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Fig. 1: We accurately estimate 3D gaze positions by combining digital manufacturing, marker tracking and monocular eye tracking. With a simple calibration procedure
we attain an angular accuracy of 0.8◦.

Abstract— Many applications in visualization benefit from accurate knowledge of where a person is looking at. We present a system
for accurately tracking gaze positions on a three dimensional object using a monocular head mounted eye tracker. We accomplish
this by 1) using digital manufacturing to create stimuli with accurately known geometry, 2) embedding fiducial markers directly into
the manufactured objects to reliably estimate the rigid transformation of the object, and, 3) using a perspective model to relate
pupil positions to 3D locations. This combination enables the efficient and accurate computation of gaze position on an object from
measured pupil positions. We validate the accuracy of our system experimentally, achieving an angular resolution of 0.8◦ and a 1.5%
depth error using a simple calibration procedure with 11 points.

Index Terms—eye tracking, calibration, accuracy

1 INTRODUCTION

Understanding the viewing behaviour of humans when they look at
objects plays an important role in applications such as data visualiza-
tion, scene analysis, object recognition, and image generation [30].
The viewing behaviour can be analyzed by measuring fixations us-
ing eye tracking. In the past, such experiments, especially for object
exploration tasks, were performed with flat 2D stimuli presented on
a screen [13]. Since the human visual attention mechanism has de-
veloped in 3D environments, depth may have an important effect on
the viewing behaviour [20]. To understand the role of depth informa-
tion, some studies [16, 21, 9] recently employed stereoscopic displays.
However, these displays fail to provide natural depth cues; for example
they suffer from stereoscopic decoupling, the mismatch of accommo-
dation and vergence with the displayed depth [14]. Since our research
objective is to investigate the viewing behavior of humans for stimuli
that are genuinely three-dimensional, we need to be able to track 3D
gaze positions with high accuracy.

Standard eye tracking setups only determine the viewing direction.
The most common approach for determining viewing depth is to em-
ploy a binocular eye tracker and measure eye vergence, that is the
orientation difference between the left and the right eye that ensures
both are focused on the same point in space. However, as exemplified
in Fig. 2, experimentally determining depth from binocular vergence
is inherently ill-conditioned, since even for an object at a modest dis-
tance the eyes and the object form a highly acute triangle so that the
inevitable inaccuracies in measuring pupil positions [13] lead to large
errors in the estimated depth values. Although nonlinear mappings can
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be employed to reduce the error [8, 23, 1, 12, 19, 22, 25], these require
more complex calibration and training while still leading to relatively
large inaccuracies.

We base our approach on the idea of relating the viewing direction
gathered by an eye tracker to the physical world. This is done similar
to EyeSee3D [26] by tracking fiducial markers in physical space with
a camera mounted on the eye tracker. Our goal in this setup is to un-
derstand if this setup can be made accurate enough to enable trakcing
visual attention on three-dimensional objects. The main ingredients to
achieve accurate tracking are:

1. 3D stimuli are generated by digital manufacturing so that their
geometry is known to high accuracy and also available in dig-
ital form without imposing restrictions on the geometry that is
represented.

2. Fiducial markers are integrated into the 3D stimuli in order to
reliably and accurately estimate the stimuli’s 3D position relative
to the head.

3. A careful calibration allows accurately computating the perspec-
tive mapping from 3D positions to monocular pupil positions.

4. An error model for the mapping allows computing plausible po-
sitions on the 3D stimulus.

Our results demonstrate that for typical geometries we are able to ob-
tain reliable depth values within 1.5% range and 0.8◦ angular reso-
lution, including around silhouettes where the geometry has a large
slope. We accomplish this with only a monocular eye tracker and an
11 points calibration procedure.

In the next section, we discuss related work on 3D gaze tracking.
Subsequently, in Sec. 3, we detail our setup and explain how 3D posi-
tions can be related to pupil coordinates. This is followed by a discus-
sion of how 3D viewing positions can be obtained from pupil positions
in Sec. 4. Experimental results verifying the accuracy of our approach
are presented in Sec. 5. We conclude the paper with a discussion of
directions for future work in Sec. 6.



Fig. 2: Inherent error of vergence based depth estimation for an object at a distance of
500 mm away from the eyes. The red crosses mark estimated 3D positions for normally
distributed gaze directions with mean equal to the correct angle for the object (black dot)
and a variance of 0.5◦. The highly acute triangle that leads to the ill-conditioning of the
depth calculation is shown as dashed lines. The worst case relative error is almost 50%.

2 RELATED WORK

The viewing behaviour of humans is typically analyzed using eye
tracking by measuring a subject’s fixations. However, usually only
flat 2D stimuli on a screen are employed, e.g. [5, 17, 24, 27], even
when one is interested in 3D objects. Only recently the first stud-
ies considering the effect of depth were performed. Lang et al. [21]
collected a large eye fixation database for still images with depth in-
formation presented on a stereoscopic display. Their results show that
depth can have a significant influence on a subject’s fixations. Jansen
et al. [16] also employed a stereoscopic display to analyze the ef-
fect of depth, demonstrating that depth information leads to an overall
increase in spatial exploration. Both Lang et al. [21] and Jansen et
al. [16] also report that visual attention shifts over time from objects
closer to the viewer to those farther away. Differences in fixations be-
tween 2D and 3D stimuli were recently investigated for stereoscopic
video [9, 10, 15, 28]. For these stimuli, discrepancies were mainly ob-
served for scenes that lack on obvious (high-level) center of attention,
with fixations having a larger spatial distribution when depth informa-
tion is present.

Existing work investigating the role of depth information on fix-
ation locations hence demonstrates that, at least under certain cir-
cumstances, depth has a significant effect on a subject’s viewing be-
haviour. However, so far only stereoscopic displays were employed,
which do not provide all depth cues and suffer from stereoscopic de-
coupling [14]. Moreover, Duchowski et al. [7] showed that for stereo-
scopic displays the gaze depth of subjects does not fully correspond
to the presented depth. Therefore, we believe that to understand real-
world viewing behaviour for 3D objects one should study stimuli that
are genuinely three-dimensional. This provides the principal motiva-
tion for our work.

With 3D stimuli also the depth values of fixation points have to be
determined. The most common approach for obtaining fixation depth
is to measure the vergence using a binocular eye tracker. However,
computing depth values from binocular vergence is ill-conditioned
since already for modest distances minuscule measurement errors in
the pupil positions lead to large depth errors, cf. Fig. 2. To improve the
accuracy, Essig et al. [8] trained a neural network that maps from eye
vergence to depth values. Maggia, Guyader and Guérin-Dugué [23]
proposed a somewhat simpler but also nonlinear model for the map-
ping from measured disparity to depth. Building on these works, cur-
rent techniques [1, 12, 19, 22, 25] that employ binocular vergence to
determine fixation depth obtain an error that is within 10% of the cor-
rect value.

The approaches that inspired our work are taking an alternative
approach by relating the view direction with the known geometry of
physical reality. This can be conveniently in virtual reality [29, 6].
Pfeiffer and Renner have used fiducial markers to align physical world
to camera space [26]. By using vergence of the eyes, they have
achieved an angular accuracy of 2.25 degrees, which gives correctly
classified fixation targets on the scale of whole objects. However, for
investigating human viewing behaviour on the surface of 3D objects,
more accurate gaze tracking is required. Consequently, we try to ad-
just the setup with the goal of accurate tracking of visual attention on
3D objects in mind.

3 FROM 3D POSITIONS TO PUPIL COORDINATES

In this section we describe how points in space can be related to 2D
pupil positions corresponding to the gaze directions, which can be re-
lated to the points in space a person is looking at Fig. 3. We assume
a setup using a monocular head mounted eye tracking device with a
front facing world camera capturing the environment and an eye fac-
ing camera capturing the pupil movement. The world camera is em-
ployed to compute the position and orientation of fiducial markers, for
example fixed to objects, relative to the subject’s head. A projective
mapping is then used to relate these 3D coordinates to pupil positions.
The mapping is calibrated by having the subject focus on markers at
different locations, including varying depths. In the following we will
describe these steps in more detail.

3.1 From local 3D positions to world-camera coordinates
We employ fiducial markers to determine the 3D coordinates of loca-
tions in space in the world camera coordinate system. The mapping of
a position x ∈ R3, for example a point on a marker, to its projection
m in the world camera image is given by

m = K(Rx + t), RTR = I (1)

where K : R3 → R2 is the intrinsic world camera matrix, modelling
the perspective mapping, and R and t are the rotation and translation
of the camera forming the rigid transformation. The mapping of x to
its representation w in the world camera coordinate system is hence

w = Rx + t. (2)

We determine the intrinsic world camera matrix K, which includes
both radial and tangential distortion, in a preprocessing step using the
approach proposed by Heng et al. [11]. To determine the rigid transfor-
mation given by R and t we exploit that detected marker corner points
mi ∈ R2 in the camera image have known 3D locations xi ∈ R3 in
the marker’s local coordinate system. Given at least three such points
mi in the camera image, we can determine R and t by minimizing the
reprojection error.

Once R and t have been estimated, we can employ Eq. 2 to de-
termine the position of the center of the marker in the world camera
coordinate system, as required for calibration, or to map an object with
a fixed relative position to a marker into the space, as is needed to de-
termine gaze positions.

3.2 From world camera coordinates to pupil positions
Given positions w ∈ R3 in the world camera coordinate system, ob-
tained as described in the last section, we have to relate these to a per-
son’s gaze direction, described by pupil positions p in the eye camera
image. We model the mapping as a projective transformation, because
the cameras and the system of the eye (i.e. the head) are in fixed rel-
ative orientation and position. In homogeneous coordinates we hence
have

s
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1

)
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)
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where Q ∈ R3×4 is a projection matrix that is unique up to scale.
Given a set of correspondences {(wi,pi)} between 3D points wi in
the world camera coordinate system and pupil positions pi describing
a gaze direction at wi, we can determine Q by minimizing
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Fixing one coefficient of Q to eliminate the freedom on scale (we
choose Q3,4 = 1), this is a standard linear least squares problem.
In practice, we solve this problem using correspondences {(wi,pi)}
obtained during calibration, as described in Sec. 5.

Since Q is a projective transformation we can factor it into an up-
per triangular intrinsic camera matrix AQ and a rigid transformation
matrix TQ = (RQ, tQ). The factorization is given by

Q = AQTQ = (AQRQ,AQtQ) (5)



and hence by the RQ decomposition of the left 3 × 3 block AQRQ

of Q. It can be computed using the QR decomposition as

J(AQRQ)TJ = (JAT
QJ)(JRT

QJ) (6)

where J is the exchange matrix, which in our case is the column in-
versed version of the identity matrix.

3.3 From pupil positions to angular accuracy
So far we related 3D locations to pupil positions. To determine a gaze
point on an object we also have to relate pupil positions to a cone of
positions in space. This also corresponds to the angular accuracy of
our setup.

With the intrinsic eye camera matrix AQ, as determined in the last
section, we can relate a homogeneous pupil position p̂ = (p, 1)T to
an associated ray r in 3D world camera space:

p̂ = AQr; (7)

the depth along r is indeterminate since AQ is a projection matrix.
The angle between two rays ri, rj , represented by pupil coordinates
pi,pj , is hence given by
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rTi rj
‖ri‖‖rj‖

=
p̂T
i A

−T
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This suggests to interpret the matrix A−T
Q A−1

Q as an induced inner
product MQ = (AQA

T
Q)−1 on homogeneous pupil coordinates. The

angle ηij then becomes

cos ηij =
p̂T
i MQp̂j

(p̂T
i MQp̂i)1/2(p̂T

jMQp̂j)1/2
. (9)

For multiple pairs pi, pj , Eq. 9 can be solved efficiently when the
involved matrices are precomputed.

4 FROM PUPIL COORDINATES TO LOCATIONS ON AN OBJECT

Our objective is to determine a gaze position w̄ ∈ R3 in space from a
pupil position p̄ describing a gaze direction. Central to our approach
for determining w̄ is that the geometry of the observed object is known
to high accuracy. This is ensured by 3D printing the objectM from its
digital representation as a triangulated surface M . The printed object
also includes a fiducial marker, which allows us to determine the rigid
transformation of the object in space as described in Sec. 3.1.

To simplify the problem, we do not determine the exact gaze lo-
cation w̄ on the object corresponding to p̄ but instead consider the
vertices v̄i in the digital model M that map to pupil positions close to
p̄. Let

p̂i = Q(Rvi + t) (10)

be the homogeneous pupil position pi = (pi1 , pi2 , pi3)T correspond-
ing to vertex vi. Then we consider the set of vertices

Γc(p̄) =

{
vi ∈M

∣∣∣∣ ˆ̄pTMQp̂i

(ˆ̄pTMQ ˆ̄p)1/2(p̂T
i MQp̂i)1/2

> c

}
; (11)

that is, we are determining which vertices vi on the object lie within a
cone centered around the eye ray corresponding to p̄ with angular size
c. From these vertices, we consider the one closest to the eye as the in-
tersection point. This point can be determined efficiently solely using
pi3 . Note that since the metric MQ has a natural relation to eye ray
angle, we can choose c based on the accuracy of our measurements.
Space partitioning data structures can be used to speed up the search,
however, this is not an issue in our current implementation.

5 EXPERIMENTS

In the following, we will report on preliminary experimental results
that validate the accuracy of our setup for tracking 3D gaze points and
that demonstrate that a small number of correspondences suffices for
calibration. These results were obtained using two exploratory exper-
iments with a small number of subjects (n = 6).
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Fig. 3: Physical setup used in our experiments.

Participants We recruited 6 unpaid participants (all male), all of
which were students or staff from a university. Their age ranged from
26 to 39 years and all had normal or corrected-to-normal vision, based
on self-reports. Four of them had some previous experience with eye
tracking.

Apparatus The physical setup of our experiments is shown
in Fig. 3. For measuring fixations we employed the Pupil eye
tracker [18]. Our software implementation uses OpenCV [4], which
was in particular employed to solve for the rigid transformations R,t
as described in Sec. 3.1. We determine Q using Eq. 4 with the Ceres
Solver [2].

5.1 Accuracy of calibration and gaze direction estimation

In Sec. 3.2 we explained how the projective mapping Q from world
camera coordinates to pupil positions can be determined by solving a
linear least squares problem. As input to the problem one requires cor-
respondences {(wi,pi)} between world camera coordinates wi and
pupil positions pi describing the gaze direction of a particular sub-
ject towards wi. The correspondences have to be determined exper-
imentally, and hence will be noisy. The accuracy with which Q is
determined therefore depends on the number of correspondences that
is used. In our first experiment we investigated how many correspon-
dences are needed to obtain a robust estimate for Q. The same data
also allows us to determine the angular error of our setup.

Procedure We obtained correspondences {(wi,pi)} by asking a
subject to focus on the center of a single fiducial marker while it is
presented at various locations in the desired view volume (see Fig. 1,
middle); we have augmented the center of the marker with a red dot
to make this task as unambiguous as possible. At each position of
the marker, we estimate a single correspondence (wi,pi) based on
the estimation of the rigid transformation for the marker, cf. Sec. 3.1.
For each participant, we recorded 100 correspondences {(wi,pi)} for
two different conditions, resulting in a total of 200 measurements per
participant. In the first condition the head was fixed on a chin rest
while in the second condition participants were only asked to keep
facing towards the marker. For both condition the marker was moved
in a volume of 0.37m (width) × 0.4m (height) × 0.25m (depth) at a
distance of 0.75m from the subject (see Fig. 3).

Data Analysis For each dataset we perform 10 trials of 2-
fold cross validation and estimate the projection matrix using
{4, 5, 7, 9, 11, 12, 13, 14, 16, 18, 20, 25, 50} point pairs. In each trial,
the 100 correspondences are randomly divide into 2 bins of 50 point
pairs each. One bin is used as training set and the other as testing set.
Point pair correspondences from the training set are used to compute
the projection matrix Q which is then employed to compute the error
between the gaze direction given by the pupil position pi and the true
direction given by the marker center wi for the points in the test data
set. From Eq. 9 this error can be calculated as

ηi = cos−1 pT
i MQQwi

(pT
i MQpi)1/2(wT

i Q
TMQQwi)1/2

. (12)
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Fig. 4: Mean values and standard errors for angular error with respect to the number of
calibration points. Note that 4 and 5 calibration points were omitted in the figure since
they result in a more than 10 times higher angular error.

Results In order to analyze the influence of the number of cali-
bration points as well as the usage of the chin rest on the estimation
accuracy, we performed a repeated measures ANOVA (α = .05) on
the independent variable Chin rest with 2 levels (with, without) and
Calibration with 13 levels (the corresponding number of calibration
points, i.e., 4, 5, 7, 9, 11, 12, 13, 14, 16, 18, 20, 25, 50). The depen-
dent variable was the angular error in degree. We used 10 rounds of
cross validation for our repeated measures, with each data point being
the average angular error per round. This resulted in an overall of 260
data points per participant (2 Chin reset × 13 Calibration × 10 cross
validation).

Results showed a main effect for Calibration (F12,60 = 103.064,
p < .001). Post-hoc pairwise comparisons revealed that the differ-
ence between using 4 calibration points (M = 17.38, SE = 0.9), the
minimum number required to determine the 11 parameters of the ma-
trix Q, and all other conditions was significantly different (p < .05).
Comparing 5 points (M = 12.69, SE = 1.69) to all subsequent con-
ditions showed significance levels of p ≈ .07. Furthermore, using 9
calibration points compared to 20, 25, and 50 showed significantly dif-
ferent angular errors (p < .05). Mean values and standard errors are
illustrated in Figure 4.

When using 11 to 50 calibrations points, the angular error averages
at around 0.8, which is within the range of human visual accuracy
and goes in line with the specifications of the pupil eye tracker for 2D
gaze estimation [18, 3]. The results furthermore demonstrate that even
for a relatively low number of calibration points, comparable to the 9
points typically used for calibration for 2D gaze estimation [13, 18],
our method is sufficiently accurate.

No significant effect for Chin rest (F1,5 = 0.217, p = .661;
with chin rest M = 3.02, SE = 0.267; without chin rest M =
3.13, SE = 0.26) was present, suggesting that the usage of a chin rest
has negligible influence on the angular accuracy. However, it should be
noted that participants, although not explicitly instructed, were mostly
trying to keep their head steady, most likely due to the general setup
of the experiment. We believe that a plausible conclusion is that our
method is not sensitive to minor head motion. This is also supported
by the setup, in that slight head motion has no effect on the relative
orientation and position of eye, eye camera, and world camera. As
long as this system stays fixed, the mapping is unchanged. Giving par-
ticipants the ability to move their head freely is an important feature
for exploring objects in a natural, unconstrained manner. However,
quantifying the effect of motions at larger scales should be subject to
further investigations.

5.2 Accuracy of 3D gaze position

In our second experiment we explored the accuracy of our approach
for viewing 3D stimuli. As model we employed the Stanford bunny
and marked a set of pre-defined target points on the printed bunny as
shown in Fig. 5, left. After a calibration with 11 correspondences as
described in the last section, the test subjects were asked to individu-
ally focus on each of the targets (between 1 and 2 seconds). A heat
map of the obtained gaze positions is shown in Fig. 5, right. Fixations
are calculated based on Eq. 11 where c is set to be 0.6. Table 1 shows
the angular error of each target in degrees as well as the depth error in

Fig. 5: Left: physical bunny model with target markers (numbers indicate order); right:
heat map of obtained gaze directions.

Table 1: Errors of individual markers on bunny.

Marker index 1 2 3 4 5
Degree 0.578 1.128 0.763 0.846 0.729
Depth 7.998 8.441 10.686 3.036 8.381

mm.
Angular error depends mostly on the tracking setup, however, since

the intersection computation with eye ray cones is restricted to points
on the surface (vertices in our case), we get smaller angular errors on
silhouettes.

Depth accuracy, on the other hand, depends on the slope of the ge-
ometry. In particular, at grazing angles, that is when the normal of
the geometry is orthogonal or almost orthogonal to the viewing direc-
tion, it could become arbitrarily large. For the situations of interest to
us where we have some control over the model, the normal is orthog-
onal or almost orthogonal to the viewing direction only around the
silhouettes. However, since we determine the point on the object that
best corresponds to the gaze direction, we obtain accurate results also
around silhouettes. This is reflected in the preliminary experimental
results where we obtain an average depth error of 7.71mm at a dis-
tance of 553.97mm, which corresponds to a relative error of less than
2%, despite three of five targets being very close to a silhouette.

6 CONCLUSION

We presented a simple yet accurate approach for tracking 3D gaze
positions on known geometry using a monocular eye tracker. This is
enabled by

• generating stimuli using digital manufacturing to obtain pre-
cisely known 3D geometry without restricting its shape;

• utilizing fiducial markers in a known relative position to the ge-
ometry to reliably determine its position relative to a subject’s
head;

• using a projective mapping to relate 3D positions to 2D pupil
coordinates.

We experimentally verified our approach using two explorative user
studies. The results demonstrate that 11 correspondences suffice to
reliably calibrate the mapping from pupil coordinates to 3D gaze loca-
tions with an angular accuracy of 0.8 degree, which closely matches
those of 2D gaze tracking. We also achieve a depth accuracy of 8.3mm
at a distance of 550mm, corresponding to a relative error of less than
2%.

We developed our approach for 3D gaze tracking to analyze viewing
behaviour for genuine 3D stimuli, and to explore what differences to
2D stimuli exist. Our approach enables researchers to study visual
saliency on physical objects without scarifying to accuracy. Given
the substantial amount of work on saliency and related questions that
employed 2D stimuli for studying 3D objects, we believe this to be a
worthwhile research question that deserves further attention.
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artificial stimuli to perform calibration for 3D gaze tracking. In B. E.
Rogowitz, T. N. Pappas, and H. de Ridder, editors, Human Vision and
Electronic Imaging XVIII. SPIE, 2013.

[24] S. Mathe and C. Sminchisescu. Dynamic Eye Movement Datasets and
Learnt Saliency Models for Visual Action Recognition. In A. Fitzgibbon,
S. Lazebnik, P. Perona, Y. Sato, and C. Schmid, editors, Computer Vision
ECCV 2012, pages 842–856. Springer, 2012.

[25] T. Pfeiffer, M. E. Latoschik, and I. Wachsmuth. Evaluation of Binocular
Eye Trackers and Algorithms for 3D Gaze Interaction in Virtual Reality
Environments, 2008.

[26] T. Pfeiffer and P. Renner. Eyesee3d: A low-cost approach for analyzing
mobile 3d eye tracking data using computer vision and augmented reality
technology. In Proceedings of the Symposium on Eye Tracking Research
and Applications, pages 369–376. ACM, 2014.

[27] S. Ramanathan, H. Katti, N. Sebe, M. Kankanhalli, and T.-S. Chua. An
Eye Fixation Database for Saliency Detection in Images. In K. Dani-
ilidis, P. Maragos, and N. Paragios, editors, Computer Vision ECCV
2010, pages 30–43. Springer, 2010.

[28] C. Ramasamy, D. H. House, A. T. Duchowski, and B. Daugherty. Using
eye tracking to analyze stereoscopic filmmaking. In Posters on - SIG-
GRAPH ’09, page 1, New York, New York, USA, Aug. 2009. ACM Press.

[29] S. Stellmach, L. Nacke, and R. Dachselt. 3d attentional maps: aggregated
gaze visualizations in three-dimensional virtual environments. In Pro-
ceedings of the international conference on advanced visual interfaces,
pages 345–348. ACM, 2010.

[30] A. Toet. Computational versus psychophysical bottom-up image
saliency: a comparative evaluation study. IEEE transactions on pattern
analysis and machine intelligence, 33(11):2131–46, Nov. 2011.

http://ceres-solver.org
http://ceres-solver.org

	Introduction
	Related Work
	From 3D positions to pupil coordinates
	From local 3D positions to world-camera coordinates
	From world camera coordinates to pupil positions
	From pupil positions to angular accuracy

	From pupil coordinates to locations on an object
	Experiments
	Accuracy of calibration and gaze direction estimation
	Accuracy of 3D gaze position

	Conclusion

