On Learning Surface Light Fields

Christian Lessig

A dg die

Table 1: Estimated color values for the GBF (left) and the VMBF (right) and correct image
for a scene with high-frequency effects. The average error rates over all vertices are 0.0302
for the GBF and 0.0322 for the VMBF.

1 Introduction

The five-dimensional surface light field function [Miller 1998] represents the exitant ra-
diance for all surface points in a scene. Its value incorporates all light transport effects
such as shadows, reflection and refraction. In the past, tabulated or re-sampled color values
[Miller 1998] [Wood 2000] have been used to approximate the surface light field function
and the exitant radiance for new views has been interpolated from the stored values.

We propose the use of a radial basis function (RBF) network to approximate the surface
light field. The parameters of the RBF network are obtained by supervised learning. At
runtime these parameters are used to generate the exitant radiance for surface points for
previously unknown view directions. The von Mises function [Arnold 1941] is employed
as basis function for the RBF network. It is particularly well suited for the given problem
as it is defined on the surface of the sphere which is the domain of the surface light field
function. In the past, Gaussian basis functions have been used to approximate view depend
functions [Green 2006] but such functions defined in Cartesian space suffer from the arti-
facts well known from cartography when mapping the surface of the earth onto a planar
map; e.g. the distortion near the poles and the loss of the periodicity on the sphere.

In this work, we implemented an radial basis function network with von Mises basis func-
tions (VMBF) to evaluate the suitability of this architecture for approximating surface light
fields. An RBF network with Gaussian basis functions (GBF) has been implemented for
comparison purpose. Our results show that, for a small number of basis functions, the
VMBF outperforms the GBF but for 16 and more basis functions the GBF is superior.
However, our results are limited in that only two scenes have been examined and, there-
fore, general conclusions are hardly possible.



2 Related Work

Related work to our approach can be found in the Machine Learning and the Computer
Graphics literature.

In Computer Graphics, surface light fields, which are an image-based rendering techniques
(IBR), and precomputed radiance transfer (PRT) are similar to our approach. Surface
light fields have been introduced by Miller et al. [Miller 1998] who adapted the lumi-
graph [Gortler 1996] but only represented the light field on the surface of the scene objects.
Wood et al. [Wood 2000] extended this approach and used least-squares optimal lumi-
spheres, subdivided octahedron whose vertices are used as directional samples, on a dense
but discrete set of surface sample points to approximate the surface light field. The color
values at the sample points have been obtained using learning techniques and compressions
schemes such as function quantization and principal function analysis; generalizations of
vector quantization and principal component analysis, respectively; are used to obtain the
necessary reduction of the storage size. Zickler et al. [Zickler 2005] trained a combination
of lower-order polynomials and locally weighted regression to approximate a surface light
field. Their model uses every visible surface point as training sample but they reported that,
in practice, only a subset of these points is used to reduce the computational complexity.
This is similar to our work.

PRT differs from these techniques and our approach in that transferred and not exitant
radiance is stored. This permits to change the lighting environment at runtime but, in con-
trast to our work, prohibits local light sources. Most PRT techniques approximate trans-
ferred radiance by projecting the information into a set of basis functions so that only the
coefficients have to be stored, which reduces the memory requirements significantly. A
similarity with our work is the use of spherical basis functions, e.g. Spherical Harmonics
[MacRobert 1948]. In fact, this work motivated us to explore the VMBF to approximate
surface light fields. Recently, Green et al. [Green 2006] used machine learning techniques
to approximate transferred radiance for high-frequency, view-dependent effects such as
specular highlights. They employed a Gaussian mixture model which, compared to pre-
vious techniques, reduced the necessary number of coefficients significantly. In this work
a semi-parametric model is used, training one RBF network for each view direction of
each vertex. Our approach is similar to [Green 2006] in that the same RBF architecture is
employed but differs from their work as we train only one RBF network per vertex, each
approximating the information for all view directions.

Besides the vast amount of work on radial basis functions in general (see [Bishop 1995] for
a good introduction to RBF networks), there is only little related work on problems defined
on the surface of the sphere in the Machine Learning community. The most relevant one
is those by Jenison and Fissel [Jenison 1995] [Jenison 1996]. In [Jenison 1995] the superi-
ority of the VMBF over the GBF for the problem examined in this paper is demonstrated.
[Jenison 1996] applies the VMBF to an regression problem defined on the surface of the
sphere.

3 Model specifications

Approximating the surface light field is a regression problem. In this section the proposed
model to learn this function is introduced.

3.1 Von Mises Basis Functions

The VMBF is based on the Mises-Arnold-Fisher distribution [Arnold 1941], a spheri-
cal probability density function (pdf) which is the equivalent to the normal distribution
[Fisher 1987] on the surface of the unit sphere. The normalization factor of the pdf can be
absorbed into the weights of the RBF network ([Bishop 1995], p. 168) which yields the
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where 6 and ¢ are the function arguments in spherical polar coordinates for azimuth and
elevation, respectively, o and /3 determine the center of the function on the surface of the
unit sphere and « is a concentration parameter which determines the function width. Using
such a function defined on the sphere is desirable as this naturally enforces the periodicity
of the spherical domain and the singularity at the poles. A detailed introduction and a
discussion of the properties of this function can be found in [Fisher 1987].

3.2 Gaussian Basis Functions

The well known Gaussian basis function is used for comparison purpose. First, because it is
the standard basis functions for RBF networks ([Bishop 1995], p. 165) and second because
it has been used in related work [Green 2006]. As for the VMBF, the normalization factor
of the GBF can be absorbed into the weights of the RBF network. Following [Green 2006]
we use a spherical covariance matrix which yields

G o) =exp (=50 ().

where 2 = (0, ¢)T is the argument of the function, 1 is the two-dimensional center of the
Gaussian and o is its variance.

3.3 RBF network

The Radial Basis Function network is given by

K
§(x) = wihy ()
k=0

where hy, is the k-th basis function and wy, is its weight. All basis functions are considered
as independent, i.e. no parameters are shared. This architecture can also be interpreted as
a generalized linear model.

4 Methodology

The surface light field is a five-dimensional function; three dimensions determine a posi-
tion in space and two the direction of the exitant radiance in spherical polar coordinates.
Following previous work [Wood 2000], we tabulate the spatial domain at each vertex and
learn the view-dependent exitant radiance for each surface sample using an RBF network.
For the VMBE, this yields a model with s = Zf;o ((3+ 1) - K;) parameter, where the first
term in the sum models the number of parameters for the non-normalized von Mises basis
functions and the weights for each of those, K is the number of basis functions employed
for sample 7 and IV is the total number of vertices. The tabulated surface samples are
treated as independent which simplifies the training significantly because in this case only
(3+ 1) - K; parameters have to be optimized simultaneously. However, each optimization
still remains non-trivial as determining the parameter for an RBF network is a nonlinear
and non-convex problem ([Hastie 2001], page 36).

We employ numerical optimization to find parameters which minimize the sum of squared



errors, the error function used in this work. Weight decay is used to regularize the opti-
mization and avoid overfitting ([Hastie 2001], p. 356). The objective function is therefore
given by

K

N
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where ¢ is the estimated function value and y is its true value. The second term is the
weight decay, where A is a tuning parameter. The training set consists of color value-view
direction pairs. Due to the periodicity of the sphere, no constraints on «, § and k are
necessary for the VMBF. For the GBF, the variance has to be positive. We enforce this by
computing the gradient w.r.t. log (¢) in the learning phase.

The gradients of the objective function, which are necessary for the numerical optimization,
can be derived using the chain rule and found in [Jenison 1996] for the VMBF and in text
books for statistics for the GBF.

5 Implementation

The learning procedure described in the previous section has been implemented in Matlab
and C++. The training data has been generated using Mental Ray, a commercial high-
quality renderer. The particular choice has been made because the Mental Ray integration
in Maya allows to directly store vertex colors from pre-rendered scenes. We also exper-
imented with generating images and extracting the color values using image processing
techniques. However, in our tests this approach was highly error prone. The view direc-
tions are randomly drawn from the set of all possible view directions, for our test scenes in
the upper hemisphere above the scene origin. Stratified sampling has been used to reduce
the variance of the sample directions [Veach 1997].

One of the main issues which arose during the implementation were the long optimization
times. To reduce these, only monochrome surface light fields have been examined this re-
port. In general, different wavelength of light can be considered as independent, so that the
results obtained can be generalized for images with multiple color channels. Other strate-
gies to reduce the amount of computations are discussed in the next section.

The vertex color for a new images can be obtained by evaluating the RBF architecture for
a particular view direction (6, ¢o) with the parameters found in the training phase. Given
the estimated vertex color values, the model can be rendered using standard renderer. Our
current implementation uses Maya for this.

6 Results

In this section, the results obtained during the exploration of the hyperparameter space are
discussed. The goal of the experiments was to find a number of basis functions K and the
training set size V' which provide efficient pre-computation as well as accurate re-rendering.
For an efficient pre-computation, both, K and V', should be as small as possible. However,
this conflicts with the desired accuracy.

Increasing V' reduces the test error rate but the decrease shows an asymptotic behavior,
so that, beyond a certain point, the error can not be lowered significantly by using more
training data. This makes it possible to bound the training set size without degrading the
quality. For most problems also an optimum for the model complexity, this is the number
of basis functions for an RBF network, exists. Next to these two parameter, also an optimal
value for the weight decay tuning parameter A had to be found.

A particular difficulty was that different optimal values K;, V; and \; might exist for each
vertex; so essentially we were faced with IV regression problems instead of one. However,
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Table 2: Log average squared error for the VMBF (right) and the GBF (left) for a scene
with 190 vertices (Table 4) and training sets with 200 (red), 500 (green), 750 (blue) and
1000 (magenta) views. The different values of lambda; 0.05, 0.15 and 0.25; are reported as
solid, dashed and dash-dotted lines, respectively.

using NV different sets of optimal parameters is not tractable. First, because a full cross-
validation over the three dimensional parameter space would be necessary for each vertex;
this was prevented by the long optimization times; and second, because using different pa-
rameters would prohibit an efficient implementation of the re-rendering.

Next to the already mentioned restriction to monochrome images, further simplification
were necessary to reduce the computational complexity and obtain the results of the explo-
ration in a reasonable time. We used only a randomly generated subset of the vertices for
the experiments to achieve this.

The test scenes employed in our experiments contained 1689 (Table 1) and 190 vertices (Ta-
ble 4); 16 and 17 vertices have been used for the exploration of the hyperparameter space,
respectively. The three-dimensional search space was spanned by K = {1, 2,4, 8,16, 32},
A ={0.05,0.15,0.25} and V' = {200, 500, 750, 1000}.

The sum of the error rates over all vertices on a test set of size 200 for the VMBF and the
GBF are shown in Table 2 and Table 3. It can be seen that all graphs show an asymptotic
behavior for increasing values of K. In Table 3, this behavior is more significant whereas
the error rates in Table 2 decrease over the whole range of K. Unfortunately, no optimum
for K exist. For the VMBEF, values of 8 or 16 for K are sufficient as the error does not de-
crease substantially for higher values; however, for the GBF such a close-to-optimal value
of K does not exist. Table 2 and Table 3 also show that, for different values of the ridge
regression tuning parameter ), the error rates do not differ significantly. In contrast to this,
for both basis functions the error rates for 200 views are higher than those for 500. For the
VMBEF, a training set size of 500 is sufficient to achieve an almost optimal error rate. This
also holds for the GBF for the scene with 1689 vertices (Table 3). For the results reported
in Table 2, this close-to-optimal value is reached for 750 views for the GBF. The graphs in
Table 2 show that the error rates for 1000 views are higher than those for 750 views. We
assume the reason for this is the non-convexity of the optimization.

In both scenes, for K > 8 the GBF achieves lower error than the VMBFE. For K = 8 the
error rates are roughly equivalent and for lower values of K the VMBF outperforms the
GBEF. The error rates for K = 1 are not reported in Table 2 and Table 3 but here, the error
rates for the GBF are an order of magnitude higher than those for the VMBF. An interesting
observation is that, for the VMBF, the vertices clearly form clusters w.r.t. to the error rates;
a behavior which does not exist for the GBF. A comparison of the error rates of the two
scenes shows that those reported in Table 3 are significantly below those in Table 2. This is
surprising as both scene have almost the same materials and lighting environment; the only
main difference is the spatial resolution of the sample points.



Average Squared Error

Average Squarred Error

0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Number of Basis Functions Number of Basis Functions

Table 3: Log average squared error for the VMBF (right) and the GBF (left) for a scene
with 1689 vertices (Table 1) and training sets with 200 (red), 500 (green), 750 (blue) and
1000 (magenta) views. The different values of lambda; 0.05, 0.15 and 0.25; are reported as
solid, dashed and dash-dotted lines, respectively.

Using the results obtained through the exploration of the hyperparameter space, we trained
an RBF networks with the VMBF and the GBF with a training set of size 500, K = 8 and
A = 0.1 for both of our test scenes. The parameters have been chosen based on the optimal
values for the VMBE. Here, we decided to use X = 8 instead of K = 16 because the error
rates do not differ significantly but the optimization time is much higher for X = 16. In
terms of re-rendering, K = 8 is also a better choice for the experiments as it is an upper
limit for an efficient implementation of the re-rendering on the GPU.

The results for one view of the test set for the scene with 1690 vertices can be seen in the
images in Table 1. For the chosen parameter values, both basis functions are not capable of
capturing the hard shadow. Even there is a visual difference between the two approximated
images, e.g. in the uniformity of the shadows, no one clearly performs better. This observa-
tion is supported by the error rates, which are roughly equivalent for both basis functions.
The same results have been obtained for other re-renderings of the same scene as well as
for re-renderings of the scene with 190 vertices.

7 Limitations and Future Work

Our work is limited in many respects. We want to address this in future work. First of all,
the experiments described in the previous section have to be repeated on much large data
sets and scenes with more complicated lighting environments. One question is how much
the optimal values for the number of basis functions and the necessary training set size
depend on the scene characteristics and if these can be estimated efficiently, for example
based on the variance of the color values in the training set.

A crucial prerequisite for performing more experiments is to investigate more efficient ways
to obtain the optimal parameters. As already mentioned, the convergence rate of the numer-
ical minimizer we used so far is not optimal, especially for the VMBF. Here, it has to been
explored if an adaption of a minimization technique to a function defined on the sphere
could provide a better performance. An alternative would be to employ the EM algorithm
for our problem. Originally, we discarded this possibility as the literature does not provide
a consistent view if this could lead to improved performance [Ungar 1995] [Orr 1998] but
given the current situation, we might consider this option again. In [Zickler 2005] different
other efficient techniques for obtaining the parameter of an RBF are mentioned. It might be
worth to explore these. Another idea is to implement the optimization process on a graphics
processing units (GPU). The results of Hillesland et al. [Hillesland 2003] and the advance



Table 4: Estimated color values for the GBF (left) and the VMBF (right) and correct image.
The average error rates over all vertices are 0.0097 for the GBF and 0.0087 for the VMBE.

in GPU technology suggest a speedup up to a factor of 20. The simplicity of the RBF
network, given the number of basis functions is constant and sufficiently small, suggests to
also implement the re-rendering on the GPU. Here, we expect real-time performance even
for complex scenes.

In the longer term more general questions regarding our approach can be addressed.
One is the investigation of other spherical basis functions such as Spherical Wavelets
[Schroder 1995] or splines defined on the sphere [Wahba 1981]. Improvements might also
be possible when relaxing the assumption that the vertices are independent. For example
instead of computing the error per sample point one could compute the error for a neigh-
borhood in a rendered image. In [Green 2006] it is denoted that interpolating Gaussians
between the vertices instead of the final colors leads to a significantly improved visual ap-
pearance, similar to the difference between Gouraud and Phong Shading. We think this can
be adapted for our technique.

Another area of future work can be to move beyond the tabulation of the spatial domain.
Learning the whole five-dimensional surface light field function function would be one
possibility. Interesting would also to employ the VMBEF to learn the transfer function and
compare the results to [Green 2006].

Further work is also necessary to understand why we cannot see the superiority of the
VMBF over the GBF reported in [Jenison 1995].

8 Conclusion

We presented a learning technique for the surface light field function based on radial basis
function networks. We showed that Gaussian basis functions outperform the von Mises
basis function for high numbers of basis functions K but both perform equally well for
K = 8, which has the most relevance in practice. Therefore, our particular spherical basis
function does not provide an advantage over basis functions defined in cartesian space for
approximating surface light fields. Unfortunately, both, VMBF and GBF, are not capable
to reconstruct high frequency effects such as the sharp shadow.

Compared to existing techniques for surface light fields, our approach has the advantage of
a low memory consumption without additional compression techniques. However, this
comes to the prize that we do not achieve the quality of previous techniques, such as
[Wood 2000], for high-frequency effects. The current approach is mainly limited by the
training time for all vertices of a scene and due to the limited amount of data used for this
report, no general applicability of our results can be assumed.

Additional graphs can be found under www.dgp.toronto.edu/ lessig/ml/.
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