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In the following, we provide further details on the material presented
in the paper: “A Constructive Theory of Sampling for Image Synthe-
sis using Reproducing Kernel Bases”. A tutorial on the mathematical
formulation of our theory, including necessary functional analytic
background, is provided in a separate document.

1 Monte Carlo Integration and Reproducing Kernels

In this section, we will show how reproducing kernels enable a
functional analytic interpretation of Monte Carlo integration. We
will begin by introducing the concept of a characteristic basis and
its connection to reproducing kernels.

1.1 Characteristic Bases

Let X be a set, for example a compact subset of Rd. The character-
istic function χY :X → R for a subset Y ⊂ X is

χY (x) =

{
1 if x ∈ Y
0 otherwise . (1)

A partition of X is a collection of disjoint subsets Xi, i = 1 · · ·n,
of X such that their union forms again X , that is

X =

n⋃
i=1

Xi. (2)

With each Xi we can naturally associate the characteristic function
χi(x) that is nonzero only over this domain Xi. A characteristic
basis is then the collection {χi(x)}ni=1 of all χi(x) associated with
a partition {Xi(x)}ni=1. The basis spans the space span(χi(x)) =
Hχ(X) ⊂ L2(X) and since it is a closed subspace of L2(X) it is a
Hilbert space equipped with the L2 inner product. Note thatHχ(X),
{χi(x)}ni=1 and {Xi(x)}ni=1 are all in a one-to-one correspondence.

Instead of unit height characteristic basis functions χi(x), we will
in the following usually work with their normalized siblings

χ̄i(x) =
1√
|Xi|

χi(x) (3)

where |Xi| denotes the area of Xi. The basis {χ̄i(x)}ni=1 is an
orthonormal characteristic basis forHχ(X). For example, for X =
[−1, 1] such a basis is given by:
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By Eq. 3 in the paper, the reproducing kernel forHχ(X) at λ ∈ Xj
is given by

kλ(x) =

n∑
i=1

χ̄i(λ) χ̄i(x). (4a)

Since the product χ̄i(λ) χ̄i(x) vanishes unless λ ∈ Xj the sum
collapses and we have

kλ(x) = χ̄j(λ) χ̄j(x). (4b)

By the definition of the normalized characteristic functions we more-
over obtain

kλ(x) =
1

|Xj |
χj(λ) (4c)

Hence, the reproducing kernel kλ(x) forHχ(X) coincides with the
characteristic function χi(x) up to a constant.

From Eq. 4 it follows that a reproducing kernel basis forHχ can be
formed by choosing one location λi in each Xi. The reproducing
kernel basis functions in Eq. 4c are then orthogonal, since their sup-
port is disjoint, but they are not orthonormal. Moreover, we cannot
normalize the ki(x) since they would then lose the reproducing
property; this is an instance where the general wisdom that every or-
thogonal basis can be carried over to an orthonormal basis is not true,
or at least it would destroy the reproducing property that is crucial
for us. From the biorthogonality condition 〈ki(x), k̃j(x)〉 = δij
it follows that the dual kernel functions for the reproducing ker-
nel basis {ki = 1/|Xi|χx}ni=1 are given by k̃i(x) = χi(x), that
is by unnormalized characteristic functions. The basis pair for a
characteristic reproducing kernel basis is hence({

ki(x) =
1

|Xi|
χi(x)

}
,
{
k̃i(x) = χi(x)

})
. (5)

For example, for the orthonormal characteristic basis that we con-
sidered before, the associated reproducing kernel basis is given by
(reproducing kernels in red):
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An important property of characteristic reproducing kernel bases is
that these can be constructed and are practical for arbitrary domains
X , including manifolds and high-dimensional spaces. Equivalently,
the kernel matrix for a characteristic reproducing kernel basis is a
diagonal matrix that is trivially orthogonal and maximally localized.

1.2 Monte Carlo Integration Revisited
With the foregoing definition of characteristic reproducing kernel
bases we are prepared to show how Monte Carlo integration can
be obtained as a quadrature rule. Let {χi}ni=1 be a uniform char-
acteristic basis over a partition for the set X = [a, b] ⊂ R whose
elements Xi have equal volume |Xi| = |X|/n. With locations
Λ = {λi} such that each Xi contains exactly one sampling point
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Figure 1: Experimental results for final gathering: Signal-to-Noise ration, L2 error, and L1 error (from left to right) for the Villa, Killeroo and Sponza scenes.
The graphs for the Villa scene are those also presented in the paper.

λi we obtain a characteristic reproducing kernel basis for the space
Hχ([0, 1]) with dual kernel functions k̃i(x) = χi(x). A quadrature
rule associated with this reproducing kernel basis can be obtained
using Eq. 10 in the paper. Since the characteristic basis is uniform
we obtain for the quadrature weights

wi =

∫
X

k̃i(x) dx =

∫
X

χi(x) dx = |χi| =
|X|
n
. (6)

The quadrature rule for the spaceHχ([0, 1]) is thus∫
f(x) dx =

n∑
i=1

wi f(λi) =
|X|
n

n∑
i=1

f(λi) (7a)

=
b− a
n

n∑
i=1

f(λi) (7b)

Eq. 7b formally coincides with the standard Monte Carlo estimator
for uniformly distributed sampling locations. From the definition
of a probability (or measure) space, the result that Monte Carlo
integration arises as a quadrature rule for the space spanned by
characteristic functions is by no means surprising, cf. [Rudin 1987].
Also note that {χi}ni=1 becomes dense in L2([a, b]) as the number
of partitions goes to infinity and hence asymptotically the quadrature
rule converges for any f ∈ L2(X) ∩ L1(X).

For samples drawn from an arbitrary probability distribution function
p(x) the requirement of one sample per unit height characteristic
basis functions implies that the partition elements Xi can no longer
have equal size but need to have the form Xi = [xi, xi+1] for
suitable interval bounds xi ∈ [a, b]. Choosing the xi such that in the
support of every χi(x) is on average one sample is then equivalent
to

nP ([xi, xi+1]) = n

∫ xi+1

xi

p(x) dx = 1 (8)

which with y ∈ [xi, xi+1] is to zeroth order

p(y) (xi+1 − xi) = 1/n. (9)

With λi being the samples in the support of χi one thus has
|χi| = xi+1−xi = 1/(n p(λi)). The quadrature rule with samples
distributed according to p(x) is therefore∫

f(x̄) dx̄ =
1

n

n∑
i=1

f(λi)

p(λi)
(10)

Eq. 10 formally coincides with the standard Monte Carlo estimator
for importance sampling.



Figure 2: Experimental results for final gathering using our technique (top row for each scene) and classical final gathering (bottom row for each scene). The
columns correspond to 16, 32, 64, 128, 256, 512, and 1024 samples in the hemisphere, respectively. See Fig. 1 for the corresponding error rates.

2 Final Gathering

In this section, we present additional implementation details and
experimental results on our final gathering application in Sec. 4.3 in
the main paper.

2.1 Implementation Details

Galerkin Projection of Shading Operator To implement our
technique for final gathering, we have to compute the Galerkin
projection

P̂ij =
〈
yi(ω) | ρ(ω, ω̄) | yj(ω̄)

〉
of the shading operation P into a finite spherical harmonics space,
cf. Eq. 4.14 in the paper. The two inner products that have to be
computed to obtain P̂ cannot be determined analytically. We hence
first compute a pointwise representation P̌ = {ρ(λi, λj)} ∈ RN×N

which is determined by evaluating the scattering kernel for a large
number of directions λi ∈ S2. Since the matrix P̌ provides a
representation of P over samples, we can employ our theory to
obtain an approximation of P̂ through

P̂ ≈ SLy (Λ) P̌ SLy (Λ),

cf. Eq. 2.8 in the paper. SLy (Λ) is the spherical harmonics sampling
matrix for the locations Λ and maximum spherical harmonics band
L. The cardinality of Λ is chosen such that one has a sufficient
oversampling rate. With P̂ we compute the singular value decom-
position P̂ = Û Σ̂ V̂ T using the Eigen C++ library.1 The Galerkin

1http://eigen.tuxfamily.org/

projection has to be computed once and can then be reused whenever
the same scattering function is used again. We implement this by
writing the Galerkin projection and its singular value decomposition
to disk and reloading it when necessary.

Importance Sampling Importance sampling requires the compu-
tation of weights that never directly contribute to image generation
but are only employed to estimate the relative importance of sam-
pling locations. We can hence employ a less accurate approximation
for this weight computation. For spherical harmonics this is easily
realized by using a smaller bandwidth L for this computation. The
effect of this on image quality for the Villa scene is shown in the
following table (L refers here to the maximal bandwidth used for
importance sampling):

L 1 5 10 20 25 50
SNR 14.95 15.06 15.08 15.06 15.07 15.07
L2 err 7.01 6.90 6.88 6.90 6.89 6.89
Time 189.2 190.3 202.5 245.6 270.5 528.0

2.2 Experimental Evaluation

The dependence of signal-to-noise ratio, L1 error, and L2 error on
the number of gather samples is shown in Fig. 1. In Fig. 3 we show
the dependence of the error on the maximum spherical harmonics
band used to represent the shading operator and on the number of
eigenvalues used in the approximation.

http://eigen.tuxfamily.org/
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Figure 3: Experimental results for final gathering. L2 error for the Villa and Killeroo scenes as a function of one varying parameter; left, spherical harmonics
bandwidth; right, percentage of spectral energy. Signal-to-Noise ratio and L1 are qualitatively equivalent and hence not shown. For the spherical harmonics
bandwidth we see that L = 25 or L = 30 would suffice. The spectral energy decrease up to 0.95% and afterwards it increase again since then the oversampling
rate becomes too small for the number of samples that was used (here 128).

3 Reproducing Kernels in the Literature

To our knowledge, our formulation of sampling-based numerical
techniques based on reproducing kernel bases, with an emphasis on
finite reproducing kernel Hilbert spaces and practical techniques,
did not appear before in the literature. Related to our presentation
is work on general sampling theorems, see for example [Nashed
and Walter 1991; Unser 2000; Zayed 1993; Benedetto and Fer-
reira 2001]. In these works reproducing kernels are also employed
for the correspondence between continuous functions and point-
wise samples. However, typically more theoretical questions are
considered, for example whether an infinite dimensional function
space admits a set of sampling. Related to our formulation of sam-
pling are so called kernel methods, see for example the survey
articles [Schaback and Wendland 2006] and [Fasshauer 2011]. How-
ever, since the work is not based on reproducing kernel bases it
is harder to employ in practice. Many applications of reproduc-
ing kernels can also be found in machine learning. Best known
are probably kernel methods [Schölkopf and Smola 2002; Berlinet
and Thomas-Agnan 2004] which exploit that reproducing kernels
satisfy 〈kx(z), ky(z)〉 = k(x, y). This enables to evaluate high-
dimensional inner products 〈kx(z), ky(z) by evaluating reproduc-
ing kernel functions k(x, y). More closely related to our use of
reproducing kernels than kernel methods is work by Smale and col-
laborators on the foundations of learning, see [Cucker and Smale
2002; Poggio and Smale 2003; Smale and Zhou 2004; Smale and
Zhou 2005; Smale and Zhou 2007] and reference therein. There,
reproducing kernels are also employed for the conceptualization
of point samples. Yet another area where reproducing kernel have
become popular in recent years are meshless finite element methods,
see [Babuška et al. 2003; Li and Liu 2004; Griebel and Schweitzer
2007] and reference therein. These methods are closely related to
the reproducing kernel Galerkin projection in Sec. 3.2 in the paper.
We hope that this connection proves useful both for the development
of numerical techniques for image synthesis and for relaxing some
of the assumptions currently required in our interpretation of light
transport techniques in Sec. 3 in the paper. The numerical opti-
mization of sampling points for quadrature and spherical harmonics
transforms has been explored before by Sloan and Womersley [2004;
2009]. However, in our experiments the energy function used in their
work for optimization was less efficient than rk-discrepancy. Using
reproducing kernels, Gräf and Potts [2011] recently showed that
discrepancy and attraction-repulsion schemes for point optimization
are related, and they also explored an interesting connection to stip-
pling [Gräf et al. 2011]. In recent years, reproducing kernels began
to play a prominent role in the Quasi Monte Carlo literature [Dick
and Pillichshammer 2010]. For example, classical L2 discrepancy is

the worst case error for equal weight (QMC) quadrature for Hs, as
a reproducing kernel Hilbert space, see again [Dick and Pillichsham-
mer 2010, Chapter 2] or [Novak and Woźniakowski 2010, Chapter
9]. With this interpretation, reproducing kernels enable one to gener-
alize discrepancy to integration for functions in other spaces.

4 Large Sample Counts and Adaptive Sampling

On the image plane, millions of samples are typically used to re-
construct an image. Constructing and possibly inverting the kernel
matrix for such a large number of samples is impossible. At the same
time, the image intensity is a signal with locally varying regularity.
The globally supported reproducing kernel functions we considered
in the three applications in the paper are hence ill-suited for approxi-
mating and representing the signal [Mallat 2009]. Fortunately, the
questions of how to effectively construct and invert an arbitrarily
large kernel matrix and how to determine locally supported recon-
struction filters that adapt to the local signal regularity are two sides
of the same medal and can be addressed simultaneously. To empha-
size the idea, we consider in the following functions over [a, b] ⊂ R.
We will employ reproducing kernels for a space spanned by locally
supported basis functions and then locally invert the kernel matrix
by considering only a subset of its rows and columns to determine
reconstruction filters.

Adaptivity and Local Inversion A class of bases well suited
for the representation of signals with locally varying regular-
ity, for example smooth sections interrupted by singularities, are
wavelets [Daubechies 1992; Mallat 2009]. Since we are interested
in signals defined over finite intervals [a, b] ⊂ R, we will employ
the Cohen-Daubechies-Vial (CDV) wavelets [Cohen et al. 1993]
which are the classical Daubechies wavelets [Daubechies 1992]
modified to correctly handle finite intervals [a, b]. In its standard
form, a CDV wavelet basis {ϕ0,0, ψi,j}, j = 0 · · · , i = 1 · · · 2j , is
globally supported over [a, b] since the scaling function ϕ0,0(x) on
level zero is nonzero over all of [a, b]. However, by the recursive
structure of the wavelet spaces Vj that are spanned by the scaling
and wavelet functions, an equivalent basis is given by the scaling
functions ϕn,i(x) on a finer level n > 0 and the wavelets functions
ψj,i on the following levels j > n. We hence have the following
basis consisting of localized basis functions

Ψ =
{
{ϕn,i}, {ψj,i} | j = n, · · · , N, i = 1, · · · , 2j

}
(11)

where we also truncated the sequence of wavelets on some finite level
N to obtain a representation amenable to numerical computations.
Given the basis Ψ, we can employ Eq. 2.3 in the paper to construct
reproducing kernels kλ(x) for the space spanned by Ψ. Since the
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around singularities. Bottom: Sparsity pattern of transposed kernel matrix
KT for wavelet reconstruction in the top plot (abscissa values and columns,
corresponding to samples, are aligned).

wavelet basis functions are localized, the reproducing kernels will
also only have local support in the vicinity of the sampling location
λ ∈ Λ ⊂ [a, b]. Choosing suitable locations Λ = {λi}mi=1, we can
construct a reproducing kernel basis {ki(x)}mi=1 that is spanned by
locally supported kernel functions ki(x). The degree of localization
is thereby determined by the support of the basis functions at the
coarsest level n that is employed. As in the general case, numerically
the reproducing kernel basis is represented using the kernel matrix:

K=

 ϕn,1(λ1) · · · ϕn,2n(λ1) ϕn,1(λ1) · · · ψN,2N (λ1)
...

...
ϕn,1(λm) · · · ϕn,2n(λm)ϕn,1(λm) · · · ψN,2N (λm)


Since the reproducing kernels are locally supported the above kernel
matrix is sparse. The sparsity pattern for CDV wavelets with three
vanishing moments and n = 3 and N = 8 is shown in Fig. 4, bot-
tom. Clearly visible is how each reproducing kernel basis function,
corresponding to one column, depends only on a small subset of the
localized wavelet basis functions. Apparent are also the different
levels of the wavelet basis functions, with localization increasing as
the level increases from top to bottom.

Through the sparsity of the kernel matrix K it is possible to invert
it by considering only a small subset of the matrix to determine a
row of the inverse. In particular, the dual kernel function k̃j(x),
whose basis function coefficients are the elements of the inverse of
K, are defined by the biorthogonality condition 〈ki(x), k̃j(x)〉 =
δij . Hence, the duals can only depend on those basis functions
ψa,b(x) of the wavelet basis that are nonzero over the support of
kj(x). Conversely, k̃j(x) can only be nonzero over the support of

these basis functions ψa,b(x). Therefore, each dual kernel function
k̃j(x) can be determined from only a small subset of the rows and
columns of K and, moreover, the rows correspond to a localized
neighborhood whose size depends on the localization of the basis
functions. In Matlab pseudo-code, the local inversion is:

for( piv = 1 : size(K,1))
% wavelets contributing to kernel at lambda(piv)
idx = find( abs(K(piv,:)) > 0);

% find all abscissa values that are relevant
jdx = [];
for( j = 1 : numel(idx))
jdx = union( jdx, find(abs(K(:,idx(j))) > 0));

end

% subset of kernel matrix
Kl = K(jdx,idx);
% Invert *local* matrix
Sl = pinv(Kl);

% Copy relevant part of Sl to inverse
...

end

For example, when we again consider the CDV wavelets with three
vanishing moments and n = 3, N = 8, and employ 1024 uniform
sampling points in [a, b] then the dual kernel functions k̃j(x) in
the interior of the interval can be determined from a sub-matrix
of size 182 × 35 instead of the full kernel matrix of size 1024 ×
4096. The element-wise L2 error that results from using the local
approximation of the pseudo-inverse is 1.94 × 10−10. A local
inversion is also beneficial when adaptive sampling is used and
the local sampling density is for example determined by the local
regularity of the signal. We can then decide on the number of wavelet
functions that is used in a neighborhood, or equivalently on the local
depth of the wavelet tree, based on the number of samples that is
adaptively determined in a neighborhood. A simple example of
adaptive sampling and localized reconstruction is shown in Fig. 4
where we useN = 8 only around singularities and otherwiseN = 6.
There, we also used adaptive sampling to ensure that we are locally
in an oversampling regime without wasting samples where the signal
is very regular.

For ease of implementation, we employed in our proof-of-concept
application wavelets. However, when the ideas are used for sampling
on the image plane then curvelets [Candès and Donoho 1999] or
bandlets [Mallat and Peyré 2007] should be employed, which are
better adapted for the representation of natural images. An interest-
ing avenue for future work is also to exploit that the scaling basis
functions are closely related to reproducing kernels [Daubechies
1992].

5 Density Estimation and Reproducing Kernels

As was already known to Aronszajn [1950] when he developed the
theory of reproducing kernels, Green’s functions for bounded partial
differential equations provide an important example of reproducing
kernels. In the following, we will show that Green’s functions also
enable the interpretation of density estimation, typically given by

f(x) ≈ 1

nh

∑
i=1

k

(
|x− xi|

h

)
(12)

for some translation invariant kernel k(x, y) = k(‖x − y‖), from
the point of view of reproducing kernel bases.



Let us begin with an example. The heat equation

∂φt(x)

∂t
−∆φt(x) = 0 (13)

describes the diffusion of a time-dependent function φt : Rn → R.
As is by now well known in computer graphics, the Green’s function
for the heat equation is the heat kernel Ht(x, y) given by

Ht(x, y) =
1√

4π t
n exp

(
−|x− y|2

4t

)
. (14)

By definition, we hence have for the image of the function φ0(x) at
time t = 0 under the flow of the heat equation

φt(y) =
1√

4π t
n

∫
Rn

φ0(x) exp

(
−|x− y|2

4t

)
dx. (15)

Following [Koenker et al. 2012], let us assume that the function
φ0(x) corresponds to a normalized “train of Dirac-δ’s” at a set of
locations xi,

φ0(x) =
1

N

N∑
i=1

δxi , (16)

we will try to interpret this from the point of view of our theory
shortly. By Eq. 15, we then formally have

φt(y) =
1√

4π t
n

∫
Rn

φ0(x) exp

(
−|x− y|2

4t

)
dx (17a)

=
1√

4π t
n
N

∫
Rn

∑
i

δxi exp

(
−|x− y|2

4t

)
dx (17b)

=
1√

4π t
n
N

∑
i

∫
Rn

δxi exp

(
−|x− y|2

4t

)
dx (17c)

=
1√

4π t
n
N

∑
i

exp

(
−|xi − y|2

4t

)
. (17d)

The last equation is the density estimate for a Gaussian kernel, cf.
Eq. 12. Hence, density estimation can in this case be interpreted
as smoothing by the heat flow. In the following, we will take an
approach based on reproducing kernels to generalize the derivation
to other kernels.

Let us assume a differential equation has orthonormal eigenfunctions
φi(x) associated with eigenvalues λi. Its Green’s function then has
the representation

Gt(x, y) =

n∑
i=1

λ−t φi(x)φi(y) (18)

and the reproducing kernel for the domain of the Green’s function
can be written with the eigenfunctions using Eq. 2.3. For a tight
reproducing kernel basis, a function f(x) in the domain has then the
representation

f(x) =
n

m

m∑
i=1

f(λi) ki(x). (19)

Using f(x) ≡ f0(x) as the function at time t = 0 we obtain for a
unit time flow f(y) ≡ f1(y) that

f(y) =

∫
X

f0(x)G(x, y) dx (20a)

=

∫
X

(
m∑
i=1

f(λi) ki(x)

)
G(x, y) dx (20b)

=

m∑
i=1

f(λi)

∫
X

ki(x)G(x, y) dx. (20c)

Expanding both the reproducing kernel and the Green’s function in
the eigenbasis and using the orthogonality of the φa(x) leads to∫

X

ki(x)G(x, y) dx =
∑
a

λa φa(λi)φa(y) = G(λi, y) (20d)

Hence, we have

f(y) =
n

m

m∑
i=1

f(λi)G(λi, y). (20e)

When we choose f(x) to be the indicator function so that f(λi) = 1,
the last equation has again the form of Eq. 12. The additional terms
compared to Eq. 12 result, as before, when we make a concrete
choice for a Green’s function, for example the heat kernel, and when
m� n.

In the literature [Pharr and Humphreys 2010], a special type of
density estimation are kernel weighted averages of the form

f(x) ≈
∑m
i=1 f(xi) k(x− xi)∑m

i=1 k(x− xi)
(21)

with an additional normalization term in the denominator. In the
statistics literature, Eq. 21 is known as Nadaraya-Watson estimator.
In the above discussion of density estimation we have ignored the
question of what happens to the function under the flow of the partial
differential equation. For a well behaved flow, a smoothing will take
place but unless the partial differential equation is unitary the flow
will alter the norm of ft(x). When density estimation is uses as
generalized interpolation then this is undesirable. It is easy to see that
Eq. 21 enforces norm preservation for f(x) being the characteristic
function. In wavelet parlance, the denominator enforces a zero-th
order vanishing moment.

Ideas similar to those discussed in the present section can be found
in the work by Fasshauer [2010; 2011].

6 An Error Bound for Pointwise Techniques

In the following, we will provide a more formal and rigorous discus-
sion of the material that was presented in Sec. 2.4 in the main paper.
Let us being by restating the error formula in Eq. 2.11.

Proposition 1. Let G(X) be a reproducing kernel Hilbert space
with orthonormal basis {φi}pi=1, with p possibly being infinity, and
H(X) ⊂ G(X) a finite, closed subspace such that {φi}ni=1 forms
an orthonormal basis for H(X). Furthermore, let {ki(x)}mi=1 be
a reproducing kernel basis for G(X) defined over locations Λ =
{λi}. For a function f̂ + f̌ = f ∈ G(X) with f̂ ∈ H(X) and
f̌ ∈ G(X) \H(X), the error errk(f) in the kth basis function
coefficient fk(φ) = 〈f, φk〉 when obtained from only pointwise
samples f(λi) by f(Λ) = K f(φ) is bounded by

|errk(f)| ≤ ‖f̌‖‖γk‖

where the vector γk = (γkn+1, . . . , γ
k
p ) has elements

γki =

m∑
j=1

φi(λj) rkj .

Proof. Let f(λi) be given values of f ∈ G(X) at the m locations
λi ∈ X . We obtain for the kth basis function coefficient fk ≡ fk(φ)
with respect to φk that

fk = 〈f , φk〉 (22a)

=

〈
m∑
j=1

f(λj) k̃j , φk

〉
. (22b)
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Figure 5: Left: The effect of oversampling on ‖γk‖ for approximate basis projection for the spherical harmonics spaceH≤5. Shown is ‖γk‖
assuming the residual signal is contained in one band l = 6. Right: Decay of the spherical harmonics coefficients for typical scenes in light
transport. As can be seen, the main signal components lie in low dimensional subspaces, making our theory applicable.

Since f = f̂ + f̌ , we can write this as

fk =

〈
m∑
j=1

(
f̂(λj) + f̌(λj)

)
k̃j , φk

〉
. (22c)

Exploiting linearity then yields

fk =

〈
m∑
j=1

f̂(λj)k̃j , φk

〉
︸ ︷︷ ︸

f̂k(φ)

+

〈
m∑
j=1

f̌(λj)k̃j , φk

〉
︸ ︷︷ ︸

errk(f)

(22d)

where f̂k(φ) is the exact basis function coefficient, corresponding
to the orthogonal projection of the input signal, and the second
term errk(f) represents the error which is caused by an input not
contained in H(X). Again exploiting linearity we obtain for the
error term

errk(f) =

〈
m∑
j=1

f̌(λj) k̃j , φk

〉
(23a)

=

m∑
j=1

f̌(λj)
〈
k̃j , φk

〉
(23b)

=

m∑
j=1

f̌(λj) skj (23c)

where the skj are the elements of the sampling matrix Sφ(Λ). With
the expansion of the residual signal f̌ in the basis {φi}pi=1 for G(X)
one obtains

errk(f) =

m∑
j=1

(
p∑

i=n+1

f̌i(φ)φi(λj)

)
skj (23d)

and by interchanging the order of the summations this becomes

errk(f) =

p∑
i=n+1

f̌i(φ)

m∑
j=1

φi(λj) skj︸ ︷︷ ︸
γki

. (23e)

The error term can hence be written concisely as

errk(f) =

p∑
i=n+1

f̌i(φ) γki . (23f)

The elements skj of the sampling matrix can be interpreted as the
integration weights for the projection of φi(λj) for i > n onto the
kth basis function φk(x) forH(X). The γki thus represents the error
of the “projection” using the point samples λj as integration nodes,
which would vanish were it exact since φi /∈ H(X) for i > n.

The effect of the signal and the coefficient γki on the error errk(f)
can be separated using the Cauchy-Schwarz inequality. Eq. 23f, with
the sum interpreted as a dot product, then becomes

|errk(f)| ≤ ‖f̌‖‖γk‖ (24)

where f̌ is the vector of basis function coefficients beyond the band-
limit and γk the corresponding vector of the γki .

A similar error analysis can be found, for example, in [Mallat 2009],
see in particular Chapter 5.1.4.

In Fig. 5 we demonstrate the practical relevance of the error formula
in Proposition 1. Shown on the left is how the signal independent
term ‖γk‖ decreases as the oversampling rate increases. On the
right we see that for typical light transport scenes the main signal
component lies in a low dimensional function space so that the
residual component ‖f̌‖ is sufficiently small for our theory to be
applicable.

7 Representation of Color Information

In Fig. 6 we provide additional experimental results for the represen-
tation of color information using reproducing kernel bases discussed
in Sec. 4.1 in the paper. The figure is an extension of Fig. 3 in the
main paper that shows the dependence of the quality of the color
reproduction on the number of samples that are used. The figure
was inspired by Fig. 6 in Peercy’s original paper [1993].
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