Polarlets: Supplementary Material

Abstract

In this document we provide mathematical details that have been omitted from
the submitted manuscript due to space limitations.
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1. Preliminaries

1.1. The Fourier transform

The unitary Fourier transform of a function f : R™ — C is defined as

FN©) = 1) = Gmyers [ S@)e @9 da (12)
with inverse transform
FD© = 1) = oy [ F©) ae. (1)

1.2. Spherical harmonics

The analogue of the Fourier transform in Eq. [Ijon the sphere is the spherical

harmonics expansion. For any f € Ly(S?) it is given by

o0 l
F@) =5 S ) m ) pim () (2a)
=0 m=-1
0o l
= Z Z Jim Yim (W) (2b)

where (-, -) denotes the standard Lo inner product on S? given by

(F (), gw)) = /9 /¢ _T;f(ﬁ,qﬁ)g(@,aﬁ) sin 0 d0ds. 3)
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We use standard (geographic) spherical coordinates with 6 € [0, 7] being the
polar angle and ¢ € [0,27] the azimuthal one. The spherical harmonics basis

functions in Eq. 2] are given by
Yim (W) = Yim (0, 8) = Cim " (cos 0) €™ (4)

where the P/"(-) are associated Legendre polynomials and Cj,, is a normalization
constant so that the y;,,(w) are orthonormal over the sphere. The associated

Legendre polynomials are defined as
P (cosf) = (-1)™ Z Clmyp Sin 0™ (cos ) "M 2P (5a)
p=0
where r = [(I —m)/2] and

27421 — 2p)!

mp = (—1)P . 5b
me = ) = T = — 2p) (5b)
The associated Legendre polynomials are not Lo-normalized by satisfy
1
m m 2 (I4+m)!
[1 P (x) P2 () doe = mm@lza- (5¢)

Spherical Harmonics Addition Theorem. The spherical harmonics addition the-

orem is given by

!
4
Pi(z1-21) = ATl E Yim (w1) Yiym (w2) (6)
m=—I1

where w; are the spherical coordinates for the unit vector z; € R? and w, are
those for Z € R®. Tt follows immediately from the above formula that P;(z1-71)

is the reproducing kernel for the space spanned by all spherical harmonics of

fixed .

Clebsch-Gordon coefficients. In contrast to the Fourier series, where the product
e'm? ¢im20 s oiven by another Fourier series basis function, e!(m1+m2)¢ for
spherical harmonics the product is not diagonal and the coupling coefficients are

known as Clebsch-Gordon coefficients Cll m

S myila.m,- 10 Particular, the projection



of the product of yi, m, (w) and Y, m,(w) onto the spherical harmonics yy,, (w)

is given by

; (2[1 + 1)(2[2 + 1) 1,0 l,m
/Sz Ytymy (w) Yloms (w) Yim (w) dw = \/ 47T(2l + 1) Cl1,0;1270 Clhml?l%m?

and we call

li,mysla,mo — 47T(21+ 1) 11,0;12,0 ~'l1,mq3l2,m2 (7&)

Im _ \/(251 +1)(202 + 1)01,0 I,m

the spherical harmonics product coefficient. The Clebsch-Gordon coefficients

are sparse and non-zero only when
m = mq + ma, (7b)

that is the m parameter is not strictly needed but conventionally used, and

lhi+l—-12>0 (70)
Ii =l +1>0 (7d)
Iy 4+l +1>0. (7e)

1.8. Fourier Transform in Polar and Spherical Coordinates

Jacobi-Anger formula. In the plane, the Fourier transform can also be written

in polar coordinates using the Jacobi-Anger formula [,

HE) = 37 i 600 1 (1] a), ®

mez
that relates the complex exponential in Euclidean and polar coordinates. In
Eq. [8} Jim(2) is the Bessel function of the first kind and (¢g, |2|) and (¢¢,|£])
are polar coordinates for the spatial and frequency domains, respectively. The
ordering of the ¢, and ¢¢ on the right hand side is arbitrary and when the left

hand side is conjugated ¢"* becomes i~ ™.

The Fourier transform in two dimensions. The Jacobi-Anger formula allows

one to compute the Fourier transform in polar coordinates. Let f(¢,|z|) =
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f(Z|z]) = f(z) with T = (cos @, sin @), for fixed radius |z|. The function f(x)
can then be written as the Fourier series expansion
f(x) = [(ba,|2]) = Z () o= (9a)
nEZ
Inserting this together with the Jacobi-Anger formula into Eq. [la] and perform-

ing a change of variables to polar coordinates we obtain

2m
- . (;anuzne?m%)
Rl Joa=0 \ 27 17

<Z e 0 g (g |x|)> || dps dl|. (9b)

mEZ
The integral over ¢, is trivial since it only involves the complex exponentials
€% and e~ "%+ giving 27 0y, and also collapsing the product of sums into a

single sum. The Fourier transform f(¢) :f(¢5, |€]) is thus

fle) = 5= 3 imeimes / Fl2]) T (Il 2]l dl] (9¢)
mEZ

= 0o S i Fulleh e, (9d)
mEZ

with an analogous expression for the inverse transform. Note that the Fourier
transform preserves the polar structure: f(¢,, |z|) described in polar coordinates

is mapped to f (¢¢,[€]) in polar coordinates in the frequency domain.

Rayleigh formula. The analogue of the Jacobi-Anger formula in three dimen-

sions is the Rayleigh formula,

e = S (21 1) P(E- 7) julle] |a]) (10a)
=0

e’} l
= ZZ "yt (€) i (7) (18] ) (10b)

where j;(-) is the spherical Bessel function and the second line follows by the

spherical harmonics addition theorem in Eq. [f] Using a calculation analogous
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to those in Eq. [0} the Rayleigh formula enables the calculation of the Fourier

transform in spherical coordinates.

2. Admissibility Conditions for Polar Wavelets

2.1. Admissibility Conditions in Two Dimensions

In two dimensions, polarlets are defined by [2]
N
D& =70 M) = | D Bae™ | AED- (11a)
n=—N;

where ﬂjtn = eint2m/M; Bjn for some suitable coeflicient sequence 3, and M; is
the number of different orientations on level jE| In the spatial domain, Eq.
becomes

N

via) = 5o S0 P8 [ ) Talellehdel ()

n=—Nj €]

R (|2])
see the main text or the accompanying code for the closed form expression for

R (|z]). Eq.[11]is the mother wavelet for
27 ,
Yike(z) = %7/1(331 2z — k) (12)

where j € Z, k € Z?, and Rj; is a rotation by 2 /M;.
The following lemma provides the conditions that the functions defined by

Eq. [12] form a tight frame.

Lemma 1. Let U; be the (M; x 2N; + 1)-dimensional matriz formed by the

;}n coefficients for all M; orientations. Then the wavelets in Eq. generate a
Parseval tight frame for Lo(R?) when the radial window satisfies the Caldéron
admissibility condition

STaEENF =1, veeR? (13a)

JET

n general, the radial and angular part can have independent level variables but to simplify

the exposition we assume that these are coupled.
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and
Ul'U; = D; with tr(D;) =1,

where D; is diagonal, for all levels j.

(13b)

The above lemma was proved by Unser and Chenouard [2] using the higher-

order Riesz transform. The proof below uses a direct argument. We will es-

tablish the result for a semi-continuous frame with continuous translation pa-

rameter. The lemma then follows from standard arguments using the Shannon

sampling theorem, see e.g. [3].

Proof. We want to show

flz) = Z

for f € Lo(R?). Taking the Fourier transform of both sides we obtain

Mj—

1
(f % i) %y

t=0

FE& =322 (F-d5) e
i t=0
Since f does not depend on j we can write

M;—1

F= PSS b
j  t=0

For the lemma to hold we thus have to show

M;—1

SN he©F =1, VEeRr:
j  t=0

(14a)

(14b)

(14c)

(14d)

With the definition of the window function in Eq. the equation becomes

M;—1
DD [l
i t=0

M;—-1

t=0 \n=—N;, m=—N;

N; N,
Do B h@IEN || Do B h277IE)

(14e)

*
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Using linearity we have

M;—1

Z Z |7/;j,t| Z Z Z Z 6]tn *m inf efimﬂ |ﬁ(2*j|€|)|2
i =0 - ,

t=0 n=—N; m=—N.
Assuming the radial window functions satisfy the Caldéron admissibility condi-

tion in Eq. the lemma holds when

N; N; g
DS zﬁgn i, ) e, (146)

:—Nj m:—Nj
For the right hand side to be unity for all § we have to have that the Fourier
series in (m — n) has dy,—n 0 as coefficients, that is

M;—1

Crmn = Z B Bl = Om—n.o- (14g)

This is the first condition in Eq. ie. UHU = D. The Fourier series

coefficient is unity in magnitude with the trace condition in Eq. I35 O

2.2. Admissibility Conditions in Three Dimensions

In three dimensions, polarlets are defined by [4] 5]

L;

$(€) =4 h(l¢) = ZZfﬁmysz h(l)- (15a)

=0 m=—1

where kf = Wﬂg (At)nfm, for some suitable coefficient sequence ky,,,» and where
VV[;:: (A¢) is the Wigner-D matrix that rotates the functions to the location A;.

In the spatial domain Eq. [I5a] becomes

S Y e e ) [ e ael sl (s

=0 m=—1 1€]

b (l)
see the accompanying code for the closed form expression for h;(|z]). Eq. m is
the mother wavelet for
2%

Yjre() = ﬁw(Rﬁ 27z — k) (16)

where j € Z, k € Z?, and Rj; the rotation to ;. The following lemma provides
the conditions that the functions defined by Eq. [I6] to form a tight frame.
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Lemma 2. Let uj; be the (Lj + 1)?)-dimensional vector formed by the K;ll;fl for
fized j, t. Then the wavelets in Eq.[16 form a Parseval tight frame when

Slh@IEN =1, veeRr: (17a)
JEZL
and
M;
01,00m,0 = Z wje G g (17b)

t=0

where G'™ is the matriz formed by the spherical harmonics product coefficients
in Eq. @far fized (I,m).
Proof. With an argument fully analogous to those in the proof of Lemma [I] it

suffices to show that

=1, V¢eR® (18)

J
With the definition of the window functions and after re-arranging terms one
obtains

M,
ZZ WA}J‘F ZZ Z Z "illm1yllm1 E) "{lzmzylzﬂw (E)|E(2_]|§D|2
7 t=0 j

t=0 I1,m; lams
Assuming the Calderon condition in Eq. is satisfied, the lemma holds when
the product of the angular part evaluates to the identity for every band j and
every direction £. This means that for every j the projection of the angular part

in the above equation onto spherical harmonics has to satisfy

5l O m,0 — Z < Z "illmlyllml f_) Z 127n2y12m2 g) ’ ylm(§)> . (198“)

t=0 \l1,mq l2,m2

Rearranging terms we obtain

810 mo—Z SO R (my ()Y, (§) - Ui (©). (19D)

t=01l1,m1 l2,m2
The product of two spherical harmonics projected into another spherical har-

monic is given by the product coefficnets in Eq.[7] We can hence write

§ : § : 2 : lml—mz
5l 0 m, 0 - Hlllml HlQ’n’LQ ll,ml;lg,me' (lgc)

t=011,m1 la,m2
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Figure 1: Spatial decay of filter tap coefficients for the fast transform in 2D, see Eq. 21} for

isotropic functions.

Collecting the mlfn into vectors we obtain the condition in the lemma. O

3. Fast Transform

The fast transform splits the signal f;;1 at scale j + 1 into a low frequency
part, represented by scaling function coefficients, and a high frequency part,
represented by the wavelet coefficients. By linearity it suffices to determine the

projection for the basis functions, yielding filter taps
ke = (05,0(2), @j+1,k(2)) (20a)

Bkt = (1504(x), Pjp1,6(x)) . (20b)

By the Parseval identity o\ is given by

Bjkt = <1&j70,t(§) , éj+1,k(§)>- (21a)

In polar coordinates this equals

B[ [ (Z fn emeﬁ(u—jf)) (27 ely 279 fel o el

1€l n

where §(|¢]) is the window for the scaling function. The translation term
€277 7'k) can be expanded using the Jacobi-Anger formula. After using lin-
earity, this yields
o0
Bik,t = Z Z i By, €m0k / e~ 'm0 ein? gp (21Db)

n m=0 Sé
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Figure 2: Spatial decay of vs, coefficients in Eq.

x / R(1279€)3(1277€l) T (1€ 127 R]) le] dle]-
R,

The angular integral is 27 d,,,,,. The radial one has a closed form solution as well,
see the accompanying code for the expression. We will refer to it as BJ"(|k|) in

the following. Thus, we have
Bika =21y i" B B (|k]) (21c)
n

which is a finite sum with the same cardinality as those in the definition of
l@j_l)o(g). Hence, the filter taps can be computed in closed form. For the
a-coefficients, which couple scaling functions on adjacent levels, an analogous

derivation applies. Since the scaling functions are isotropic we have

aje = Ay =2x [ g(127€)a(127el) Jo(lg 270 K] el do . (210)
R
When the Rayleigh formula is used instead of the Jacobi-Anger one, an analo-

gous derivation can be used to derive the filter taps in three dimensions.

4. Galerkin Projection of the Laplace Operator

The Galerkin projection of the Laplace operator is given by

Vsr = <A¢s ’ '(/]r> (223)

10
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where s = (js, ks, ts), 7 = (jr, kr,t,) are multi-indices. Using the Parseval

identity we can compute the coefficients vy, in the Fourier domain,
ver = (At , ). (22b)
The Fourier multiplier A of the Laplacian is A= —|€)? so that
ver = =(I€2 s, Bi). (22¢)

Without loss of generality we can assume that 15 is located at the origin. Then

var = —(IE2P@IeD), PR Jg]) 2R ) 220

and using the definition of the frame functions we obtain

= —(JeP R [g]), h2 g elle2 ) (22¢)
where for simplicity we assumed isotropic functions.

In two dimensions, the inner product can be computed in polar coordinates
by expanding the translation term &2 kr) using the Jacobi-Anger formula.
We thus have

Vgp = — / h(279:

Rt S5

1€]

&) h(2771¢l) (22f)

. (Z i emOs) 7, (1€ |2—J+k,-|>> €[° doe i

meZ

I
|
-
3
)
J
3
=
B
P
N
ms.
3
~
.
e}
Ay

(22g)

€N R(2701E]) Tm (18] 12777k, |) 1€]3 d)€|

X / h(27%
RT

1€]

The angular integral is non-zero only when m = 0. We hence have

Ver = —27r/ h(27 7
R+

l€l

€ h(27IIEN) T (2797 (€] ke ]) €] €] (22h)

The remaining radial integral can be evaluated in closed form, see the accom-
panying code for the expression. An analogous argument applies in the non-
isotropic case. In three dimensions a similar calculation can be performed when

the Jacobi-Anger formula is replaced by the Rayleigh one.

11



As is apparent from Eq. the v, are non-zero only when js and j,. ad-

€)) and h(2777|¢]) have no common

jacent, since otherwise the windows (277
support. The matrix representing the Laplace operator in polarlets is hence

ss  sparse. The spatial decay of the v, is shown in Fig.

12
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