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In this document we provide mathematical details that have been omitted from

the submitted manuscript due to space limitations.
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1. Preliminaries

1.1. The Fourier transform

The unitary Fourier transform of a function f : Rn → C is defined as

F(f)(ξ) = f̂(ξ) =
1

(2π)n/2

∫
Rnx
f(x) e−i〈x,ξ〉 dx (1a)

with inverse transform

F−1(f)(ξ) = f(x) =
1

(2π)n/2

∫
Rnξ
f̂(ξ) ei〈ξ,x〉 dξ. (1b)

1.2. Spherical harmonics

The analogue of the Fourier transform in Eq. 1 on the sphere is the spherical

harmonics expansion. For any f ∈ L2(S2) it is given by

f(ω) =

∞∑
l=0

l∑
m=−l

〈f(η), ylm(η)〉 ylm(ω) (2a)

=

∞∑
l=0

l∑
m=−l

flm ylm(ω) (2b)

where 〈·, ·〉 denotes the standard L2 inner product on S2 given by

〈f(ω), g(ω)〉 =

∫ π

θ=0

∫ 2π

φ=0

f(θ, φ) g(θ, φ) sin θ dθdφ. (3)
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We use standard (geographic) spherical coordinates with θ ∈ [0, π] being the

polar angle and φ ∈ [0, 2π] the azimuthal one. The spherical harmonics basis

functions in Eq. 2 are given by

ylm(ω) = ylm(θ, φ) = Clm P
m
l (cos θ) eimφ (4)

where the Pml (·) are associated Legendre polynomials and Clm is a normalization

constant so that the ylm(ω) are orthonormal over the sphere. The associated

Legendre polynomials are defined as

Pml (cos θ) = (−1)m
r∑
p=0

clmp sin θm(cos θ)l−m−2p (5a)

where r = b(l −m)/2c and

clmp = (−1)p
2−l(2l − 2p)!

p!(l − p)!(l −m− 2p)!
. (5b)

The associated Legendre polynomials are not L2-normalized by satisfy∫ 1

−1
Pm1

l1
(x)Pm2

l2
(x) dx =

2

2l + 1

(l +m)!

(l −m)!
δl1l2 . (5c)

Spherical Harmonics Addition Theorem. The spherical harmonics addition the-

orem is given by

Pl(x̄1 · x̄1) =
4π

2l + 1

l∑
m=−l

ylm(ω1) y∗lm(ω2) (6)

where ω1 are the spherical coordinates for the unit vector x̄1 ∈ R3 and ω2 are

those for x̄2 ∈ R3. It follows immediately from the above formula that Pl(x̄1 ·x̄1)5

is the reproducing kernel for the space spanned by all spherical harmonics of

fixed l.

Clebsch-Gordon coefficients. In contrast to the Fourier series, where the product

eim1θ eim2θ is given by another Fourier series basis function, ei(m1+m2)θ, for

spherical harmonics the product is not diagonal and the coupling coefficients are

known as Clebsch-Gordon coefficients Cl,ml1,m1;l2,m2
. In particular, the projection
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of the product of yl1,m1(ω) and yl2,m2(ω) onto the spherical harmonics ylm(ω)

is given by∫
S2

yl1m1
(ω) yl2m2

(ω) y∗lm(ω) dω =

√
(2l1 + 1)(2l2 + 1)

4π(2l + 1)
Cl,0l1,0;l2,0 C

l,m
l1,m1;l2,m2

and we call

Gl,ml1,m1;l2,m2
≡

√
(2l1 + 1)(2l2 + 1)

4π(2l + 1)
Cl,0l1,0;l2,0 C

l,m
l1,m1;l2,m2

(7a)

the spherical harmonics product coefficient. The Clebsch-Gordon coefficients

are sparse and non-zero only when

m = m1 +m2, (7b)

that is the m parameter is not strictly needed but conventionally used, and

l1 + l2 − l ≥ 0 (7c)

l1 − l2 + l ≥ 0 (7d)

−l1 + l2 + l ≥ 0. (7e)

1.3. Fourier Transform in Polar and Spherical Coordinates

Jacobi-Anger formula. In the plane, the Fourier transform can also be written

in polar coordinates using the Jacobi-Anger formula [1],

ei〈ξ,x〉 =
∑
m∈Z

im eim(φx−φξ)Jm(|ξ| |x|), (8)

that relates the complex exponential in Euclidean and polar coordinates. In

Eq. 8, Jm(z) is the Bessel function of the first kind and (φx, |x|) and (φξ, |ξ|)10

are polar coordinates for the spatial and frequency domains, respectively. The

ordering of the φx and φξ on the right hand side is arbitrary and when the left

hand side is conjugated im becomes i−m.

The Fourier transform in two dimensions. The Jacobi-Anger formula allows

one to compute the Fourier transform in polar coordinates. Let f(φ, |x|) ≡
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f(x̄|x|) = f(x) with x̄ = (cosφ, sinφ), for fixed radius |x|. The function f(x)

can then be written as the Fourier series expansion

f(x) = f(φx, |x|) =
1

2π

∑
n∈Z

fn(|x|) einφx . (9a)

Inserting this together with the Jacobi-Anger formula into Eq. 1a and perform-

ing a change of variables to polar coordinates we obtain

f̂(ξ) =
1

2π

∫
R+
|x|

∫ 2π

φx=0

(
1

2π

∑
n∈Z

fn(|x|) e2πinφx
)

×

(∑
m∈Z

ime−im(φx−φξ)Jm(|ξ| |x|)

)
|x| dφx d|x|. (9b)

The integral over φx is trivial since it only involves the complex exponentials

einφx and e−imφx , giving 2π δnm and also collapsing the product of sums into a15

single sum. The Fourier transform f̂(ξ)= f̂(φξ, |ξ|) is thus

f̂(ξ) =
1

2π

∑
m∈Z

im eimφξ
∫
R+
|x|

fm(|x|) Jm(|ξ| |x|)|x| d|x| (9c)

=
1

2π

∑
m∈Z

im f̂m(|ξ|) eimφξ , (9d)

with an analogous expression for the inverse transform. Note that the Fourier

transform preserves the polar structure: f(φx, |x|) described in polar coordinates

is mapped to f̂(φξ, |ξ|) in polar coordinates in the frequency domain.

Rayleigh formula. The analogue of the Jacobi-Anger formula in three dimen-

sions is the Rayleigh formula,

ei〈ξ,x〉 =

∞∑
l=0

il (2l + 1)Pl
(
ξ̄ · x̄

)
jl(|ξ| |x|) (10a)

= 4π

∞∑
l=0

l∑
m=−l

il ylm
(
ξ̄
)
ylm
(
x̄
)
jl(|ξ| |x|) (10b)

where jl(·) is the spherical Bessel function and the second line follows by the20

spherical harmonics addition theorem in Eq. 6. Using a calculation analogous
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to those in Eq. 9, the Rayleigh formula enables the calculation of the Fourier

transform in spherical coordinates.

2. Admissibility Conditions for Polar Wavelets

2.1. Admissibility Conditions in Two Dimensions25

In two dimensions, polarlets are defined by [2]

ψ̂(ξ) = γ̂(θξ) ĥ(|ξ|) =

 Nj∑
n=−Nj

βtj,n e
inθξ

 ĥ(|ξ|). (11a)

where βtj,n = eint2π/Mj βj,n for some suitable coefficient sequence βn and Mj is

the number of different orientations on level j.1 In the spatial domain, Eq. 11a

becomes

ψ(x) =
1

2π

Nj∑
n=−Nj

inβtj,n e
inθx

∫
R+
|ξ|

ĥ(|ξ|) Jm(|ξ| |x|) d|ξ|︸ ︷︷ ︸
hm(|x|)

, (11b)

see the main text or the accompanying code for the closed form expression for

hm(|x|). Eq. 11 is the mother wavelet for

ψjkt(x) ≡ 2j

2π
ψ
(
Rjt 2jx− k

)
(12)

where j ∈ Z, k ∈ Z2, and Rjt is a rotation by 2π/Mj .

The following lemma provides the conditions that the functions defined by

Eq. 12 form a tight frame.

Lemma 1. Let Uj be the (Mj × 2Nj + 1)-dimensional matrix formed by the

βtj,n coefficients for all Mj orientations. Then the wavelets in Eq. 12 generate a

Parseval tight frame for L2(R2) when the radial window satisfies the Caldèron

admissibility condition∑
j∈Z

∣∣ĥ(2−j |ξ|)∣∣2 = 1 , ∀ξ ∈ R2
ξ (13a)

1In general, the radial and angular part can have independent level variables but to simplify

the exposition we assume that these are coupled.
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and

UHj Uj = Dj with tr(Dj) = 1, (13b)

where Dj is diagonal, for all levels j.

The above lemma was proved by Unser and Chenouard [2] using the higher-30

order Riesz transform. The proof below uses a direct argument. We will es-

tablish the result for a semi-continuous frame with continuous translation pa-

rameter. The lemma then follows from standard arguments using the Shannon

sampling theorem, see e.g. [3].

Proof. We want to show

f(x) =
∑
j

Mj−1∑
t=0

(
f ∗ ψj,t

)
∗ ψj,t (14a)

for f ∈ L2(R2). Taking the Fourier transform of both sides we obtain

f̂(ξ) =
∑
j

Mj−1∑
t=0

(f̂ · ψ̂∗j,t) ψ̂j,t. (14b)

Since f̂ does not depend on j we can write

f̂ = f̂
∑
j

Mj−1∑
t=0

ψ̂∗j,t ψ̂j,t. (14c)

For the lemma to hold we thus have to show

∑
j

Mj−1∑
t=0

|ψ̂j,e(ξ)|2 = 1 , ∀ξ ∈ R2
ξ . (14d)

With the definition of the window function in Eq. 11a, the equation becomes

∑
j

Mj−1∑
t=0

|ψ̂j,t|2 (14e)

=
∑
j

Mj−1∑
t=0

 Nj∑
n=−Nj

βtj,n e
inθ ĥ(2−j |ξ|)

 Nj∑
m=−Nj

βtj,m e
imθ ĥ(2−j |ξ|)

∗ .
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Using linearity we have

∑
j

Mj−1∑
t=0

|ψ̂j,t|2 =
∑
j

Mj−1∑
t=0

Nj∑
n=−Nj

Nj∑
m=−Nj

βtj,n β
t∗
j,m e

inθ e−imθ
∣∣ĥ(2−j |ξ|)

∣∣2
Assuming the radial window functions satisfy the Caldèron admissibility condi-

tion in Eq. 13a, the lemma holds when

1 =

Nj∑
n=−Nj

Nj∑
m=−Nj

Mj−1∑
t=0

βtj,n β
t∗
j,m

 ei(n−m)θ. (14f)

For the right hand side to be unity for all θ we have to have that the Fourier

series in (m− n) has δm−n,0 as coefficients, that is

cm−n =

Mj−1∑
t=0

βtj,n β
t∗
j,m = δm−n,0. (14g)

This is the first condition in Eq. 13b, i.e. UHU = D. The Fourier series35

coefficient is unity in magnitude with the trace condition in Eq. 13b.

2.2. Admissibility Conditions in Three Dimensions

In three dimensions, polarlets are defined by [4, 5]

ψ̂(ξ) = γ̂(ξ̄) ĥ(|ξ|) =

 Lj∑
l=0

l∑
m=−l

κj,tlm ylm(ξ̄)

 ĥ(|ξ|). (15a)

where κtlm = Wm′

lm (λt)κ
t
lm′ for some suitable coefficient sequence κlm′ and where

Wm′

lm (λt) is the Wigner-D matrix that rotates the functions to the location λt.

In the spatial domain Eq. 15a becomes

ψ(x) =

Lj∑
l=0

l∑
m=−l

ilκj,tlm ylm(x̄)

∫
R+
|ξ|

ĥ(|ξ|) jl(|ξ| |x|)|ξ|2d|ξ|︸ ︷︷ ︸
hl(|x|)

(15b)

see the accompanying code for the closed form expression for hl(|x|). Eq. 15 is

the mother wavelet for

ψjkt(x) ≡ 22j

2π
ψ
(
Rjt 2jx− k

)
(16)

where j ∈ Z, k ∈ Z2, and Rjt the rotation to λj . The following lemma provides

the conditions that the functions defined by Eq. 16 to form a tight frame.
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Lemma 2. Let uj,t be the (Lj + 1)2)-dimensional vector formed by the κj,tlm for

fixed j, t. Then the wavelets in Eq. 16 form a Parseval tight frame when∑
j∈Z

∣∣ĥ(2−j |ξ|)∣∣2 = 1 , ∀ξ ∈ R2
ξ (17a)

and

δl,0δm,0 =

Mj∑
t=0

uj,tG
lm uj,t (17b)

where Glm is the matrix formed by the spherical harmonics product coefficients40

in Eq. 7 for fixed (l,m).

Proof. With an argument fully analogous to those in the proof of Lemma 1 it

suffices to show that ∑
j

Mj∑
t=0

|ψ̂j,t|2 = 1 , ∀ξ ∈ R3. (18)

With the definition of the window functions and after re-arranging terms one

obtains∑
j

Mj∑
t=0

|ψ̂j |2 =
∑
j

Mj∑
t=0

∑
l1,m1

∑
l2m2

κj,tl1m1
yl1m1

(
ξ̄
)
κj,tl2m2

y∗l2m2

(
ξ̄
)∣∣ĥ(2−j |ξ|)

∣∣2
Assuming the Caldèron condition in Eq. 17a is satisfied, the lemma holds when

the product of the angular part evaluates to the identity for every band j and

every direction ξ̄. This means that for every j the projection of the angular part

in the above equation onto spherical harmonics has to satisfy

δl,0 δm,0 =

Mj∑
t=0

〈∑
l1,m1

κj,tl1m1
yl1m1

(
ξ̄
) ∑
l2,m2

κj,tl2m2
y∗l2m2

(
ξ̄
)
, ylm(ξ̄)

〉
. (19a)

Rearranging terms we obtain

δl,0 δm,0 =

Mj∑
t=0

∑
l1,m1

∑
l2,m2

κj,tl1m1
κj,t∗l2m2

〈
yl1m1

(
ξ̄
)
y∗l2m2

(
ξ̄
)
, y∗lm(ξ̄)

〉
. (19b)

The product of two spherical harmonics projected into another spherical har-

monic is given by the product coefficnets in Eq. 7. We can hence write

δl,0 δm,0 =

Mj∑
t=0

∑
l1,m1

∑
l2,m2

κj,tl1m1
κj,tl2m2

Gl,m1−m2

l1,m1;l2,−m2
. (19c)
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Figure 1: Spatial decay of filter tap coefficients for the fast transform in 2D, see Eq. 21, for

isotropic functions.

Collecting the κj,tlimi into vectors we obtain the condition in the lemma.

3. Fast Transform

The fast transform splits the signal fj+1 at scale j + 1 into a low frequency

part, represented by scaling function coefficients, and a high frequency part,

represented by the wavelet coefficients. By linearity it suffices to determine the

projection for the basis functions, yielding filter taps

αj,k = 〈φj,0(x), φj+1,k(x)〉 (20a)

βj,k,t = 〈ψj,0,t(x), φj+1,k(x)〉 . (20b)

By the Parseval identity αj,k is given by

βj,k,t =
〈
ψ̂j,0,t(ξ) , φ̂j+1,k(ξ)

〉
. (21a)

In polar coordinates this equals

βj,k,t =

∫
R+
|ξ|

∫
S1
θ

(∑
n

βn e
inθ ĥ

(
|2−jξ|

))(
ĝ
(
|2−j−1ξ|

)
ei〈ξ,2

−j−1k〉
)
|ξ| dθ d|ξ|.

where ĝ(|ξ|) is the window for the scaling function. The translation term

ei〈ξ,2
−j−1k〉 can be expanded using the Jacobi-Anger formula. After using lin-

earity, this yields

βj,k,t =
∑
n

∞∑
m=0

im βn e
imθk

∫
S1
θ

e−imθ einθ dθ (21b)
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Figure 2: Spatial decay of vsr coefficients in Eq. 22h.

×
∫
R+
|ξ|

ĥ
(
|2−jξ|

)
ĝ
(
|2−j−1ξ|

)
Jm
(
|ξ| |2−j−1k|

)
|ξ| d|ξ|.

The angular integral is 2π δmn. The radial one has a closed form solution as well,

see the accompanying code for the expression. We will refer to it as Bmj (|k|) in

the following. Thus, we have

βj,k,t = 2π
∑
n

in βnB
m
j (|k|) (21c)

which is a finite sum with the same cardinality as those in the definition of

ψ̂j−1,0(ξ). Hence, the filter taps can be computed in closed form. For the

α-coefficients, which couple scaling functions on adjacent levels, an analogous

derivation applies. Since the scaling functions are isotropic we have

αjk = Aj(|k|) = 2π

∫
R+
|ξ|

ĝ
(
|2−jξ|

)
ĝ
(
|2−j−1ξ|

)
J0
(
|ξ| |2−j−1k|

)
|ξ| dθ d|ξ|. (21d)

When the Rayleigh formula is used instead of the Jacobi-Anger one, an analo-

gous derivation can be used to derive the filter taps in three dimensions.45

4. Galerkin Projection of the Laplace Operator

The Galerkin projection of the Laplace operator is given by

vsr =
〈
∆ψs , ψr

〉
. (22a)
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where s = (js, ks, ts), r = (jr, kr, tr) are multi-indices. Using the Parseval

identity we can compute the coefficients vsr in the Fourier domain,

vsr =
〈
∆̂ψ̂s , ψ̂r

〉
. (22b)

The Fourier multiplier ∆̂ of the Laplacian is ∆̂ = −|ξ|2 so that

vsr = −
〈
|ξ|2 ψ̂s , ψ̂r

〉
. (22c)

Without loss of generality we can assume that ψs is located at the origin. Then

vsr = −
〈
|ξ|2 ψ̂(2−js |ξ|) , ψ̂(2−jr |ξ|) ei〈ξ,2

−jrkr〉
〉

(22d)

and using the definition of the frame functions we obtain

= −
〈
|ξ|2 ĥ(2−js |ξ|) , ĥ(2−jr |ξ|) ei〈ξ,2

−jrkr〉
〉

(22e)

where for simplicity we assumed isotropic functions.

In two dimensions, the inner product can be computed in polar coordinates

by expanding the translation term ei〈ξ,2
jrkr〉 using the Jacobi-Anger formula.

We thus have

vsr = −
∫
R+
|ξ|

∫
S2
θξ

ĥ(2−js |ξ|) ĥ(2−jr |ξ|) (22f)

×

(∑
m∈Z

im eim(θξ−θkr ) Jm(|ξ| |2−jrkr|)

)
|ξ|3 dθξ d|ξ|

= −
∑
m∈Z

im e−imθkr
∫
S2
θξ

eimθξ dθξ (22g)

×
∫
R+
|ξ|

ĥ(2−js |ξ|) ĥ(2−jr |ξ|) Jm(|ξ| |2−jrkr|) |ξ|3 d|ξ|

The angular integral is non-zero only when m = 0. We hence have

vsr = −2π

∫
R+
|ξ|

ĥ(2−js |ξ|) ĥ(2−jr |ξ|) Jm(2−jr |ξ| |kr|) |ξ|3 d|ξ|. (22h)

The remaining radial integral can be evaluated in closed form, see the accom-

panying code for the expression. An analogous argument applies in the non-

isotropic case. In three dimensions a similar calculation can be performed when50

the Jacobi-Anger formula is replaced by the Rayleigh one.
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As is apparent from Eq. 22h the vsr are non-zero only when js and jr ad-

jacent, since otherwise the windows ĥ(2−js |ξ|) and ĥ(2−jr |ξ|) have no common

support. The matrix representing the Laplace operator in polarlets is hence

sparse. The spatial decay of the vsr is shown in Fig. 2.55
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