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Image generation in computer graphics relies heavily on Monte Carlo inte-

gration,

In =
|X|
n

n∑
i=1

f(xi) −−−−→
n→∞

I =

∫
X

f(x) dx, (1)

since the convergence rate is independent of the dimensionality (without loss

of generality, we will assume a uniform probability density function). More

formally, with the Chebychev inequality we have [1]

P

{
|In − I| ≥

1√
N

(
V (f)

δ

)}
≤ δ (2)

Hence, the convergence rate is 1/
√
N with no dependence on the dimensionality;

in contrast to those for quadrature rules, e.g. for Bakhvalov’s theorem.

As has been noted elsewhere before, however, this assumes that the variance

V (f) is independent of the dimensionality. To gain some intuition for what this

implies, let us consider a simple function parametrized by dimension d,

fd(x) =

d∏
i=1

a sin (2πxi), xi ∈ [0, 1], a ∈ R+. (3)

The functions fd(x) are obviously very well behaved, e.g. they are C∞ and their

modulus and that of each of its partial derivatives is bounded.
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Figure 1: Curse of dimensionality for Monte Carlo integration of fd =
∏d

i=1 a sin (2πxi) with

a = 5/2. Shown is the average error for 5,000 problem instances with N samples.

For a uniform probability density, the variance of a function f(x) is

V (f) =
1

|X|

∫
X

(
f(x)− E[f ]

)2
dx. (4)

A little bit of algebra shows that for our family of functions we have

V (fd) =
a2d

2d
. (5)

Consequently, for sufficiently large a the variance grows exponentially fast in5

the dimension. Hence, also the convergence rate of Monte Carlo integration is

no longer independent of d, as demonstrated in Fig. 1, and this despite fd(x)

being a very well behaved function for any d.

The family fd(x) is the tensor product of f(x) = a sin(x), that is we use

a quite simple model to describe the d-dependence. But, after all, our very

model of d-dimensional space is typically as the product of 1-dimensional one.

Eq. 5 shows, however, that the curse of dimensionality arises through this tensor

product structure that leads to a scaling factor of ad, that is the modulus of

fd(x) grows with d. Using a scaling factor ai that decays with d, such as by

defining our family of functions as,

f̄d(x) =

d∏
i=1

(
5

2

)1/i

sin (2πxi), xi ∈ [0, 1] (6)
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enables one to again escape the curse of dimensionality, since in each additional

dimension f̄d(x) is more regular, in terms of its modulus, as in the previous one.10

Although the above argument is based on a simple example, it demonstrates

that also for Monte Carlo integration a convergence rate independent of the di-

mension is only attained when the function (family) becomes more and more reg-

ular as the dimension increases. But under this condition also quadrature rules

can achieve a convergence rate independent of d. For classical Cr-smoothness15

this is shown by Bahvalov’s theorem [2] and in the context of Quasi Monte Carlo

methods this is described by weighted function spaces [3], which are conceptu-

ally similar to our modified family in Eq. 6, see for example [4] and references

therein. Yet another avenue to escape the curse of dimensionality outside of

Monte Carlo techniques is with sparse methods, either based on wavelets [5] or20

on other constructions [6], for which the sparsity grows sufficiently fast with the

dimension. Compared to the deterministic bounds for quadrature rules, such as

in [2], the analysis in Eq. 2 is also only probabilistic, i.e. without guarantees for

an individual problem instance.

Our arguments are not new and similar ones have been made before, e.g.25

Donoho [7] and Bungartz and Griebel [6] discuss the assumptions that are re-

quired for V (f) to be independent of the dimension.
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