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Abstract
Anti-aliasing on the image plane is a classic problems in computer graphics. While mip-mapping provides an efficient means to
pre-filter texture information, no comparable technique exists for visibility. We address visibility-induced aliasing by exploiting
that the Fourier transform of a discontinuity decays slowly only in the normal direction. Pre-filtering is thus only necessary in
this direction and, after a coordinate transformation, the corresponding one dimensional problem can be solved analytically or
tabulated. The resulting pre-filtered signal can be reconstructed exactly from pointwise samples and we derive corresponding
sampling theorems that are tailored to the pre-filtering as well as a set of irregular sampling locations. We demonstrate our
methodology for the classical Shannon-Nyquist setting but also for shift-invariant spaces where exact reconstruction kernels
with significantly faster decay than the sinc-function are available. Our experimental results demonstrate that our pre-filtering
is highly effective and that going beyond the Shannon-Nyquist setting reduces aliasing error further.

CCS Concepts
•Computing methodologies → Visibility;

1. Introduction

Since it was first observed that the “jaggies” in computer-generated
images are a form of aliasing [Cro77], many approaches have
been proposed to address the problem. To this date, however, anti-
aliasing remains an active area of research (e.g. [RKLC∗11, LA06,
Res09]). To a large extent, this is because the pre-filtering that is
required to reduce aliasing [Cro77, Cat78] is difficult to realize for
visibility. In the following we will address this issue and provide an
efficient means to regularize the visibility discontinuity. Together
with sampling theorems that are tailored to the pre-filtering and an
arbitrary but fixed irregular set of samples, this substantially re-
duces aliasing error.

Concretely, the problem we consider is the following. We as-
sume that the image is represented by the pixel (or characteristic)
basis so that the value Ii j of pixel Pi j is given by

Ii j =
∫

Pi j

I(x)dx (1)

where I(x) is the irradiance function on the image plane (or some
other suitable intensity function). We are interested in obtaining an
approximation Ĩi j of Ii j from pointwise samples I(λn) only, i.e.

Ii j ≈ Ĩi j = ∑
n

wn I(λn) (2)

where wn are suitable weights. We will assume that the sample lo-
cations λn are confined to the pixel, i.e. λn ∈ Pi j , and λn,wn are
fixed but can be chosen, as it is for example the case on graphics

hardware. We will furthermore assume that our geometry is de-
scribed by polygons. Our objective is then to minimize the `p error

E =
(
∑
i j
|Ii j− Ĩi j|p

)1/p
(3)

caused by visibility-induced aliasing for suitable 1≤ p <∞.

The approximation Ĩi j can be determined efficiently and reliably
from a small number of pointwise samples I(λn) when the irra-
diance signal is pre-filtered. While such pre-filtering is well under-
stood when high frequencies are caused by textures [Wil83,Hec89],
it is much more difficult for geometric discontinuities. To realize it
in this case, we exploit that the Fourier transform of a discontinuity
decays slowly only in the normal direction. This reduce the pre-
filtering to a one dimensional task along the normal direction and,
using an appropriate coordinate transformation, the corresponding
convolution or projection can be solved analytically or precom-
puted. Since we determine a pixel value from samples, at runtime
the regularized signal only needs to be evaluated pointwise, see
Fig. 1 for an overview.

While the pre-filtered signal can in principle be reconstructed
from its samples, the non-uniform locations commonly used in
graphics are not compatible with Shannon’s theorem. We will
hence construct sampling theorems for non-uniform locations, for
example those used on graphics hardware. These then directly yield
the quadrature weights wk for Eq. 2. Next to the classical setting
of bandlimited functions we will derive sampling theorems also
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for shift-invariant spaces [AG01] where, for suitable choices of the
generator, reconstruction kernels with much faster decay than the
sinc-function are available.

Our approach does not take perceptual questions into account,
despite the importance of this aspect [Mit87, LA06]. Nonetheless,
we feel that our approach does make a perceptual difference, as
we demonstrate with preliminary experimental results in Sec. 4.
These also show that moving beyond the Shannon-Nyquist setting
can indeed improve the performance of sampling-based rendering.

2. Related Work

Since the literature on anti-aliasing is vast, we will focus in the
following discussion on related work most relevant for our method.

Feibusch, Levoy, and Cook [FLC80] proposed to subdivide the
overlap between a triangle and a pixel and then use a lookup ta-
ble to approximate the integral with a given kernel. A lookup ta-
ble was also used in later works such as those by Abram, West-
over and Whitted [AW85] and Guenter and Tumblin [GT96]. By
using the directionality of the Fourier transform we reduce visibil-
ity anti-aliasing to a one dimensional task that either has a closed
form solution or is much more easily tabulated than the two or
three dimensional functions used in previous work. The use of a
sampling-based method also avoids the complex subdivision re-
quired in [FLC80, AW85].

Guenter and Tumblin [GT96] used Gaussian quadrature to
solve integrals required for anti-aliasing and later Oulette and
Fiume [OF01] systematically investigated the integration of dis-
continuous functions. We make this integration tractable by pre-
filtering the discontinuity. Furthermore, instead of using pre-
existing quadratures we construct custom ones that are adapted to
the pre-filtering and a set of non-uniform locations. The compu-
tation of quadrature weights for anti-aliasing was recently inves-
tigated in [LA06] where a non-linear optimization problem was
solved to obtain these. In contrast, we derive quadrature weights
for arbitrary sampling locations using an analytical theory that only
requires the solution of a simple linear system, although without
taking perceptual aspects into account as in [LA06].

McCool [McC95] addressed aliasing by exploiting that the con-
volution of two splines is again a spline so that, when surface inten-
sity and the image filter are represented this way, an accurate and
efficient evaluation is possible. Our work employs shift-invariant
spaces, which include splines, although our focus is on sampling
based anti-aliasing, in contrast to the fully analytic approach ex-
plored by McCool. Manson and Schaefer [MS13] proposed the use
of wavelets and their multi-resolution structure to solve the aliasing
problem. This is not unlike our approach where we employ wavelet
scaling functions to generate shift-invariant spaces. However, the
implementation in [MS13] only uses Haar wavelets whereas for
our work it is critical to have functions that are better localized in
space and frequency.

Dippé and Wold [DW85] used Fourier theory to investigate how
anti-aliasing on the image plane can be achieved using stochastic
sampling [Coo86]. Mitchell [Mit87, MN88, Mit91] subsequently
extended this work to include perceptual aspects. While we also

base our work on Fourier theory, we exploit its directionality
and localize it, which was not done in previous work. Frequency
domain-inspired approaches have recently also played a prominent
role in global illumination [DHS∗05]. In particular, Ramamoorthi
et al. [RAMN12] and Egan et al. [EHDR11] studied visibility in-
formation and its sampling in the Fourier domain. However, they
did not address pre-filtering and only considered bandlimited func-
tions.

An alternative to addressing the aliasing problem itself is to im-
plement anti-aliasing as an post-processing step [Res09]. This is
similar to recent work on noise reduction for Monte Carlo render-
ing, see [ZJL∗15] for a survey.

3. Addressing the Aliasing Problem

After fixing some notation we develop in the following our line
of attack on visibility-induced aliasing and discuss why the re-
quired pre-filtering is intrinsically only one dimensional. After-
wards we consider discuss how our methodology can be realized
in the classical Shannon-Nyquist setting before turning to shift in-
variant spaces. We conclude the section with a discussion on how
to chose the appropriate “capacity”, e.g. bandlimit, of a function
space for a given set of samples. An implementation of the dis-
cussed ideas is provided in the supplementary material and the
reader should refer there for implementation aspects.

3.1. Preliminaries

The unitary Fourier transform f̂ (ξ) of a function f : Rn 7→ R is

f̂ (ξ) =
∫
Rn

x

f (x)e−2πi〈ξ,x〉 dx (4a)

with inverse transform

f (x) =
∫
Rn

ξ

f̂ (ξ)e2πi〈x,ξ〉 dξ. (4b)

The classical example for a sampling theorem is those by Shan-
non. It states that a B-bandlimited function f : Rn→ R, that is one
satisfying

supp( f̂ )⊂ [−B,B]n, (5)

can be reconstructed from its pointwise samples f (k/2B) at a B-
dilated integer grid as

f (x) = ∑
k∈Zn

f (k/2B)sincB(x− k) (6)

where sincB(x− k) is the B-dilated sinc-function in n dimensions
(i.e. the n-fold tensor product of the one dimensional function).

3.2. Attacking Visibility-Induced Aliasing

An efficient and accurate approximation of the pixel value Ii j from
a small number of pointwise values I(λn) is possible when the irra-
diance signal I(x) lies in (or sufficiently close) to a function space
H that admits a sampling theorem with respect to the λn [LDF14].
I(x) can then be represented using a sampling expansion with dual
kernel functions k̃n(x) as

I(x) = ∑
n

I(λn) k̃n(x); (7)
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Figure 1: Schematic depiction of our methodology. Left: Triangle (grey) partially covering a pixel. The (local) Fourier transform (green)
of the jump discontinuity decays slowly, as 1/|ξ|, only in the normal direction. Middle: After a change of coordinates the discontinuity is
axis-aligned and the signal can be pre-filtered, resulting in much faster-decaying Fourier transform (dark green). Right: The pixel value can
be computed efficiently from the pre-filtered signal using a sampling theorem adapted to the sampling locations and the pre-filtering.

Eq. 6 is one example for such an expansion but many others exist.
After inserting Eq. 7 into Eq. 1, the pixel value then is given by

Ii j =
∫

Pi j

(
∑
n

I(λn) k̃n(x)
)

dx = ∑
n

I(λn)
∫

Pi j

k̃n(x)dx (8a)

and by computing

wn =
∫

Pi j

k̃n(x)dx (8b)

we obtain the desired quadrature rule in Eq. 2. In practice, comput-
ing the wk amounts to solving a linear system, see the supplemen-
tary material or [LDF14] for more details and background.

The above methodology will enable us to determine pixel values
when the irradiance signal lies in a space H admitting a sampling
theorem. However, in general this will not be the case. I(x) then
needs to be pre-filtered or regularized. This is accomplished by

Ī(x̄) =
∫
R2

I(x)kx̄(x)dx (9)

where kx̄(x) is the pointwise projection kernel that maps I(x) onto
H; for B-bandlimited functions kx̄(x) = sinc(x− x̄) and one obtains
the ideal pre-filtering for Shannon’s theorem.

To simplify Eq. 9 we have to consider I(x) in more detail. With
the assumptions made in Sec. 1 we are interested in irradiance func-
tions of the form I(x) = t(x)H~n(x) where t(x) is the signal on the
polygon, e.g. a texture, and H~n(x) is the Heaviside function with re-
spect to the normal~n of the jump discontinuity that is unity on the
polygon and vanishes outside, see Fig. 1. Pre-filtering of textures
has been studied extensively and can in practice be realized using
mip-mapping. We will hence not consider it further and work in the
following with I(x) = H~n(x), see Sec. 5 for a further discussion.

Since many spaces admitting sampling theorems, such as the
space of B-bandlimited functions, can be described and analyzed
efficiently in the frequency domain, it will be useful to also charac-
terize H~n(x) using the Fourier transform. However, as is, the Fourier
transform in Eq. 4 is defined over all of Rn and hence rather ill
suited for analyzing a discontinuity in a small pixel neighborhood.

Fortunately, the localization of the Fourier transform around a dis-
continuity has received considerable attention in mathematics and
we can rely on the results obtained there, see e.g. [Ste93, Ch. VIII]
or [Hör04, Vol. I]. In particular, if f (x) is a discontinuous signal
and φ(x) a smooth bump window in the vicinity of the jump, then
for sufficiently larger |ξ| the local Fourier transform (̂φ f )(ξ) de-
cays slowly only for those directions ξ̄ = ξ/|ξ| in Fourier space
that correspond to a normal of the discontinuity. In the classical
setting of B-bandlimited functions, this means that a discontinuous
f (x) is B-bandlimited for reasonably large B except when ξ̄ = ~n.
This observation that a discontinuous signal is ill-behaved only in
the normal directions provides the conceptual underpinning for our
approach.

To exploit the above result on the local Fourier transform of a
discontinuity it is convenient to use a change of variables so that
the jump is along a predetermined direction, say the x1 axis. More
concretely, we use a rotation R~n determined by the normal~n so that
y = R~nx. Eq. 9 then becomes

H̄′(y) =
∫
R2

H′(y)k′ȳ(y)dy (10)

where H′(y) = H(RT
~n y), cf. Fig. 1. The above integral is indepen-

dent of the orientation and only one dimensional, since H (R~nx) is
constant in the x2 direction,

H̄′(y) = H̄′(y1) =
∫
R

H′(y1)k′ȳ1 (y1) dy; (11)

for simplicity we will identity H and H′ in the sequel. As we will
see in the following, the reduced Eq. 11 will enable us to determine
an analytic solution or tabulate values for H̄ (y1). Importantly, the
change of variables y = R~nx is compatible with the quadrature rule
in Eq. 8. It becomes

Ii j = ∑
n

wn H̄(R~nλn) . (12)

and at runtime it is thus sufficient to evaluate the pre-filtered signal
H̄(y) at rotated sampling locations R~nλn. In fact, since Eq. 11 is one
dimensional the value of H̄ (R~nλn) only depends on the distance of
λn to the discontinuity, which can also be computed directly.

© 2017 The Author(s)
Eurographics Proceedings © 2017 The Eurographics Association.



C. Lessig / Controlling and Sampling Visibility Information on the Image Plane

-2 -1 1 2

0.2

0.4

0.6

0.8

1.0

-2 -1 1 2

0.2

0.4

0.6

0.8

1.0

Figure 2: Left: Step function H(x) (light blue), its ideal 1-
bandlimited version Si1(x), and SCr1,β(x), i.e. the regularization of
H(x) obtained with the raised cosine. Also shown are four random
samples in the vicinity of the jump for the different functions. Right:
Ideal, H̄a

4 , (orange) and faster decaying, H̄a,2
4 , (green) regularized

version of the step function H(x) for Coiflets.

In summary, our line of attack on visibility-induced aliasing will
be to, first, choose a function space that admits a sampling theo-
rem with respect to given λk, second, regularize the step function
of the visibility discontinuity so that it lies in the space, third, use
construct a sampling representation adapted to the space and the
locations, and, fourth, derive quadrature weights from this repre-
sentation. At runtime then only the quadrature rule in Eq. 12 needs
to be evaluated.

3.3. Anti-aliasing in the Shannon-Nyquist setting

The classical setting for sampling is the space of B-bandlimited
functions with the Shannon theorem in Eq. 6. Fixing this space we
can apply the methodology developed in the last subsection.

Pre-filtering In the space of B-bandlimited functions the pre-
filtering in Eq. 11 has a closed form solution given by

H̄ i
B(x) = H(x)? sincB(x) =

1
π

Si(2Bπx)+
1
2

(13)

where Si(x) is the sine integral

Si(z) =
∫ z

0

sin(x)
x

dx; (14)

numerically Si(x) can be evaluated efficiently using its Taylor ex-
pansion [RJM∗15] (as other trigonometric functions).

As is well known, Si(x) suffers from ringing artifacts, see Fig. 2.
These result from the discontinuities of the Fourier transform of the
sinc-function, ŝinc(ξ) = χB(ξ). The ringing can hence be reduced
using a filter whose Fourier transform is more regular. A common
choice is the raised cosine CrB,β(x) [PS08], see Fig. 3 for a depic-
tion. The pre-filtering then still has a closed form solution,

H̄r
B(x) = H(x)?CrB,β(x) = SCr(x) (15)

where SCr(x) is provided in the supplementary material, see Fig. 2.

Construction of quadrature weights: equispaced samples The
regularized jump discontinuities H̄ i

B(x) and H̄r
B(x) in Eq. 13 and

Eq. 15, respectively, are bandlimited and can hence be represented

with equidistant samples using Shannon’s theorem in Eq. 6. A
quadrature rule can then be obtained as in Eq. 8 with the weights
wk being given by the integrals of the sinc-function over Pi j.

The Shannon theorem depends on infinitely many samples at all
integers and, furthermore, through the non-compact support of the
sinc-function, also all infinitely many weights wk will be non-zero.
Hence, also the quadrature rule will involve an infinite summation.
To obtain a practical technique that can be implemented, and re-
spect our assumptions from Sec. 1, we have to truncate the infinite
sum to only involve samples in the pixel Pi j, i.e.

Ii j = ∑
k∈Pi j

wk ĪB(k/2B)+ ∑
k∈Z2\Pi j

wk ĪB(k/2B) (16)

with the second sum being set to zero. Unfortunately, the sinc-
function decays only slowly as 1/|x| in the spatial domain so that
the truncation will not provide a good approximation; see for exam-
ple the paper by Strohmer and Tanner [ST05] for a rigorous bounds
on the truncation error.

Construction of quadrature weights: non-equispaced samples
In graphics, typically non-uniform samples are employed. Shan-
non’s theorem is then no longer applicable. Within the space of B-
bandlimited functions one can, however, construct generalizations
for quite arbitrary locations [Beu66]. By the infinite support of the
sinc-function the construction requires a priori the solution of an
infinite-dimensional linear system to obtain the k̃n(x) (see the sup-
plementary material). In practice, the system can be truncated in
both dimensions and when Slepian functions are used this can be
done with a very small error, see for example [XRY01]. The re-
sulting reconstruction kernels k̃n(x) will, however, inherit the slow
decay of the sinc-function, as follows from [Grö04, CG04, FG05],
see Fig. 5 for an example. Hence, we have the same large trunca-
tion error as with the sinc-basis. We will thus turn next to a set-
ting for sampling where faster-decaying reconstruction kernels are
available.

3.4. Anti-aliasing using shift-invariant spaces

A family of function spaces that admit sampling theorems are shift-
invariant spaces [AG01]. These are generated by generalizations of
Eq. 6 where instead of the sinc-function one allows other, well-
behaved kernels φ(x) that decays as |x| increases. For fixed φ(x),
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Figure 3: Sinc function (blue) and raised cosine function in the
spatial (left) and frequency (right) domains for different values of
the parameter β that controls the localization (same colors corre-
spond to the same value of β in both plots). Apparent is the much
better spatial localization of the raised cosine function compared to
the sinc-function at the cost of a less precise frequency localization.
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Figure 4: Scaling function for Coiflet wavelets in the frequency (left) and spatial (middle) domain for dyadic dilations 4 and 5. It is apparent
that the functions are very well localized in the spatial and frequency domains. The right plot shows a comparison of φ̂(ξ) (blue) and |φ̂(ξ)|2
(orange); it can be seen that φ̂(ξ) decays smoother in the Fourier domain and will hence cause less ringing in the spatial domain when used
as a regularization filter.

the corresponding shift-invariant space is then defined as

Ha
φ =

{
f (x) = ∑

k∈Zn

fk φ(ax− k) | fk ∈ `2

}
. (17)

The dilation parameter a controls the “capacity” of the space, sim-
ilar to the bandwidth B for the sinc-function.

A well known family of admissible kernels φ(x) are wavelet scal-
ing functions with an associated multi-resolution analysis [Mal09,
Ch. 3.1.3, Ch. 7.1]. These provide some additional advantages that
make them a convenient choice for our purposes:

• dilation adjusts the effective frequency support;
• they form orthogonal bases; which simplifies the construction of

sampling theorems and the computation of the coefficients fk;
• they are compactly supported in space so that the corresponding

dual reconstruction kernels k̃n(x) are also well localized;
• they are available in two dimensions.

To make the subsequent discussion more concrete, we will in the
following employ the scaling function of the Coiflet wavelet of
order 4, denoted as φ

a
4(x), with the associated space Ha

4. This
choice is motivated by the very good frequency localization of the
function, see Fig.4, and because it has almost the sampling prop-
erty [Mal09, Ch. 7.2.3].

Pre-filtering A simple approach for pre-filtering the step func-
tion H(x) for Ha

4 is obtained by considering the Fourier trans-
form of φ

a
4(x), see Fig. 4. Since φ̂

a
4(ξ) is a smoothed version of

ŝinc(ξ) = χB(ξ), not unlike the raised cosine,Ha
4 is essentially the

space of bandlimited functions for a bandlimit that is located be-
fore the transition region of φ̂

a
4(ξ) begins (in fact, Daubechies con-

structed the functions such that this holds). This suggests that we
can employ the regularized forms of H(x) that were derived in the
last section in Eq. 13 and Eq. 15 for the space of B-bandlimited
functions. Among other things, these provide the advantage that
they are given by closed form expressions.

The ideal pre-filtering for Ha
4 is the orthogonal projection onto

the space. Since the φ
a
4(x) form an orthonormal basis, it is given by

H̄a
4 (x) = ∑

k∈Zn

〈
H(y),φ4(ay− k)

〉
y φ4(ax− k). (18)

While no closed form solution exists for the inner product in the

above equation, the required integrals can be computed to high ac-
curacy using numerical quadrature. The resulting regularized step
function is shown in Fig. 2.

Similar to the situation for B-bandlimited functions, the ideal
H̄a

4 (x) in Eq. 18 suffers from ringing, although, because of the com-
pact support of the φ

a
4(x), it is already much better localized than for

Si(x). To understand how this ringing can be reduced, we consider
Eq. 18 in the Fourier domain,

ˆ̄H4(ξ) = Ĥ(ξ)
∣∣φ̂a

4(ξ)
∣∣2. (19)

Eq. 18 is thus equivalent to the convolution of H(x) with the in-
verse Fourier transform of

∣∣φ̂(ξ)∣∣2. A filter that will result in less
ringing should be smoother in the Fourier domain. Given the de-
cay of

∣∣φ̂(ξ)∣∣2 from 1 to 0 as |ξ| increases, see Fig. 4, one possible

choice for a more regular filter is the “square root” of
∣∣φ̂(ξ)∣∣2. Con-

veniently, the “square root” is just the scaling function so that a
spatial representation is available. The convolution

H̄a,2
4 (x) = φ

a
4(x)?H(x) (20)

cannot be computed analytically but an approximation to high ac-
curacy is again possible numerically. We will refer to this approach
as root pre-filtering in the following. A summary of the effect of
different pre-filtering strategies is presented in Fig. 6.

Construction of Quadrature Weights The quadrature weights re-
quired to obtain Ĩi j can again be derived as in Eq. 8 and are given by
the integrals of the k̃n(x) over Pi j. Note that in contrast to the situa-
tion for the sinc-function computing the k̃n(x) only involves a finite
dimensional linear system, since φ

a
4(x) is compactly supported.

Examples of reconstruction kernels k̃n(x) for the Coiflet setting
are shown in Fig. 5 together with those obtained from the sinc-basis
for the same sampling locations. Readily apparent is the much bet-
ter localization of the k̃n(x) when one begins with a well-localized
basis, as one would expect [Grö04, CG04, FG05].

3.5. What bandlimit should we use?

In the foregoing we assumed a fixed bandlimit B or a fixed dilation
factor a. When the samples are equispaced the Nyquist condition
and the spacing of the kernel function in Eq. 17, respectively, im-
mediately answer how the parameters should be chosen. However,
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Figure 5: Left: dilated, orthogonal basis functions at {−1/32, 0, 1/32} for the sinc (blue) and Coiflet case (orange). Middle and right:
dual kernel functions k̃(x) for second and fourth sampling point (red) for the sinc (blue) and Coiflet case (orange) obtained with the three
functions in the left plot; one readily sees that in the sinc-case k̃(x) decays much slower than in the Coiflet-case, as expected from theory.

for non-equispaced samples the correct choice is less obvious. Fur-
thermore, we might have a number of samples, such as m = 7 or
m = 8, that is not compatible with the tensor product structure of
the bases where one always has k2,k ∈ Z+, basis functions over a
square domain. A conservative solution would be to use k = b

√
mc,

resulting in k2 = 4 for m = 7 or m = 8. However, this introduces
an unnecessary error in the approximation H̄ and leads hence to a
suboptimal pixel value. We are instead interested in choosing the
largest possible space that is supported by the samples.

The problem of choosing B or a in the non-equispaced setting
is dual to the question “How many non-uniform samples do we
need?” for fixed B or a, which has been studied extensively in the
literature. The answer is typically formulated using Beurling-type
densities, see for example [Uns00, AG01, AS02] and references
therein. Our answer for how to chose B and a will also rely on a
density argument although we will remain less formal.

For concreteness let us consider the 8-point sample pattern
that we will also employ in the next section, depicted as black
dots in the inset figure. If we would have 9 samples then
the largest possible tensor product space would be obtained
by having the basis functions on a 3× 3 grid over the pixel.

The given eight samples are,
however, not enough for a lo-
cally 9-dimensional space and
using a locally 4-dimensional
one, with one basis function at
each corner, is wasteful given
the eight samples. To be able
to choose an intermediate value,
we introduce the local sample

density, DP, per pixel, which is similar to the notion of local dimen-
sionality used before in graphics in [RMB07, LF10]. Assuming an
image with N pixels in each direction parametrized over the unit
square and basis functions at distance d, it is given by

DP =

(
1

N d
+1
)2

. (21)

Given a local sample density, such as DP = 8 in our case, we can
solve the above equation for d which can then be related to the
bandwidth B= π/d and to the wavelet scale by d = 2−l with a= 2l .

As an example, let N = 16. Then d = 0.0342, which is in
between the sample spacing of d = 1/16 = 0.0625 for a lo-

cally 4-dimensional space and d = 1/32 = 0.03125 for a locally
9-dimensional space. The resulting basis function locations are
shown in the inset figure (basis function locations in red).

4. Experiments

As examples, we applied the methodology proposed in the last sec-
tion to the 4-sample and 8-sample antialiasing patterns used in Di-
rectX 11.

To obtain experimental results we implemented a simple raster-
izer for constant triangles in Mathematica. As reference solution
we employed the exact area overlap of a triangle and a pixel and
the reported classical pixel value is the unweighted average of the
unfiltered signal. All numbers were obtained by averaging over a
large number of randomly generated triangles and we verified that
the numbers are consistent across multiple runs of the experiment.
Our implementation is provided in the supplementary material.

4.1. 4-Sample Pattern

DirectX 4-sample pattern is a rotated, equi-distant grid. This sub-
stantially simplifies the construction since the bandlimit is obvi-
ous and the Shannon-theorem can be invoked directly using rotated
sinc-functions. Since one has four samples, it is natural to employ
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Figure 6: `2 error for different pre-filtering for the 8-sample pat-
tern. For all methods a weighted quadrature with the weights de-
rived using Eq. 8 was employed.
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Figure 7: Three triangles rasterized with pre-filtering and weighted
quadrature for 4 samples per pixel. Even with four samples our
results are visually almost indistinguishable from the ground truth.

a locally 4-dimensional space for the Coiflet scaling functions with
the functions located at the pixel corners, cf. Sec. 3.5. The various
pre-filtering strategies introduced in Sec. 3 were used in the exper-
iments and we also experimented with rotated, i.e. pixel boundary
aligned filtering (reported as *-rot).

A depiction of the rasterization of some representative triangles
with our approach is shown in Fig. 7. Already with four sam-
ples the obtained results are visually almost indistinguishable from
the ground truth. Numerical results for the `p norms in Eq. 3 are
reported in Fig. 8. These verify the visual impression of Fig. 7.
Pre-filtering substantially reduces visibility-induced aliasing in all
methods and even without quadrature weights (reported as ‘MC’)
one obtains low error rates. The better localization of Coiflet scal-
ing functions compared to the sinc-function further reduces the er-
ror rates in all error norms under consideration. The difference is
not very pronounced but given the sample locations at hand that ex-
actly fit the Shannon-Nyquist setting this is not entirely surprising.
The results in Fig. 8 also demonstrate the benefits of using quadra-
ture weights.

4.2. 8-Sample Pattern

For DirectX’ 8-sample pattern we studied six different methods de-
rived from our methodology. For Sinc-9 and Coiflet-9 we used nine
basis functions and determined the bandlimit respectively the scale
parameter using Eq. 21 and with one basis function located at the
center of the pixel. The Sinc-4 case uses four sinc-functions cen-
tered in the pixel (i.e. the centroid of the four functions is the pixel
center) with the same bandlimit as Sinc-9. We also explored locat-
ing our basis functions according to the Quincunx pattern (reported
as *-Q. in the results). We again used the various pre-filtering strate-
gies introduced in Sec. 3. A comparison is provided in Fig. 6.

Experimental results for the 8 sample case are presented in
Fig. 9. Again, pre-filtering reduces the error for all methods and
Coiflets provides a small but consistent advantage over the other

techniques. That the `2 error is reduced is somewhat expected, since
our approach is essentially developed in this setting. That also a sig-
nificant reduction in the `∞ error is obtained is visually important
since this norm is typically considered to be more closely related
to perceptual results. Coiflet-9 and Sinc-9 significantly outperform
the other methods which suggests that the notion of local dimen-
sionality that we discussed in Sec. 3.5 is a suitable model.

5. Summary and Outlook

We demonstrated that visibility-induced aliasing can be reduced
substantially by, first, choosing a suitable function space that admits
a sampling theorem for the given locations; second, determining the
pre-filtering of the step function for this space; third, constructing
a sampling theorem with the given locations; and fourth, deriving
the quadrature weights from the sampling theorem. We applied our
methodology to the classical setting of bandlimited functions but
also considered shift invariant spaces. We demonstrated that the
better spatial localization of the kernel functions in the latter set-
ting compared to the sinc-function also yields lower error rates.

We currently disregard textures, motivated by the fact that these
can be pre-filtered efficiently using mip-mapping. However, since
pre-filtering does not commute with multiplication of functions
the interaction between the visibility discontinuity and textures re-
quires further attention. Nonetheless, since a visibility event will
only affect frequencies in the normal direction we do believe that
our principal methodology is still applicable in the general case.

Our numerical experiments demonstrate the importance of
quadrature weights for obtaining pixel values. We derived these
from first principles, without the need to resort to optimization as in
previous work [LA06]. In contrast to Laine and Aila [LA06], how-
ever, we did not take perceptual aspects into account. This is an
important direction that should be explored in the future. Laine and
Aila [LA06] also optimized sampling locations. Within our math-
ematical framework this has been explored previously by Lessig,
Desbrun and Fiume [LDF14]. It will be interesting to incorporate it
into the present work.

Our current methodology relies on polygonal edges being
straight. This enabled us to reduce visibility anti-aliasing to a one
dimensional problem along the direction where the Fourier trans-
form decays slowly, that is the normal direction. For curved edges,
such as in font outlines, our approach is hence not directly appli-
cable. However, also for curved discontinuities is the local Fourier
transform well understood [Ste93, Ch. VIII.5.B]. Roughly speak-
ing, one then has slow decay for all directions in the normal cone
of the neighborhood with the amount of Gaussian curvature con-
trolling the constant of the decay. We believe that our approach is
amenable to this setting using a non-linear coordinate transforma-
tion that straightens out the edge. Also the case of corners, where
the Fourier transform decays slowly in all directions in the cone
between adjacent normals [KP16] should be investigated in detail.

The setting considered in our work is closest to the rasterization
pipeline and, unsurprisingly, it was developed with it in mind. Al-
though our approach could probably be implemented using a com-
bination of existing programmable shaders, we believe that it is best
integrated into the rasterizer. Our methodology is, furthermore, not
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Figure 8: 4 samples: `1, `2, and `∞ errors (from left to right) and numerical results. For better visibility the data for the classical approach
(not prefiltered, unweighted) has been excluded from the plots since it is five times larger than the remaining values, see the numerical data.

restricted to rasterization and it will be interesting to adapt it to the
image reconstruction pipeline used in ray tracers.
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