted with the usual approach used in image
compression, and that is also typically used for wavelet methods in
computational �uid dynamics [Schneider and Vasilyev 2010], where
the sparsity is determined a posterior from a dense representation
of the data.
Directional boundary wavelets provide a rather unconventional

way to enforce no-slip boundary conditions. While not perfect with
a �nest level of 3 our results demonstrate that they provide a feasible
approach, in particular for computer graphics applications.

6.2 Simulation
In Fig. 14 we provide a still sequence of a �uid simulation in 2D.
Each time step took approximately 600 ms and since we currently
do not exploit sparsity very much the run time scales quadratically

Fig. 12. Reconstruction of the vector field in Fig. 11 with isotropic wavelets
up to level 2 (le�) and also with directional wavelets in the top right for
x1 2 [0,  ] and x2 ⇡  (right). The inset figures show the local magnitude
of the error (with ( ,  ) straight ahead). Clearly visible is a drastic error
reduction in the local region where the boundary wavelets are used. They
hence provide an e�ective means to describe no-slip boundary flows.

with the number of frame coe�cients. Fig. 14 also shows a �ow �eld
in three dimensions obtained with basis functions up to level 2. As
can be seen that even with this relatively modest number of levels
highly turbulent behaviour can be attained. Videos are available in
the supplementary material.

7 CONCLUSION
We introduced an intuitive and mathematically expedient dual pair
of frame representations for a �uid’s velocity and vorticity �elds.
The frame functions are localized in space and frequency and corre-
spond to natural �ow phenomena such as vorticies, no-slip boundary
conditions and streaming. Because the velocity basis functions are
by construction divergence free, we can simulate in the vorticity for-
mulation where no pressure projection step is required. We obtain
the frames from a construction in the Fourier domain that respects
the inherent geometric structure. One of the resulting bene�ts is
that almost all calculations can be performed in closed form.

● ●

● ●

●

●

●
● ●■ ■ ■ ■ ■ ■ ■ ■ ■◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆● ● ● ●

● ●

●

●

●

●
●

● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

● j=2
■ j=3

◆ j=4

-π -π
2

0 π
2

π

Fig. 13. Magnitude of basis coe�icient as a function of the orientation for
directional wavelets. The test flow we used is along a vertical boundary
(corresponding to 0 degrees in the plot) with a sharp drop o� in the velocity
field, as is common for no-slip boundary conditions [Schlichting andGersten
2017]. Visible is the directional selectivity of the wavelets and how the
angular localization increases as a function of the level j .
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Fig. 11. Reconstruction of a divergence free vector field (bo�om le�) with isotropic wavelets with an increasing number of levels (from le� to right); the error
is shown in the top row and the reconstructed vector field in the bo�om. In this example already the second wavelet level is su�icient to completely represent
the signal in the interior. The boundaries cannot be fully resolved even with four levels. Hence the need for directional wavelets, whose application is shown in
the right most row. The insets show the frame coe�icients of the field at each level. It is apparent how their spatial distribution aligns with intuitive features in
the flow field.

closest to it. This is possible because of the redundancy of the an-
gular frames, which means that nearby directions will pick up a
signi�cant amount of data that is also represented by its neighbours.
Our approach for working with directional wavelets is hence to use
a priori information about the sparsity avoid unnecessary computa-
tions. This is to be contrasted with the usual approach used in image
compression, and that is also typically used for wavelet methods in
computational �uid dynamics [Schneider and Vasilyev 2010], where
the sparsity is determined a posterior from a dense representation
of the data.
Directional boundary wavelets provide a rather unconventional

way to enforce no-slip boundary conditions. While not perfect with
a �nest level of 3 our results demonstrate that they provide a feasible
approach, in particular for computer graphics applications.

6.2 Simulation
In Fig. 14 we provide a still sequence of a �uid simulation in 2D.
Each time step took approximately 600 ms and since we currently
do not exploit sparsity very much the run time scales quadratically

Fig. 12. Reconstruction of the vector field in Fig. 11 with isotropic wavelets
up to level 2 (le�) and also with directional wavelets in the top right for
x1 2 [0,  ] and x2 ⇡  (right). The inset figures show the local magnitude
of the error (with ( ,  ) straight ahead). Clearly visible is a drastic error
reduction in the local region where the boundary wavelets are used. They
hence provide an e�ective means to describe no-slip boundary flows.

with the number of frame coe�cients. Fig. 14 also shows a �ow �eld
in three dimensions obtained with basis functions up to level 2. As
can be seen that even with this relatively modest number of levels
highly turbulent behaviour can be attained. Videos are available in
the supplementary material.

7 CONCLUSION
We introduced an intuitive and mathematically expedient dual pair
of frame representations for a �uid’s velocity and vorticity �elds.
The frame functions are localized in space and frequency and corre-
spond to natural �ow phenomena such as vorticies, no-slip boundary
conditions and streaming. Because the velocity basis functions are
by construction divergence free, we can simulate in the vorticity for-
mulation where no pressure projection step is required. We obtain
the frames from a construction in the Fourier domain that respects
the inherent geometric structure. One of the resulting bene�ts is
that almost all calculations can be performed in closed form.
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angular localization increases as a function of the level j .
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Fig. 11. Reconstruction of a divergence free vector field (bo�om le�) with isotropic wavelets with an increasing number of levels (from le� to right); the error
is shown in the top row and the reconstructed vector field in the bo�om. In this example already the second wavelet level is su�icient to completely represent
the signal in the interior. The boundaries cannot be fully resolved even with four levels. Hence the need for directional wavelets, whose application is shown in
the right most row. The insets show the frame coe�icients of the field at each level. It is apparent how their spatial distribution aligns with intuitive features in
the flow field.

closest to it. This is possible because of the redundancy of the an-
gular frames, which means that nearby directions will pick up a
signi�cant amount of data that is also represented by its neighbours.
Our approach for working with directional wavelets is hence to use
a priori information about the sparsity avoid unnecessary computa-
tions. This is to be contrasted with the usual approach used in image
compression, and that is also typically used for wavelet methods in
computational �uid dynamics [Schneider and Vasilyev 2010], where
the sparsity is determined a posterior from a dense representation
of the data.
Directional boundary wavelets provide a rather unconventional

way to enforce no-slip boundary conditions. While not perfect with
a �nest level of 3 our results demonstrate that they provide a feasible
approach, in particular for computer graphics applications.

6.2 Simulation
In Fig. 14 we provide a still sequence of a �uid simulation in 2D.
Each time step took approximately 600 ms and since we currently
do not exploit sparsity very much the run time scales quadratically

Fig. 12. Reconstruction of the vector field in Fig. 11 with isotropic wavelets
up to level 2 (le�) and also with directional wavelets in the top right for
x1 2 [0,  ] and x2 ⇡  (right). The inset figures show the local magnitude
of the error (with ( ,  ) straight ahead). Clearly visible is a drastic error
reduction in the local region where the boundary wavelets are used. They
hence provide an e�ective means to describe no-slip boundary flows.

with the number of frame coe�cients. Fig. 14 also shows a �ow �eld
in three dimensions obtained with basis functions up to level 2. As
can be seen that even with this relatively modest number of levels
highly turbulent behaviour can be attained. Videos are available in
the supplementary material.

7 CONCLUSION
We introduced an intuitive and mathematically expedient dual pair
of frame representations for a �uid’s velocity and vorticity �elds.
The frame functions are localized in space and frequency and corre-
spond to natural �ow phenomena such as vorticies, no-slip boundary
conditions and streaming. Because the velocity basis functions are
by construction divergence free, we can simulate in the vorticity for-
mulation where no pressure projection step is required. We obtain
the frames from a construction in the Fourier domain that respects
the inherent geometric structure. One of the resulting bene�ts is
that almost all calculations can be performed in closed form.
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angular localization increases as a function of the level j .
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Fig. 11. Reconstruction of a divergence free vector field (bo�om le�) with isotropic wavelets with an increasing number of levels (from le� to right); the error
is shown in the top row and the reconstructed vector field in the bo�om. In this example already the second wavelet level is su�icient to completely represent
the signal in the interior. The boundaries cannot be fully resolved even with four levels. Hence the need for directional wavelets, whose application is shown in
the right most row. The insets show the frame coe�icients of the field at each level. It is apparent how their spatial distribution aligns with intuitive features in
the flow field.

closest to it. This is possible because of the redundancy of the an-
gular frames, which means that nearby directions will pick up a
signi�cant amount of data that is also represented by its neighbours.
Our approach for working with directional wavelets is hence to use
a priori information about the sparsity avoid unnecessary computa-
tions. This is to be contrasted with the usual approach used in image
compression, and that is also typically used for wavelet methods in
computational �uid dynamics [Schneider and Vasilyev 2010], where
the sparsity is determined a posterior from a dense representation
of the data.
Directional boundary wavelets provide a rather unconventional

way to enforce no-slip boundary conditions. While not perfect with
a �nest level of 3 our results demonstrate that they provide a feasible
approach, in particular for computer graphics applications.

6.2 Simulation
In Fig. 14 we provide a still sequence of a �uid simulation in 2D.
Each time step took approximately 600 ms and since we currently
do not exploit sparsity very much the run time scales quadratically

Fig. 12. Reconstruction of the vector field in Fig. 11 with isotropic wavelets
up to level 2 (le�) and also with directional wavelets in the top right for
x1 2 [0,  ] and x2 ⇡  (right). The inset figures show the local magnitude
of the error (with ( ,  ) straight ahead). Clearly visible is a drastic error
reduction in the local region where the boundary wavelets are used. They
hence provide an e�ective means to describe no-slip boundary flows.

with the number of frame coe�cients. Fig. 14 also shows a �ow �eld
in three dimensions obtained with basis functions up to level 2. As
can be seen that even with this relatively modest number of levels
highly turbulent behaviour can be attained. Videos are available in
the supplementary material.

7 CONCLUSION
We introduced an intuitive and mathematically expedient dual pair
of frame representations for a �uid’s velocity and vorticity �elds.
The frame functions are localized in space and frequency and corre-
spond to natural �ow phenomena such as vorticies, no-slip boundary
conditions and streaming. Because the velocity basis functions are
by construction divergence free, we can simulate in the vorticity for-
mulation where no pressure projection step is required. We obtain
the frames from a construction in the Fourier domain that respects
the inherent geometric structure. One of the resulting bene�ts is
that almost all calculations can be performed in closed form.
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angular localization increases as a function of the level j .
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is shown in the top row and the reconstructed vector field in the bo�om. In this example already the second wavelet level is su�icient to completely represent
the signal in the interior. The boundaries cannot be fully resolved even with four levels. Hence the need for directional wavelets, whose application is shown in
the right most row. The insets show the frame coe�icients of the field at each level. It is apparent how their spatial distribution aligns with intuitive features in
the flow field.

closest to it. This is possible because of the redundancy of the an-
gular frames, which means that nearby directions will pick up a
signi�cant amount of data that is also represented by its neighbours.
Our approach for working with directional wavelets is hence to use
a priori information about the sparsity avoid unnecessary computa-
tions. This is to be contrasted with the usual approach used in image
compression, and that is also typically used for wavelet methods in
computational �uid dynamics [Schneider and Vasilyev 2010], where
the sparsity is determined a posterior from a dense representation
of the data.
Directional boundary wavelets provide a rather unconventional

way to enforce no-slip boundary conditions. While not perfect with
a �nest level of 3 our results demonstrate that they provide a feasible
approach, in particular for computer graphics applications.

6.2 Simulation
In Fig. 14 we provide a still sequence of a �uid simulation in 2D.
Each time step took approximately 600 ms and since we currently
do not exploit sparsity very much the run time scales quadratically

Fig. 12. Reconstruction of the vector field in Fig. 11 with isotropic wavelets
up to level 2 (le�) and also with directional wavelets in the top right for
x1 2 [0,  ] and x2 ⇡  (right). The inset figures show the local magnitude
of the error (with ( ,  ) straight ahead). Clearly visible is a drastic error
reduction in the local region where the boundary wavelets are used. They
hence provide an e�ective means to describe no-slip boundary flows.

with the number of frame coe�cients. Fig. 14 also shows a �ow �eld
in three dimensions obtained with basis functions up to level 2. As
can be seen that even with this relatively modest number of levels
highly turbulent behaviour can be attained. Videos are available in
the supplementary material.

7 CONCLUSION
We introduced an intuitive and mathematically expedient dual pair
of frame representations for a �uid’s velocity and vorticity �elds.
The frame functions are localized in space and frequency and corre-
spond to natural �ow phenomena such as vorticies, no-slip boundary
conditions and streaming. Because the velocity basis functions are
by construction divergence free, we can simulate in the vorticity for-
mulation where no pressure projection step is required. We obtain
the frames from a construction in the Fourier domain that respects
the inherent geometric structure. One of the resulting bene�ts is
that almost all calculations can be performed in closed form.
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Fig. 13. Magnitude of basis coe�icient as a function of the orientation for
directional wavelets. The test flow we used is along a vertical boundary
(corresponding to 0 degrees in the plot) with a sharp drop o� in the velocity
field, as is common for no-slip boundary conditions [Schlichting andGersten
2017]. Visible is the directional selectivity of the wavelets and how the
angular localization increases as a function of the level j .
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Fig. 11. Reconstruction of a divergence free vector field (bo�om le�) with isotropic wavelets with an increasing number of levels (from le� to right); the error
is shown in the top row and the reconstructed vector field in the bo�om. In this example already the second wavelet level is su�icient to completely represent
the signal in the interior. The boundaries cannot be fully resolved even with four levels. Hence the need for directional wavelets, whose application is shown in
the right most row. The insets show the frame coe�icients of the field at each level. It is apparent how their spatial distribution aligns with intuitive features in
the flow field.

closest to it. This is possible because of the redundancy of the an-
gular frames, which means that nearby directions will pick up a
signi�cant amount of data that is also represented by its neighbours.
Our approach for working with directional wavelets is hence to use
a priori information about the sparsity avoid unnecessary computa-
tions. This is to be contrasted with the usual approach used in image
compression, and that is also typically used for wavelet methods in
computational �uid dynamics [Schneider and Vasilyev 2010], where
the sparsity is determined a posterior from a dense representation
of the data.
Directional boundary wavelets provide a rather unconventional

way to enforce no-slip boundary conditions. While not perfect with
a �nest level of 3 our results demonstrate that they provide a feasible
approach, in particular for computer graphics applications.

6.2 Simulation
In Fig. 14 we provide a still sequence of a �uid simulation in 2D.
Each time step took approximately 600 ms and since we currently
do not exploit sparsity very much the run time scales quadratically

Fig. 12. Reconstruction of the vector field in Fig. 11 with isotropic wavelets
up to level 2 (le�) and also with directional wavelets in the top right for
x1 2 [0,  ] and x2 ⇡  (right). The inset figures show the local magnitude
of the error (with ( ,  ) straight ahead). Clearly visible is a drastic error
reduction in the local region where the boundary wavelets are used. They
hence provide an e�ective means to describe no-slip boundary flows.

with the number of frame coe�cients. Fig. 14 also shows a �ow �eld
in three dimensions obtained with basis functions up to level 2. As
can be seen that even with this relatively modest number of levels
highly turbulent behaviour can be attained. Videos are available in
the supplementary material.

7 CONCLUSION
We introduced an intuitive and mathematically expedient dual pair
of frame representations for a �uid’s velocity and vorticity �elds.
The frame functions are localized in space and frequency and corre-
spond to natural �ow phenomena such as vorticies, no-slip boundary
conditions and streaming. Because the velocity basis functions are
by construction divergence free, we can simulate in the vorticity for-
mulation where no pressure projection step is required. We obtain
the frames from a construction in the Fourier domain that respects
the inherent geometric structure. One of the resulting bene�ts is
that almost all calculations can be performed in closed form.
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(corresponding to 0 degrees in the plot) with a sharp drop o� in the velocity
field, as is common for no-slip boundary conditions [Schlichting andGersten
2017]. Visible is the directional selectivity of the wavelets and how the
angular localization increases as a function of the level j .
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is shown in the top row and the reconstructed vector field in the bo�om. In this example already the second wavelet level is su�icient to completely represent
the signal in the interior. The boundaries cannot be fully resolved even with four levels. Hence the need for directional wavelets, whose application is shown in
the right most row. The insets show the frame coe�icients of the field at each level. It is apparent how their spatial distribution aligns with intuitive features in
the flow field.

closest to it. This is possible because of the redundancy of the an-
gular frames, which means that nearby directions will pick up a
signi�cant amount of data that is also represented by its neighbours.
Our approach for working with directional wavelets is hence to use
a priori information about the sparsity avoid unnecessary computa-
tions. This is to be contrasted with the usual approach used in image
compression, and that is also typically used for wavelet methods in
computational �uid dynamics [Schneider and Vasilyev 2010], where
the sparsity is determined a posterior from a dense representation
of the data.
Directional boundary wavelets provide a rather unconventional

way to enforce no-slip boundary conditions. While not perfect with
a �nest level of 3 our results demonstrate that they provide a feasible
approach, in particular for computer graphics applications.

6.2 Simulation
In Fig. 14 we provide a still sequence of a �uid simulation in 2D.
Each time step took approximately 600 ms and since we currently
do not exploit sparsity very much the run time scales quadratically

Fig. 12. Reconstruction of the vector field in Fig. 11 with isotropic wavelets
up to level 2 (le�) and also with directional wavelets in the top right for
x1 2 [0,  ] and x2 ⇡  (right). The inset figures show the local magnitude
of the error (with ( ,  ) straight ahead). Clearly visible is a drastic error
reduction in the local region where the boundary wavelets are used. They
hence provide an e�ective means to describe no-slip boundary flows.

with the number of frame coe�cients. Fig. 14 also shows a �ow �eld
in three dimensions obtained with basis functions up to level 2. As
can be seen that even with this relatively modest number of levels
highly turbulent behaviour can be attained. Videos are available in
the supplementary material.

7 CONCLUSION
We introduced an intuitive and mathematically expedient dual pair
of frame representations for a �uid’s velocity and vorticity �elds.
The frame functions are localized in space and frequency and corre-
spond to natural �ow phenomena such as vorticies, no-slip boundary
conditions and streaming. Because the velocity basis functions are
by construction divergence free, we can simulate in the vorticity for-
mulation where no pressure projection step is required. We obtain
the frames from a construction in the Fourier domain that respects
the inherent geometric structure. One of the resulting bene�ts is
that almost all calculations can be performed in closed form.
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angular localization increases as a function of the level j .
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Divergence free wavelets

Properties of directional divergence free wavelets:

  ◦ Tight frame for 

  ◦ Closed form expression in spatial domain

  ◦ Quasi-optimal approximation of discontinuities 
(under suitable assumptions)
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freedom
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Proposition: Let     be the basis vector for the 
sphere for the longitudal coordinate for spherical 
coordinate w.r.t to the i-th axis. Then

forms a tight frame for            for all 

Analogue of 
on the sphere
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Divergence free wavelets

  ◦ Tight frames for 

  ◦ Isotropic and directional functions

  ◦ Closed form expression in spatial domain

  ◦ Quasi-optimal approximation of boundary 
conditions (in     , under suitable assumptions)

  ◦ More details: https://arxiv.org/abs/1805.02062




